bioRxiv preprint doi: https://doi.org/10.1101/2020.12.27.424494; this version posted December 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 Activation of TIR signaling is required for pattern-triggered immunity

- 2
- ³ Hainan Tian^{1*}, Siyu Chen^{1,2*}, Zhongshou Wu^{1,3*}, Kevin Ao^{1,3}, Hoda Yaghmaiean¹,
- 4 Tongjun Sun¹, Weijie Huang¹, Fang Xu^{1,3,4}, Yanjun Zhang^{1,3,5}, Shucai Wang⁶, Xin Li^{1,3},
- 5 and Yuelin Zhang¹
- ⁶ ¹ Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4,

7 Canada

- ² Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and
- 9 Cytology, Northeast Normal University, Changchun, Jilin 130024, China
- ³ Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T
- 11 1Z4, Canada
- ⁴ The Key Laboratory of Plant Development and Environmental Adaptation Biology,
- 13 Ministry of Education, School of Life Sciences, Shandong University, Qingdao
- 14 266237, China
- ⁵ Institute of Plant Genetics and Developmental Biology, College of Chemistry and
- 16 Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
- ⁶ College of Life Science, Linyi University, Linyi 276005, China
- 18 * These authors contributed equally to the described work.
- 19 For correspondence: yuelin.zhang@botany.ubc.ca; xinli@msl.ubc.ca

20

- 21
- 22

23 Abstract

Plant immune responses are mainly activated by two types of receptors. Plasma 24 membrane-localized pattern recognition receptors (PRRs) recognize conserved 25 features of microbes, and intracellular nucleotide-binding leucine rich repeat receptors 26 (NLRs) recognize effector proteins from pathogens. NLRs possessing N-terminal 27 Toll/interleukin-1 receptor (TIR) domains (TNLs) activate two parallel signaling 28 pathways via the EDS1/PAD4/ADR1s and the EDS1/SAG101/NRG1s modules. The 29 30 relationship between PRR-mediated pattern-triggered immunity (PTI) and TIR signaling is unclear. Here we report that activation of TIR signaling plays a key role in 31 PTI. Blocking TIR signaling by knocking out components of the EDS1/PAD4/ADR1s 32 and EDS1/SAG101/NRG1s modules results in attenuated PTI responses such as 33 reduced salicylic acid (SA) levels and expression of defense genes, and compromised 34 resistance against pathogens. Consistently, PTI is attenuated in transgenic plants that 35 have reduced accumulation of NLRs. Upon treatment with PTI elicitors such as flg22 36 and nlp20, a large number of genes encoding TNLs or TIR domain-containing 37 38 proteins are rapidly induced, likely responsible for activating TIR signaling during PTI. In support, overexpression of some of these genes results in activation of defense 39 responses. Overall, our study reveals that TIR signaling activation is an important 40 mechanism for boosting plant defense during PTI. 41 42

43

44

45

46

47 Introduction

Immune receptors are essential for non-self recognition and defense activation in 48 multicellular organisms ^{1,2}. Plants use pattern recognition receptors (PRRs), which 49 include transmembrane receptor-like kinases (RLKs) and receptor-like proteins 50 (RLPs), to detect conserved components of microbes collectively known as 51 pathogen-associated molecular patterns (PAMPs), and activate pattern-triggered 52 immunity (PTI)³. Unlike RLKs, RLPs do not have a cytoplasmic kinase domain and 53 usually transduce defense signals through adaptor RLKs such as BRI1-ASSOCIATED 54 RECEPTOR KINASE 1 (BAK1) and SUPPRESSOR OF BIR1 1 (SOBIR1)⁴. As an 55 example, RLK FLAGELLIN-SENSITIVE 2 (FLS2) recognizes flg22, a conserved 56 peptide from bacterial flagellin ^{5,6}. In contrast, Arabidopsis RLP23 recognizes a 57 20-amino-acid motif (nlp20) widely found in most NECROSIS AND 58 ETHYLENE-INDUCING PEPTIDE 1-LIKE PROTEINS (NLPs) of microbes ^{7,8}. 59 RLP23 constitutively associates with SOBIR1 and binding of nlp20 induces formation 60 of a tripartite complex consisting RLP23, SOBIR1, and BAK1, leading to activation 61 of downstream immune signaling⁸. 62 63 Activation of PTI typically leads to production of reactive oxygen species (ROS), 64 activation of MITOGEN-ACTIVATED PROTEIN KINASES (MAPKs), increased 65 biosynthesis of the defense hormone salicylic acid (SA) and up-regulation of 66 defense-related genes ⁹. Receptor-like cytoplasmic kinases (RLCKs), which have a 67 kinase domain similar to RLKs but lack a transmembrane motif and extracellular 68 ligand-binding domain, play crucial roles in transducing defense signals downstream 69

 $70 of PRRs^{10}.$

71

To promote virulence, microbial pathogens deliver a variety of effector proteins to interfere with PTI and facilitate nutrient acquisition from plants ¹¹. Recognition of these pathogen effectors by plant immune receptors leads to the activation of effector-triggered immunity (ETI). The majority of intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) serve as sensors for effectors ¹². These sensor 77 NLRs (sNLRs) with an N-terminal coiled-coil (CC) domain or a Toll/interleukin-1 receptor (TIR) domain are knowns as CNLs and TNLs, respectively. Distinct 78 mechanisms are used by the CC and TIR domains to activate defense signaling. The 79 CC domain of HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) was suggested to form 80 a narrow pore on the plasma membrane to trigger cell death and plant immunity ¹³. On 81 the other hand, the TIR domains of many TNLs were shown to possess nicotinamide 82 adenine dinucleotide (NAD+) hydrolase (NADase) activity, which is required for 83 activation of downstream immune responses ^{14,15}. Intriguingly, two small groups of 84 helper NLRs (hNLRs) in the ADR1 and NRG1 family, which carry an N-terminal 85 RESISTANCE TO POWDERY MILDEW 8 (RPW8)-like CC (CC_R) domain, function 86 downstream of TNLs¹⁶⁻²¹. ADR1s play a critical role in activating SA biosynthesis²², 87 while NRG1s are required for TNL-induced cell death ^{17,19}. In addition, three related 88 lipase-like proteins, EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1)/PAD4 89 (PHYTOALEXIN DEFICIENT 4)/SAG101 (SENSECENCE-ASSOCIATED GENE 90 101), also function downstream of TNLs²³. EDS1 form distinct protein complexes 91 92 with PAD4 or SAG101. The EDS1/PAD4 complex functions in the same defense pathway as ADR1s, whereas the EDS1/SAG101 complex works together with NRG1 93 to promote cell death ^{17,20}. 94

95

SA plays diverse and critical roles in plant immunity ^{24,25}. It is required for PTI and 96 ETI in local infection sites, as well as systemic acquired resistance (SAR), which 97 confers protection against secondary infections in distal tissues. In Arabidopsis, 98 pathogen-induced SA is mainly synthesized from isochorismate, which is produced 99 from chorismate by ISOCHORISMATE SYNTHASE 1 (ICS1)²⁶. PBS3 catalyzes the 100 next step of conjugation of glutamate to isochorismate, and the resulting 101 isochorismate-9-Glu subsequently decomposes to produce SA ^{27,28}. SAR-DEFICIENT 102 1 (SARD1) and CALMODULIN BINDING PROTEIN 60g (CBP60g) are two major 103 transcription factors regulating SA biosynthetic genes during pathogen infection ^{29,30}. 104 105 Increased SARD1 expression and SA accumulation are two early events downstream of PRR activation during PTI⁹. 106

4	2	-
1	()	1
-	U	

107	
108	NLR homeostasis control is essential for regulating ETI immune output.
109	Ubiquitination plays crucial roles in regulating the NLR protein levels. For example,
110	the turnover of the TNL SNC1 (SUPPRESOR OF npr1, CONSTITUTIVE 1) and
111	CNLs RPS2 (RESISTANCE TO Pseudomonas syringae 2) and SUMM2
112	(SUPPRESOR OF <i>mkk1 mkk2</i> , 2) is controlled by the Skp, Cullin, F-box (SCF) E3
113	ligase SCF ^{CPR131,32} . Two other E3 ligases MUSE1 (MUTANT, <i>snc1</i> -ENHANCING 1)
114	and MUSE2 promote the degradation of several TNLs which pair with SNC1 ³³ .
115	Another E3 ligase UBR7 interacts with tobacco TNL N to control its levels ³⁴ .
116	Recently it was also shown that the homeostasis of sensor NLRs is broadly regulated
117	by the redundant E3 ligases SNIPER1 (snc1-INFLUENCING PLANT E3 LIGASE
118	REVERSE GENETIC SCREEN) and SNIPER2 ³⁵ . Overexpression of <i>SNIPER1</i> leads
119	to globally reduced sNLR levels and attenuated ETI responses.
120	
121	Immune signaling mediated by PRRs and NLRs has been studied separately in the
122	past; the connection between them is rarely explored. In this study, we tested
123	PAMP-induced responses in Arabidopsis SNIPER1 overexpression lines and mutants
124	deficient in TNL signaling. Inhibition of NLR accumulation or abolishment of TIR
125	signaling resulted in reduced SA accumulation and compromised PTI, suggesting that
126	activation of TIR signaling plays a crucial role in PTI.
127	
128	Results
129	
130	PTI is compromised in SNIPER1 overexpression lines
131	Overexpression of SNIPER1 leads to reduced accumulation of sNLRs and
132	compromised ETI ³⁵ . To test whether PTI is affected in <i>SNIPER1</i> overexpression lines,
133	we challenged them with Pseudomonas syringae pv. tomato (Pto) DC3000 hrcC, a
134	bacterial strain unable to secret effectors due to a defect in the type III secretion
135	system. Growth of Pto DC3000 hrcC was significantly higher in the SNIPER1
136	overexpression lines than in wild type (WT) plants (Figure 1A). As no effectors can

be delivered into host cells by *Pto* DC3000 *hrcC*, enhanced growth of this strain in the

138 *SNIPER1* overexpression lines suggests a PTI deficiency. Next, we examined if other

139 PTI responses are affected in these *SNIPER1* overexpression lines. Two

140 defense-related genes SARD1 and FMO1 (FLAVIN-CONTAINING

- 141 MONOOXYGENASES) are quickly induced upon infection. The expression levels of
- 142 SARD1 and FMO1 after infection by Pto DC3000 hrcC were significantly reduced in
- the *SNIPER1* overexpression lines compared to WT (Figure 1B-C). Furthermore, we
- 144 measured the SA accumulation induced by *Pto* DC3000 *hrcC*. Both free and
- 145 glucose-conjugated SA (SAG) levels in the *SNIPER1* overexpression lines were
- significantly lower than those in the WT plants upon *Pto* DC3000 *hrcC* treatment
- 147 (Figure 1D, S1A). Taken together, these data suggest that a general reduction of sNLR
- accumulation due to *SNIPER1* overexpression leads to compromised PTI.
- 149

150 Immune responses induced by nlp20 or flg22 are attenuated in *SNIPER1*

151 overexpression lines

152 The PTI defects of *SNIPER1* overexpression lines prompted us to test whether

153 SNIPER1 overexpression affects immune responses induced by the specific PAMP

elicitors nlp20 and flg22. To our surprise, the induction of *SARD1* and *FMO1* by

nlp20 or flg22 treatment was greatly reduced in the *SNIPER1* overexpression lines

- 156 compared with WT (Figure 1E and 1F). In addition, SA and SAG levels after nlp20
- and flg22 treatment were also significantly lower in the *SNIPER1* overexpression

lines than in WT (Figure 1G and 1H, S1B and S1C).

159

160 Treatment of nlp20 in local tissues can induce disease resistance in local and distal 161 tissue upon subsequent infection ⁸. To determine whether overexpression of *SNIPER1* 162 affects nlp20-induced immunity, we first infiltrated two local leaves with 1 μ M nlp20 163 and sprayed the whole plants with spores of virulent oomycete *Hyaloperonospora* 164 *arabidopsidis* (*Hpa*) Noco2 one day later. nlp20 treatment induced strong resistance 165 against *Hpa* Noco2 in both the local and distal leaves of WT plants (Figure 1I and 1J). 166 However, the nlp20-induced local as well as systemic resistance to *Hpa* Noco2 were 167 largely impaired in the *SNIPER1* overexpression lines. Together, these data revealed

- that a general reduction of sNLRs levels due to *SNIPER1* overexpression results in
- 169 compromised nlp20 and flg22-induced immune responses.
- 170

171 TNL Signaling components are required for defense against *Pto* DC3000 *hrcC*

As SNIPER1 has been shown to target several TNLs for ubiquitination and
 degradation ³⁵, we further tested whether activation of TNL signaling is required for

- 174 PTI. *Pto* DC3000 *hrcC*–induced defense responses were examined in TNL signaling
- 175 mutants including *eds1-24*, *pad4-1*, *sag101-1*, *adr1 adr1-L1 adr1-L2* (*adr1 triple*) and
- 176 *nrg1a nrg1b nrg1c (nrg1 triple)* mutants. The induction of *SARD1* by *Pto* DC3000

hrcC was almost completely blocked in *eds1-24*, *pad4-1* and *adr1 triple* mutant plants,

- while no change in induction was observed in the *sag101-1* and *nrg1 triple* mutants
- compared with the WT (Figure S2A). Similarly, the induction of *FMO1* is greatly
- reduced in *eds1-24*, *pad4-1* and *adr1 triple*, but hardly affected in *sag101-1* and *nrg1*
- 181 *triple* mutant plants (Figure S2B).
- 182

We further measured SA accumulation following Pto DC3000 hrcC infection in these 183 TNL signaling mutants. Both SA and SAG levels in *eds1-24*, *pad4-1* and *adr1 triple* 184 after *Pto* DC3000 *hrcC* treatment were much lower than in the WT (Figure 2A, S2C). 185 This is consistent with the known contributions of EDS1, PAD4 and the ADR1s to 186 pathogen-induced SA biosynthesis. To our surprise, the SA levels after Pto DC3000 187 *hrcC* treatment were also significantly reduced in *sag101-1* and *nrg1 triple* mutant 188 plants, although the reduction was not as dramatic as in eds1-24, pad4-1 and adr1 189 190 triple. Consistent with the difference in SA levels, growth of Pto DC3000 hrcC was significantly higher in sag101-1 and nrg1 triple than in WT, and further increased in 191 eds1-24, pad4-1 and adr1 triple leaves (Figure 2B). Taken together, PTI responses are 192 significantly attenuated in TNL signaling mutants, indicating a key contribution of 193 TIR signaling to PTI. 194

195

196 flg22-induced immune responses are attenuated in TNL signaling mutants

197 We then tested PTI responses induced by specific elicitors in the TNL signaling mutants. To determine whether flg22-induced defense responses require TIR signaling, 198 we first compared SARD1 and FMO1 induction by flg22 treatment. The expression 199 levels of both SARD1 and FMO1 after flg22 treatment were considerably lower in 200 eds1-24, pad4-1 and adr1 triple mutant plants (Fig S2D and S2E). In contrast, the 201 expression of SARD1 was not affected whereas FMO1 induction was modestly 202 reduced in sag101-1 and nrg1 triple. We also compared the accumulation of SA and 203 204 SAG after flg22 treatment in WT and the TNL signaling mutants. The SA and SAG levels in eds1-24, pad4-1 and adr1 triple plants treated with flg22 were much lower 205 than in the WT (Figure 2C, S2F). Interestingly, the SA levels in *sag101-1* and *nrg1* 206 *triple* were also significantly lower compared to the WT, but the difference is not as 207 dramatic as in eds1-24, pad4-1 and adr1 triple plants. Consistent with the reduced SA 208 levels, flg22-induced resistance against Pto DC3000 was also compromised in 209 eds1-24, pad4-1 and adr1 triple, as well as in sag101-1 and nrg1 triple mutant plants, 210 although to a lesser extent (Figure 2D). Taken together, activation of TIR signaling 211 212 contributes to flg22-induced immune responses.

213

214 nlp20-induced immunity is lost in TNL signaling mutants

To determine whether TIR signal components are required for nlp20-induced immune

responses, we first examined nlp20-induced SARD1 and FMO1 expression in eds1-24,

- 217 *pad4-1*, *sag101-1*, *adr1 triple* and *nrg1 triple* mutants. The induction of *SARD1* and
- *FMO1* by nlp20 was dramatically reduced in *eds1-24*, *pad4-1* and *adr1 triple* mutant
- 219 plants, but hardly affected in *sag101-1* and *nrg1 triple* (Figure S2G and S2H). We
- then measured nlp20-induced SA accumulation in these TNL signaling mutants. The
- SA and SAG levels after nlp20 treatment were much lower in *eds1-24*, *pad4-1* and
- *adr1 triple* plants, and moderately lower in *sag101-1* and *nrg1 triple* than in WT
- (Figure 2E and S2I). Consistent with the reduced SA accumulation, nlp20-induced
- resistance against *Hpa* Noco2 in both local and distal tissue was attenuated in
- sag101-1 and nrg1 triple and almost completely blocked in eds1-24, pad4-1 and adr1
- *triple* (Figure 2F and S3). Taken together, activation of TIR signaling is required for

227 nlp20-induced immunity.

228

Overexpression of genes encoding TIR domain-containing proteins activates defense responses

To understand how TIR signaling is activated during PTI, we analyzed the expression 231 of genes encoding TIR domain-containing proteins (TIR genes) in response to nlp20 232 or flg22 using previously reported RNA-sequencing datasets ^{36,37}. 26 TIR genes were 233 234 found to be significantly induced 1 h after nlp20 treatment (Table S1). 14 TIR genes were considerably induced 6 h after applying nlp20 (Table S2). With flg22 treatment, 235 46 TIR genes were significantly up-regulated within 30 min (Table S3). These 236 findings suggest that a large number of TIR genes are rapidly induced upon PTI 237 activation. 238

239

To test whether up-regulation of *TIR* genes can activate defense responses, we 240 transiently expressed three TIR genes induced by both nlp20 and flg22 in Nicotiana 241 242 benthamiana. Among them, AT4G11170 and AT3G04220 encode full-length TNLs and AT2G32140 encodes a protein with only the TIR domain. Overexpression of all 243 three TIR genes in N. benthamiana leads to activation of cell death around 48 hours 244 after Agrobacteria infiltration (Figure 3A). To determine whether overexpression of 245 246 these three *TIR* genes activates SA biosynthesis, we measured SA levels in samples collected 24 hours and 36 hours after infiltration of the Agrobacteria strains, when no 247 macroscopic cell death was visible. In agreement, overexpression of these TIR genes 248 in N. benthamiana indeed resulted in dramatic increase in SA and SAG levels in N. 249 250 benthamiana (Figure 3B, S4).

251

252 Since Ca^{2+} influx is one of the earliest events during PTI, we further examined

whether it is involved in activation of the *TIR* genes. To determine whether Ca^{2+}

influx is required for nlp20-induced up-regulation of the three *TIR* genes, we

pretreated *Arabidopsis* seedling with $GdCl_3$ to block the Ca^{2+} channels prior to nlp20

treatment. Consistent with the RNA-sequencing datasets, treatment with nlp20 or

flg22 alone leads to rapid induction of the three *TIR* genes. However, this induction

was completely blocked by GdCl₃ (Figure 3C-D), suggesting that activation of Ca^{2+}

- signaling is required for the induction of *TIR* genes.
- 260

261 nlp20-induced immunity requires the RLCKs PCRK1/2 and PBL19/20

262 RLCKs PCRK1/2 and PBL19/20 were known to function downstream of PRR

receptor kinases such as FLS2 and CERK1 ³⁸⁻⁴⁰. To determine whether they are

required for nlp20-induced immunity, we compared growth of *Hpa* Noco2 on WT,

pcrk1/2, pcrk1/2 pbl19 and *pcrk1/2 pbl19/20* quadruple mutant plants after treatment

with nlp20. nlp20-induced local and systemic resistance against *Hpa* Noco2 was

compromised in pcrk1/2 and pcrk1/2 pb119, and almost completely blocked in pcrk1/2

pbl19/20 (Figure 4A, S5A). Similarly, nlp20-induced resistance against *Pto* DC3000

was also severely compromised in the *pcrk1/2 pbl19/20* quadruple mutant (Figure

S5B). In addition, the increased SA and SAG levels after nlp20 treatment were

significantly reduced in *pcrk1/2 pbl19/20* than in the WT (Figure 4B and S5C).

Further RT-qPCR analysis showed that nlp20-induced SARD1 and FMO1 expression

was dramatically reduced in *pcrk1/2 pbl19/20* mutant plants (Figure S5D and S5E).

Moreover, induction of the three above-mentioned TIR genes was blocked in pcrk1/2

pbl19/20 (Figure 4C). Together these data indicate that PCRK1/2 and PBL19/20 are

required for nlp20-induced immunity and they act upstream of the early induction of

277 278 TIR genes.

Since SOBIR1 works together with the nlp20 receptor RLP23 in nlp20-activated PTI

signal transduction 8 , one question is whether PCRK1/2 and PBL19/20 function

immediately downstream of SOBIR1. Therefore, we tested whether SOBIR1 directly

interacts with PCRK2 and PBL19 using TurboID, a highly efficient proximity

labeling method for detecting protein-protein interactions ^{34,41}. The

284 SOBIR1-HA-TurboID fusion protein was co-expressed with 3×FLAG-tagged PCRK2

or PBL19 in *N. benthamiana*. After biotin treatment, the 3×FLAG-tagged PCRK2 or

PBL19 proteins were immunoprecipitated to examine their biotinylation using

287 Streptavidin-HRP. Both PCRK2 and PBL19 were biotinylated by

288 SOBIR1-HA-TurboID, suggesting that SOBIR1 directly interacts with PCRK2 and

289 PBL19 (Figure 4D). These data agree with the general notion of RLCKs acting

immediately downstream of PRRs. We also tested whether SOBIR1 interacts with

291 EDS1/PAD4/ADR1 using TurboID. However, no biotinylation or

292 co-immunoprecipitation of EDS1, PAD4 or ADR1 by SOBIR1-HA-TurboID was293 observed (Figure S6).

294

295 Discussion

296

PTI and ETI have been traditionally studied as separate defense pathways. Recently it 297 was reported that PTI is required for the activation of NLR-mediated ETI ^{42,43}. Here, 298 we showed that loss of TIR signaling as well as reduced NLR accumulation results in 299 compromised defense responses activated by nlp20, flg22 and Pto DC3000 hrcC, 300 indicating that activation of TIR signaling is essential for PTI. While the 301 302 EDS1/PAD4/ADR1s module plays a predominant role, the EDS1/SAG101/NRG1 module also contributes to flg22, nlp20 and Pto DC3000 hrcC-induced plant 303 immunity. 304

305

306 SA plays crucial roles in resistance against biotrophic pathogens such as *Hpa* Noco2

and *Pto* DC3000. Activation of PTI leads to rapid increase of SA biosynthesis and

elevated SA levels ⁹. In the *SNIPER1* overexpression lines, SA levels following nlp20

treatment and *Pto* DC3000 *hrcC* infection are much lower compared to the WT plants.

Similarly, nlp20 and *Pto* DC3000 *hrcC*-induced SA accumulation is greatly reduced

in *eds1-24*, *pad4-1* and *adr1 triple* mutant plants. In *nrg1 triple* and *sag101-1* mutant

- plants, SA levels after nlp20 treatment and *Pto* DC3000 *hrcC* infection are also
- significantly lower than in the wild type. These findings suggest that both the

EDS1/PAD4/ADR1s and EDS1/SAG101/NRG1s modules downstream of TIR-type

receptors contribute to the up-regulation of SA levels, which plays important roles in

316 defense against pathogens.

317

318	In flg22-treated adr1 triple mutant plants, SA levels are significantly reduced
319	compared to WT ²² . However, other early PTI responses such as ROS production,
320	MAPK activation and callose deposition induced by flg22 and elf18 are not affected
321	in the <i>adr1 triple</i> mutant, suggesting that TIR signaling mediated by ADR1s is not
322	required for the induction of all the very early PTI responses ²² . In flg22-treated
323	eds1-24, pad4-1, adr1 triple, sag101-1 and nrg1 triple mutant plants, flg22-induced
324	resistance against Pto DC3000 is significantly reduced but not completely blocked.
325	The loss of TIR signaling is likely compensated by other defense pathways
326	downstream of FLS2, as combining pad4-1 with the JA biosynthesis mutant dde2-2,
327	the ethylene response mutant ein2-1 (ethylene insensitive 2-1) and the SA biosynthesis
328	mutant sid2-2 (salicylic acid induction deficient 2-2) leads to a complete loss of
329	flg22-induced protection against Pto DC3000 ⁴⁴ .
330	
331	In mock-treated adr1 triple, eds1-24 and pad4-1 mutants, growth of Pto DC3000 is
332	much higher than in wild type plants. adr1 triple, eds1-24 and pad4-1 mutant plants
333	are also more susceptible to Hpa Noco2. The general enhanced susceptibility of these
334	mutants to virulent pathogens could be due to compromised PTI caused by loss of the
335	reinforcement of defense responses through activation of TIR signaling.
336	
337	SARD1 encodes as a master transcription factor regulating the expression of a large
338	number of defense regulators as well as genes involved in SA biosynthesis ⁴⁵ .
339	Overexpression of SARD1 leads to increased SA levels and enhanced disease
340	resistance ²⁹ . In WT plants, the expression of SARD1 is rapidly and strongly induced
341	during PTI. Interestingly, the induction of SARD1 by nlp20, flg22 and Pto DC3000
342	hrcC is dramatically reduced in the SNIPER1 overexpression lines and mutants
343	deficient in TIR signaling such as <i>adr1 triple</i> , <i>eds1-24</i> and <i>pad4-1</i> , suggesting that the
344	SARD1 induction during PTI depends on the activation of TIR signaling, which is
345	consistent with the reduced SA levels in the SNIPER1 overexpression lines and TIR
346	signaling mutants.

347

348	A large number of TIR genes including SNC1 and LAZ5 are rapidly induced after
349	treatment with nlp20 or flg22 (Table S1-S3). Overexpression of SNC1 and LAZ5 is
350	known to result in constitutively activated defense responses 46,47. Similarly,
351	overexpression of the TIR-X protein encoded by At2g32140 also leads to constitutive
352	activation of EDS1 and PAD4-dependent immune responses ⁴⁸ . In addition,
353	overexpression of the TIR domains of many TNLs alone is sufficient to activate cell
354	death in N. benthamiana ^{14,15,49} . Recently, many TIR domains have been shown to
355	exhibit NADase activity, likely generating signal molecule(s) activating
356	EDS1-dependent defense responses ^{14,15} . Induction of the TIR genes during PTI could
357	lead to increased production of these defense signal molecules and activation of
358	downstream TIR signaling pathways and increased SA biosynthesis (Figure 4E). In
359	support of this, transient overexpression of AT2G32140 and the TNL genes
360	At4G11170 and AT3G04220, which are up-regulated during PTI, resulted in dramatic
361	increase in SA accumulation.
362	
363	The RLCKs PCRK2 and PBL19 were found to directly interact with SOBIR1. Together

with two other closely related RCLKs PCRK1 and PBL20, they are required for
nlp20-induced resistance against *Hpa* Noco2. In *pcrk1/2 pbl19/20* quadruple mutant
plants, nlp20-induced *SARD1* expression and SA production was blocked. In addition,

the induction of several *TIR* genes by nlp20 is also abolished in the pcrk1/2 pbl19/20

mutant. These findings suggest that PCRK1/2 and PBL19/20 function downstream of

the RLP23/SOBIR1 receptor complex to activate the expression of nlp20-responsive

370 *TIR* genes, leading to activation of TIR signaling and SA biosynthesis (Fig 4E).

371 Interestingly, three other RLCKs, PBL30/31/32, were recently reported to be required

for nlp20-induced ROS and ethylene production and resistance to Pto DC3000 ⁵⁰. It is

possible that different RLCKs activate different downstream components of the RLP

receptor complex, leading to branching of the downstream defense pathways.

375

In summary, in addition to effector recognition, some TNLs and TIR-X proteins also

play important roles in amplifying PTI responses (Figure 4E). Activation of TIR

- signaling during PTI is most likely through the induction of *TIR* genes. How the
- expression of the *TIR* genes is activated is currently unclear. As the induction of
- several *TIR* genes by nlp20 is blocked by the Ca^{2+} channel blocker GdCl₃, elevation
- in cytosolic Ca^{2+} levels caused by activation of Ca^{2+} channel(s) during PTI may play a
- crucial role in *TIR* gene induction (Figure 4E). The identities of the transcription
- factors involved in up-regulation of the *TIR* genes and the mechanism of how Ca^{2+}
- may affect their activities remains to be determined. Whether PCRK1/2 and
- PBL19/20 are involved in activation of the Ca^{2+} channel(s) also needs to be
- 386 determined in the future.
- 387

388 Materials and methods

- 389 Plasmid constructs
- To generate the CRISPR/Cas9 construct for genome editing of *EDS1A/B* and *PBL20*,
- 391 genomic sequences of *EDS1* and *PBL20* were subjected to CRISPRscan
- 392 (<u>http://www.crisprscan.org/?page=sequence</u>) to identify the target sequences. The
- selected sequences were evaluated with Cas-OFFinder
- 394 (<u>http://www.rgenome.net/cas-offinder/</u>). The target sequences used for editing
- 395 EDS1A/B was 5'-CTAACCGAGCGCTATCACA(AGG)-3' and
- 396 5'-CGGAGAATACATCTCCCTT(TGG)-3', for PBL20 was
- 397 5'-CCAAAATCCAGAGGAAATA(TGG)-3' and
- 398 5'-CAATAAGTATCCAATTGCTA(TGG)-3'. CRISPR constructs were generated in
- the *pHEE401E* vector using a previously described CRISPR-Cas9 gene editing system 51 .
- 401
- 402 For coimmunoprecipitation, *PCRK2*, *PBL19* and *ADR1* were amplified by primers
- 403 PCRK2-Kpn1-F and PCRK2-Spe1-R, PBL19-Kpn1-F and PBL19-BamH1-R, or
- 404 ADR1-KpnI-F and ADR1-SalI-R, then cloned into pBASTA-35S-3FLAG vector. The
- 405 *SOBIR1* fragment was cut from pBASTA-35S-SOBIR1-3FLAG plasmid ⁵², then
- sub-cloned into pBASTA-35S-2HA-Turbo vector. *EDS1* and *PAD4* were first

407 amplified by primers EDS1-KpnI-F and EDS1-XbaI-R or PAD4-Kpn1-F and

408 PAD4-BamHI-R, and cloned into pCambia1305-FLAG-ZZ vector ⁵³.

409

410 **Plant materials and growth conditions**

The *pad4-1*, *sag101-1*, *adr1 triple*, *nrg1 triple*, and *pcrk1 pcrk2 (pcrk1/2)* double mutants were previously described 20,22,38,54,55 . The *eds1-24* deletion line was generated by transformation of a *EDS1* CRISPR construct into WT Col-0 plants. Deletion and presence primers were used to detect the presence and homozygosity of the deletion (Supplemental Table 4). The *eds1-24* line is a Cas9 transgene-free line homozygous for a 2636bp deletion, causing truncations of both *EDS1A* (*AT3G48090*) and *EDS1B* (*AT3G48080*).

The *pcrk1 pcrk2 pbl19* (*pcrk1/2 pbl19*) triple mutant was generated by crossing *pcrk1*

419 *pcrk2* with *pbl19-2* (Salk_065136C). The *pcrk1 pcrk2 pbl19 pbl20* (*pcrk1/2 pbl19/20*)

420 quadruple mutants were generated by transforming the CRISPR/Cas9 construct

421 targeting *PBL20* into the *pcrk1 pcrk2 pbl19* triple mutant background. Both *pcrk1*

422 *pcrk2 pbl19 pbl20 #33* and #47 lines carry a large 1.5 kb deletion in *PBL20*. All the

423 mutants are in the Col-0 background. The transgenic OX-SNIPER1 #4, OX-SNIPER1

424 #5 lines were generated previously in a reverse genetics screen for plant immunity

425 related E3 ligases 20 .

426

Plants were grown in growth rooms with a temperature of 23°C under long day (16h
light/8h dark) or short day (12h light/12h dark) condition at approximately 100 μmol
m⁻² s⁻¹ light intensity. For *Agrobacterium* mediated transformation, the *Arabidopsis*seeds were directly sown on soil and grown for around 5 weeks prior to floral-dip
transformation. For RNA isolation, the *Arabidopsis* seeds were sterilized in 15% (v/v)
bleach and germinated on plates with ½ Murashige and Skoog (MS) with vitamins
(PlantMedia) and 1% (w/v) sucrose.

434

435 **RNA extraction and gene expression**

436 For analyzing nlp20/flg22 induced gene expression, total RNA was extracted from 12-day-old plate-grown seedlings 4 hours after spraying 1 µM flg22 or 1µMnlp20. To 437 test pathogen-induced gene expression, leaves of four-week-old plants grown under 438 short day conditions were infiltrated with *Pto* DC3000 hrcC at a dose of OD₆₀₀=0.05 439 and collected after 12hours. RNA was extracted using the EZ-10 Spin Column Plant 440 RNA Mini-Preps Kit (Bio Basic, Canada) according to the manufacturer's instructions. 441 1 µg RNA was used for cDNA synthesis by Oligo(dT)-primed reverse transcription 442 443 using the OneScript Reverse Transcriptase kit (ABM, Canada). Real-time quantitative PCR was performed to analyze the gene expression levels, using the SYBR Premix 444 Ex Tag II kit (TAKARA). The primers used for qPCR were reported previously ⁴⁵. 445 ACTIN1 was used as an internal control. For nlp20-induced TIR gene expression 446 analysis, 10-day-old seedlings grown on 1/2 MS medium were transferred to 1/2 MS 447 liquid medium. After 24-hour recovery, nlp20 was supplied to a 1 μ M final 448 concentration. Two to three individual plants treated with nlp20 were harvested 1 hour 449 later as one sample. ACTIN7 was used as an internal control. The primers used are 450 451 listed in Supplemental Table 4.

452

453 Measurement of Salicylic acid

The procedure for SA extraction and measurement was reported previously⁵⁶. In brief, 454 455 for each sample, about 100mg leaf tissue was collected from 25-d-old soil-grown plants and grounded in liquid nitrogen. Each genotype contains four biological 456 replicates, with each sample collected from three different plants. For every sample, 457 0.6 ml of 90% methanol was added, and the sample was vortexed 20s and sonicated 458 459 for 20 min to release SA. Samples were then centrifuged at 12000×g for 10 min. The supernatant was collected and another 0.5 ml of 100% methanol was added to the 460 pellet for a second round of extraction. The supernatant from both extractions were 461 combined and dried by vacuum. Then 0.5 ml 5% (w/v) trichloroacetic acid was added 462 to the dry samples, vortexed and sonicated for 5 min, and then centrifuged at $12000 \times g$ 463 for 15 min. The supernatant was collected and then extracted three times with 0.5 ml 464 extraction buffer (ethylacetate acid/ cyclopentane/ isoporopanal: 100/99/1 by volume). 465

Each time, after centrifugation at $12,000 \times g$ for 10 min, the organic phase was

- 467 collected and combined to a new tube and dried by vacuum afterwards. The final
- dried sample was resuspended in 200 µl mobile phase (0.2M KAc, 0.5mM EDTA
- 469 PH=5) by vortexing and sonicating for 5 min. After spinning at 12,000×g for 5 min,
- the supernatant was kept and measured by high-performance liquid chromatography
- 471 (HPLC) to measure the amount of SA as compared with a standard.
- 472

473 **Pathogen infection assay**

For *Pto* DC3000 *hrcC* bacterial growth assays, two fully extended leaves of

four-week-old plants grown under short-day conditions were infiltrated with *Pto*

476 DC3000 *hrcC* at a dose of OD₆₀₀ =0.002. Samples were collected at 0 day and 3 days

477 after infiltration. One sample contained two leaf discs from a single plant, and a single

478 leaf disc was collected from each infected leaf. The samples were ground, diluted in

 10 mM MgCl_2 , and plated on Lysogeny broth (LB) agar plates containing $25 \ \mu \text{g ml}^{-1}$

480 Rifampicin. After incubation at 28°C for 36 h, colonies were counted from selected

dilutions and the colony numbers were used to calculate the colony forming units. For

482 flg22/nlp20-induced pathogen resistance, leaves of four-week-old plants were

infiltrated with 1 μ M flg22/nlp20 or H₂O as control. After 24h, the same treated

leaves were infiltrated with *Pto* DC3000 at a dose of $OD_{600}=0.001$. After 3 days,

samples were collected and analyzed as above.

486

To analyze nlp20-induced SAR, leaves of three-week-old plants were first infiltrated
with 1 μM nlp20. After 24 h, plants were sprayed with *Hpa* Noco2 spore suspension
at a concentration of 50,000 per ml water. Then plants were covered with a clean
dome and grown at 18°C under short-day conditions in a growth chamber. After 7
days, the *Hpa* Noco2 sporulation was scored as previously described ⁵⁷.

493 TurboID-based proximity labeling in *N. benthamiana*, immunoprecipitation and
494 western blot analysis

495 TurboID-based proximity labeling assay was performed as described previously 20 . In

496 brief, *N. benthamiana* leaves were infiltrated with *Agrobacterium* containing

- 497 HA-TurboID and ZZ-TEV-FLAG or 3xFLAG tagged constructs. At 48 hpi, biotin was
- 498 infiltrated, and the plants were incubated at room temperature for 2 hours to allow
- 499 biotin labeling. About 2.0 g *N. benthamiana* leaves expressing the indicated proteins
- were harvested at 50 hpi and ground into powder with liquid nitrogen. Extraction
- 501 buffer containing 25 mM Tris-HCl pH 7.5, 150 mM NaCl, 1mM EDTA, 0.3%
- 502 Nonidet P-40, 10% Glycerol, 1 mM PMSF, 1× Protease Inhibitor Cocktail (Roche;
- 503 Cat. #11873580001), and 10 mM DTT. The FLAG-tagged PCRK2 and PBL19
- proteins were immunoprecipitated using 15 μl M2 beads (Sigma; Cat. #A2220).
- 505 Biotinylation was detected with Streptavidin-HRP (Abcam Cat. # ab7403). The
- anti-HA antibody was from Roche (Cat. #11867423001). The anti-FLAG antibody
- 507 was from Sigma (Cat. #F1804).

508 **Bioinformatic analysis for TIR-containing gene induction**

TIR genes induced 30 minutes after flg22 treatment were subset from previously 509 510 published data ⁵⁸. For nlp20-induced genes, previously published raw RNA-seq reads were retrieved (GSE133053)³⁶. BBDuk (https://sourceforge.net/projects/bbmap/) was 511 used to trim adapters. A decoy-aware reference transcriptome was generated using a 512 513 high-quality Arabidopsis reference transcriptome, AtRTDv2_QUASI_19April2016.fa ⁵⁹, and an *Arabidopsis* whole genome sequence (Ensembl Plants version 47) as a 514 decoy. Salmon v1.2.1 ⁶⁰was used to build an index and quantify transcript expression 515 against the reference transcriptome using default parameters. Transcript-level 516 517 expression (TPM values) were imported to R and summarized to gene-level expression using tximport v1.16.1⁶¹. DESeq2 v1.28.1⁶² was used to determine 518 differentially-expressed genes (padj < 0.1). Genes were annotated using biomaRt 519 v2.44.1⁶³, and genes containing TIR domains (IPR035897, IPR000157, IPR041340, 520 521 IPR017279) were subset.

522

523 Author Contributions

524 HT, SC and ZW carried out the majority of the experiments. KA generated *eds1-24*,

and extracted the up-regulated *TIR* genes from RNA-Sequencing datasets. WH and

526 YZ helped with HPLC SA analysis. FX made the FLAG-ZZ tagged EDS1 and PAD4

527 constructs. HY and TS generated the combined RLCK mutants. YZ, SW and XL

- 528 wrote the manuscript with contributions of all authors.
- 529

530 **Competing financial interests**

- 531 The authors declare no competing financial interests.
- 532

533 Acknowledgements

534 We would like to thank Drs. Jane Parker, Jeff Dangl and Jian-Min Zhou for sharing

mutant seeds and pathogen strains. Mr. Lei Tian is thanked for help with the HPLC

analysis. Dr. Thorsten Nuernberger is thanked for insightful discussions. This study

was financially supported by grants to XL and YZ from the Natural Sciences and

538 Engineering Research Council (NSERC) Discovery program of Canada,

539 NSERC-CREATE-PROTECT, and the Canadian Foundation for Innovation (CFI),

- 540 grant to YZ from National Natural Science Fundation of China (31828008),
- scholarships to HT, SC, WH and ZW from the Chinese Scholarship Council, and
- scholarships to KA from the Alexander Graham Bell Canada Graduate Scholarship
- 543 Doctoral Program, and the University of British Columbia Four-year fellowship

544 program.

545

546

547 Figure legends:

548

549 Figure 1. Overexpression of *SNIPER1* leads to attenuation of *Pto* DC3000 *hrcC*,

- 550 **flg22 and nlp20-induced immunity.**
- (A) Growth of *Pto* DC3000 *hrcC* in wild type (WT) Col-0 and two independent
- 552 *SNIPER1* overexpression (OX-*SNIPER1*) lines. Leaf discs were collected 0 days (Day
- 553 0) or 3 days (Day 3) after bacterial infiltration (OD₆₀₀=0.002). Error bars represent
- standard deviation (SD) from four biological replicates. The growth of *Pto* DC3000
- *hrcC* in different genotypes on Day 3 was compared using two-way ANOVA test, and
- different letters indicate genotypes with statistical differences (p < 0.05; n = 4). The
- 557 experiment was repeated twice with similar results.
- 558 (B, C) Relative expression levels of SARD1 (B) and FMO1 (C) in WT and
- 559 OX-SNIPER1 plants upon Pto DC3000 hrcC infection. Total RNA was isolated from
- leaf tissues of 25-d-old soil-grown plants 12 hours after infiltration with *Pto* DC3000
- 561 hrcC (OD₆₀₀=0.05) or 10 mM MgCl₂ (Mock). qPCR was used to examine the genes
- s62 expression levels. ACT1 was used for normalization, and the expression of each gene
- in mock-treated WT plants was set as 1. Error bars represent SD from three different
- biological replicates. Different letters indicate genotypes with statistical differences (*p*
- < 0.05, one-way ANOVA test; n=3). The experiment was repeated twice with similar
- 566 results.
- 567 (D) Free salicylic acid (SA) levels in four-week-old WT and OX-*SNIPER1* plants 12
- hours after treatment with 10 mM MgCl₂ (mock) or *Pto* DC3000 *hrcC*. Different
- letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test;
- n=3). The experiment was repeated three times with similar results.
- 571 (E, F) Relative expression levels of SARD1 and FMO1 in WT and OX-SNIPER1
- plants upon 1 μ M nlp20 (E) or 1 μ M flg22 (F) treatment. Total RNA was isolated
- 573 from 12-d-old plate-grown seedlings 4 hours after spraying with 1 μM nlp20 (A) or 1
- ⁵⁷⁴ μM flg22 (B). *ACT1* was used for normalization, and the expression of each gene in
- the H_2O (mock)-treated WT plants was set as 1. Error bars represent SD from three

576 different biological replicates. Different letters indicate genotypes with statistical

577 differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated twice 578 with similar results.

579 (G, H) Levels of free SA in WT and OX-SNIPER1 plants upon 1 µM nlp20 (G) or 1

580 μM flg22 (H) treatment. 25-d-old soil-grown plants samples were collected 24 hours

after treatment with nlp20, and 9 hours after treatment with flg22. H_2O served as

mock treatment. Different letters indicate genotypes with statistical differences (p < p

583 0.05, one-way ANOVA test; n=3). The experiment was repeated three times with
similar results.

585 (I) Growth of *Hpa* Noco2 on the local leaves of WT and *OX-SNIPER1* plants with or

without nlp20 treatment. Three-week-old plants were pretreated with water (H_2O) or

587 1 μ M nlp20 and sprayed with *Hpa* Noco2 spores (50,000 spores/ml) 24 hours later.

588 Infection was scored at 7 days post inoculation (dpi) by counting the number of

conidiophores per infected leaf. A total of 15 plants were scored for each treatment.

590 Disease rating scores are as follows: 0, no conidiophores on the infected leaves; 1, no

more than 5 conidiophores on one infected leaf; 2, 6 to 20 conidiophores on one

infected leaf; 3, 20 or more conidiophores on one infected leaf; 4, 5 or more

conidiophores on two infected leaves; 5, 20 or more conidiophores on two infected

leaves. This experiment was repeated twice with similar results.

595 (J) Growth of *Hpa* Noco2 on the distal leaves of WT and OX-*SNIPER1* plants in an

596 SAR assay. 15 plants were used for each treatment. Disease symptoms were scored 7

by counting the number of conidiophores on the distal leaves. Disease ratings: 0,

no conidiophores on plants; 1, one leaf is infected with no more than five

conidiophores; 2, one leaf is infected with more than five conidiophores; 3, two leaves

are infected but with no more than five conidiophores on each infected leaf; 4, two

leaves are infected with more than five conidiophores on each infected leaf; 5, more

than two leaves are infected with more than five conidiophores.

603 The experiment was repeated twice with similar results.

604

Figure 2. Contributions of TIR signaling components to *Pto* DC3000 *hrcC*, flg22

and nlp20-induced immunity.

- (A) Levels of free SA in four-week-old soil-grown WT, eds1-24, pad4-1, sag101-1,
- 608 *adr1 triple* and *nrg1 triple* mutants 12 hours after treatment with 10 mM MgCl₂ or
- 609 *Pto* DC3000 *hrcC* (OD₆₀₀=0.05) for 12 hours. Different letters indicate genotypes
- 610 with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was
- 611 repeated three times with similar results.
- (B) Growth of *Pto*DC3000 *hrcC* in 25-day-old soil-grown plants of the indicated
- 613 genotypes. Leaf discs were collected 0 days (Day 0) or 3 days (Day 3) after *Pto*
- 614 DC3000 hrcC (OD₆₀₀=0.002) infiltration. Error bars represent SD from four
- biological replicates. The growth of *Pto* DC3000 *hrcC* in different genotypes was
- compared using two-way ANOVA test, and different letters indicate genotypes with
- statistical differences (p < 0.05, n = 4). The experiment was repeated twice with similar results.
- 619 (C) Levels of free SA in four-week-old soil-grown plants of the indicated genotypes
- after treatment with water or 1 μ M flg22 for 9 hours. Different letters indicate
- genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The

experiment was repeated three times with similar results.

- (D) Growth of *Pto* DC3000 in the leaves of four-week-old WT, *eds1-24*, *pad4-1*,
- 624 sag101-1, adr1 triple and nrg1 triple mutant plants after treatment with water or 1 μ M
- flg22. 24 hours later, the same treated leaves were infiltrated with *Pto* DC3000.
- 626 Samples were taken 3 days after *Pto* DC3000 inoculation. Error bars represent SD
- from six biological replicates. The flg22-induced protection among different
- 628 genotypes was compared using two-way ANOVA test, and different letters indicate
- genotypes with statistical differences (p < 0.05, n= 6). The experiment was repeated
- 630 twice with similar results.
- (E) Levels of free SA in four-week-old soil-grown plants of the indicated genotypes
- after treatment with water (mock) or $1 \mu M$ nlp20 for 24h. Different letters indicate
- genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The
- experiment was repeated three times with similar results.
- (F) Growth of *Hpa* Noco2 on the local leaves of the indicated plants. Three-week-old

- soil-grown plants were pretreated with water or 1 μ M nlp20 and sprayed with *Hpa*
- 637 Noco2 spores (50,000 spores/ml) 24 hours later. Disease ratings are as described in
- Fig 1. The experiment was repeated twice with similar results.
- 639

Figure 3. Overexpression of *TIR* **genes activates SA biosynthesis in** *N***.**

- 641 *benthamiana*.
- 642 (A) Hypersensitive response (HR) in the *N. benthamiana* leaves expressing the TIR
- 643 genes At4g11170, At3g04220 or At2g32140 through Agrobacterium tumefaciens
- 644 GV3101 (OD₆₀₀=0.4) infiltration. Photographs were taken 3 days after Agrobacterium
- 645 infiltration. The empty vector (EV) treatment serves as control; 1, *At4g11170*; 2,
- 646 *At3g04220*; 3, *At2g32140*.
- 647 (B) Levels of free SA in *N. benthamiana* leaves after infiltration of *Agrobacterium*
- $(OD_{600}=0.4)$ carrying the *TIR* genes from (A). Samples were collected 24 and 36
- hours post infiltration, before HR was visible. Error bars represent SD from three
- biological replicates. Different letters indicate different time course with statistical
- differences (p < 0.05, one-way ANOVA test; n=3).
- (C, D) Induction of the indicated *TIR* genes by nlp20 (C) or flg22 (D). Ten-day-old
- 653 plate-grown WT plants were transplanted to water 1 day before for recovery and then
- pretreated with water (Mock) or $100 \,\mu\text{M}\,\text{GdCl}_3$ for 1 hour. Samples were collected 1
- hour after supplying with 1 μ M nlp20 or 1 μ M flg22. qPCR was used to examine the
- 656 genes expression level. *ACT7* was used for normalization. Error bars represent SD
- 657 from three different biological replicates. Different letters indicate different treatment
- with statistical differences (p < 0.05, one-way ANOVA test; n=3)
- All the experiments were repeated twice with similar results.
- 660

Figure 4. PCRK1/2 and PBL19/20 are required for nlp20-induced immunity.

- (A) Growth of *Hpa* Noco2 on the distal leaves of WT, *pcrk1/2*, *pcrk1/2 pbl19*, *pcrk1/2*
- *pbl19/20* #33 and *pcrk1/2 pbl19/20* #47 quadruple mutant plants. 21-d-old soil-grown
- plants were treated with 1 μ M nlp20 and sprayed *Hpa* Noco2 spores (50,000
- spores/ml) 24 hours later. The detail method was described in Fig 2F.

(B) Levels of free SA in four-week-old soil-grown plants of the indicated genotypes

- treated with water or 1 μ M nlp20. Samples were collected 24 hours post elicitor
- treatment. Different letters indicate genotypes with statistical differences (p < 0.05,
- 669 one-way ANOVA test; n=3).
- 670 (C) The induction of At4g11170, At3g04220 and At2g32140 (TIR genes) in the
- 671 indicated genotypes. Total RNA was isolated from seedlings of 10-d-old plate-grown
- 672 plants 1 h after treatment with 1 μM nlp20. ACT7 was used for normalization, and the
- expression of each gene in mock-treated WT was set as 1. Error bars represent SD
- 674 from three different biological replicates. Different letters indicate genotypes with
- statistical differences (p < 0.05, one-way ANOVA test; n=3).
- (D) Immunoprecipitation and biotinylation of *PCRK2/PBL19-3FLAG* by
- 677 SOBIR1-HATurboID in N. benthamiana. Agrobacterium carrying the indicated
- 678 constructs were infiltrated into *N. benthamiana* leaves for protein expression.
- 679 Immunoprecipitation was carried out with anti-FLAG beads. The 3FLAG-tagged
- 680 proteins were detected using an anti-FLAG antibody. The biotinylated proteins were
- detected using HRP-Streptavidin. The experiments in (A-D) were repeated twice withsimilar results.
- (E) A working model for the contribution of TIR signaling in PTI. Upon perception of
- pathogen elicitors such as flg22 and nlp20, PRRs activate early immune responses
- such as ROS production, MAPK activation and Ca^{2+} influx through RLCKs. Elevated
- 686 cytosolic Ca^{2+} levels induce the expression of a large number of *TIR* genes, leading to
- activation of downstream defense pathways through the EDS1/PAD4/ADR1s and
- 688 EDS1/SAG101/NRG1s signaling modules. Activation of TIR signaling further
- 689 induces downstream defense gene expression, resulting in increased SA biosynthesis
- and enhanced resistance to pathogens. In parallel, activation of MAPKs promotes the
- 691 biosynthesis of ethylene.
- 692
- 693

694	Supplementary tables:
695	
696	Table S1: TIR genes induced by flg22 30 min after treatment.
697	
698	Table S2: TIR genes induced by nlp20 1h after treatment.
699	
700	Table S3: TIR genes induced by nlp20 6h after treatment.
701	
702	Table S4: Sequence of primers used in this study.
703	
704	
705	

706 Supplementary figure legends:

707

Figure S1. Levels of glucose-conjugated SA (SAG) in WT and OX-*SNIPER1*

- 709 plants.
- 710 (A) SAG levels in four-week-old soil-grown WT and OX-SNIPER1 plants treated
- with 10 mM MgCl₂ (mock) or *Pto* DC3000 *hrcC*.
- (B, C) SAG levels in 25-d-old plants WT and OX-*SNIPER1* plants treated with H₂O
- 713 (mock), $1 \mu M nlp20$ (B) or $1 \mu M flg22$ (C).
- Samples were collected for SAG measurement 24 hr after 1μ M nlp20, or 9 h
- 1μ M flg22 treatment. Different letters indicate genotypes with statistical differences
- 716 (p < 0.05, one-way ANOVA test; n=3). All the experiments were repeated three times
- 717 with similar results.
- 718

Figure S2. Induction of *SARD1* and *FMO1* gene expression and SAG production in TIR signaling mutants upon *Pto* DC3000 *hrcC*, flg22 or nlp20 treatment.

- (A, B) Relative expression levels of SARD1 (A) and FMO1 (B) in WT, eds1-24,
- pad4-1, sag101-1, adr1 adr-L1 adr-L2 (adr1 triple) and nrg1a nrg1b nrg1c (nrg1
- *triple*) mutant plants after treatment with *Pto* DC3000 *hrcC* ($OD_{600} = 0.05$) for 12
- hours. Error bars represent SD from three different biological replicates. Different
- letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test;
- 726 n=3).
- 727 (C, F, I) Four-week-old soil-grown plants of the indicated genotypes were treated with
- 728 *Pto* DC3000 *hrcC* (OD₆₀₀=0.05) (D), 1 μ M flg22 (F) or 1 μ M nlp20 (I). Samples were
- collected for SAG measurement 12 hr after inoculation of *Pto* DC3000 *hrcC*, 24 hr
- after treatment with 1 μ M nlp20, or 9 hr after treatment with 1 μ M flg22. Different
- letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test;
- n=3). The experiment was repeated three times with similar results.
- (D, E) Relative expression levels of *SARD1* (D) and *FMO1* (E) in the indicated
- genotypes upon flg22 treatment. Total RNA was isolated from 12-d-old plate-grown
- seedlings 4 h after spraying with 1 µM flg22. Different letters indicate genotypes with

736	statistical differences ($p < 0.05$, one-way ANOVA test; n=3).
737	(G, H) Relative expression levels of SARD1 (G) and FMO1 (H) in the indicated
738	genotypes upon nlp20 treatment. Total RNA was isolated from 12-d-old plate-grown
739	seedlings 4 h after spraying with 1 μ M nlp20. Different letters indicate genotypes with
740	statistical differences ($p < 0.05$, one-way ANOVA test; n=3).
741	For gene expression analysis in (A, B, D, E, G, H), the expression of each gene in the
742	mock-treated WT plants was set as 1. All gene expression analyses were repeated
743	twice with similar results.
744	
745	Figure S3. Growth of <i>Hpa</i> Noco2 on the distal leaves of TIR signaling mutants.
746	mutants.
747	Three-week-old soil-grown plants were pretreated with water or 1 μ M nlp20 and
748	sprayed with Hpa Noco2 spores (50,000 spores/ml) 24 hours later. Disease ratings are
749	as described in Fig 1. The experiment was repeated twice with similar results.
750	
751	Figure S4. Levels of glucose-conjugated SA (SAG) in N. benthamiana leaves after
	Figure S4. Levels of glucose-conjugated SA (SAG) in <i>N. benthamiana</i> leaves after infiltration of <i>Agrobacterium</i> carrying the <i>TIR</i> genes.
752	
752 753	infiltration of Agrobacterium carrying the TIR genes.
752 753 754	infiltration of <i>Agrobacterium</i> carrying the <i>TIR</i> genes. Samples were collected 24 and 36 hours post infiltration of the bacteria ($OD_{600}=0.4$)
752 753 754 755	infiltration of <i>Agrobacterium</i> carrying the <i>TIR</i> genes. Samples were collected 24 and 36 hours post infiltration of the bacteria ($OD_{600}=0.4$) before HR was visible. Different letters indicate statistical differences ($p < 0.05$,
752 753 754 755 756	infiltration of <i>Agrobacterium</i> carrying the <i>TIR</i> genes. Samples were collected 24 and 36 hours post infiltration of the bacteria ($OD_{600}=0.4$) before HR was visible. Different letters indicate statistical differences ($p < 0.05$, one-way ANOVA test; n=3) compared with the empty vector control. The experiment
752 753 754 755 756 757	infiltration of <i>Agrobacterium</i> carrying the <i>TIR</i> genes. Samples were collected 24 and 36 hours post infiltration of the bacteria ($OD_{600}=0.4$) before HR was visible. Different letters indicate statistical differences ($p < 0.05$, one-way ANOVA test; n=3) compared with the empty vector control. The experiment
752 753 754 755 756 757 758	infiltration of <i>Agrobacterium</i> carrying the <i>TIR</i> genes. Samples were collected 24 and 36 hours post infiltration of the bacteria ($OD_{600}=0.4$) before HR was visible. Different letters indicate statistical differences ($p < 0.05$, one-way ANOVA test; n=3) compared with the empty vector control. The experiment was repeated twice with similar results.
752 753 754 755 756 757 758 759	infiltration of Agrobacterium carrying the TIR genes. Samples were collected 24 and 36 hours post infiltration of the bacteria (OD ₆₀₀ =0.4) before HR was visible. Different letters indicate statistical differences (p < 0.05, one-way ANOVA test; n=3) compared with the empty vector control. The experiment was repeated twice with similar results. Figure S5. nlp20-induced immune responses are compromised in pcrk1/2
752 753 754 755 756 757 758 759 760	<pre>infiltration of Agrobacterium carrying the TIR genes. Samples were collected 24 and 36 hours post infiltration of the bacteria (OD₆₀₀=0.4) before HR was visible. Different letters indicate statistical differences (p < 0.05, one-way ANOVA test; n=3) compared with the empty vector control. The experiment was repeated twice with similar results. Figure S5. nlp20-induced immune responses are compromised in pcrk1/2 pb119/20 quadruple mutant plants.</pre>
751 752 753 754 755 756 757 758 759 760 761 762	infiltration of Agrobacterium carrying the TIR genes. Samples were collected 24 and 36 hours post infiltration of the bacteria (OD ₆₀₀ =0.4) before HR was visible. Different letters indicate statistical differences (p < 0.05, one-way ANOVA test; n=3) compared with the empty vector control. The experiment was repeated twice with similar results. Figure S5. nlp20-induced immune responses are compromised in pcrk1/2 pb119/20 quadruple mutant plants. (A) Growth of Hpa Noco2 on the local leaves of WT, pcrk1/2, pcrk1/2 pb119, pcrk1/2
752 753 754 755 756 757 758 759 760 761	 infiltration of <i>Agrobacterium</i> carrying the <i>TIR</i> genes. Samples were collected 24 and 36 hours post infiltration of the bacteria (OD₆₀₀=0.4) before HR was visible. Different letters indicate statistical differences (<i>p</i> < 0.05, one-way ANOVA test; n=3) compared with the empty vector control. The experiment was repeated twice with similar results. Figure S5. nlp20-induced immune responses are compromised in <i>pcrk1/2 pb119/20</i> quadruple mutant plants. (A) Growth of <i>Hpa</i> Noco2 on the local leaves of WT, <i>pcrk1/2</i>, <i>pcrk1/2 pb119</i>, p<i>crk1/2 pb119/20</i> #33 and <i>pcrk1/2 pb119/20</i> #47 quadruple mutant plants after 1 µM nlp20
752 753 754 755 756 757 758 759 760 761 762	infiltration of Agrobacterium carrying the TIR genes. Samples were collected 24 and 36 hours post infiltration of the bacteria (OD ₆₀₀ =0.4) before HR was visible. Different letters indicate statistical differences (p < 0.05, one-way ANOVA test; n=3) compared with the empty vector control. The experiment was repeated twice with similar results. Figure S5. nlp20-induced immune responses are compromised in pcrk1/2 pbl19/20 quadruple mutant plants. (A) Growth of Hpa Noco2 on the local leaves of WT, pcrk1/2, pcrk1/2 pbl19, pcrk1/2 pbl19/20 #33 and pcrk1/2 pbl19/20 #47 quadruple mutant plants after 1 µM nlp20 treatment. Infection was scored 7 dpi by counting the number of conidiophores per

nlp20. 24 hours post elicitor treatment, the treated leaves were infiltrated with *Pto*

- 767 DC3000 (OD₆₀₀=0.001). Samples were taken 3 days after *Pto* DC3000 inoculation.
- 768 Error bars represent SD from six biological replicates. The nlp20-induced protection
- among different genotypes was compared using two-way ANOVA test, and different

letters indicate genotypes with statistical differences (p < 0.05, n= 6).

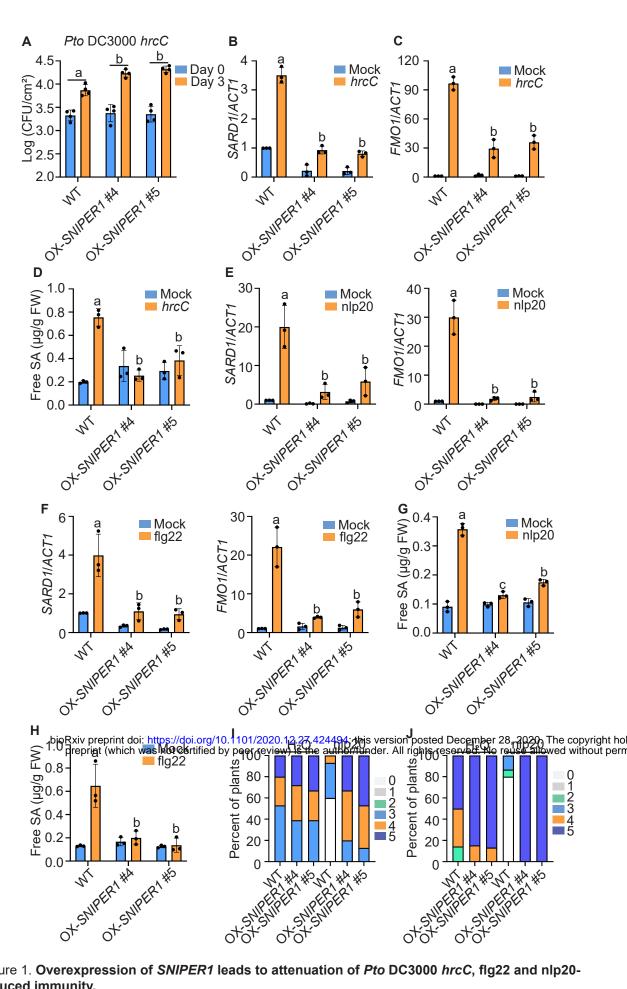
- 771 (C) Levels of SAG in four-week-old soil-grown plants of the indicated genotypes
- treated with water or 1 μ M nlp20. Samples were collected 24 hours post elicitor
- treatment. Different letters indicate statistical differences (p < 0.05, one-way ANOVA
- 774 test; n=3)
- (D, E) Relative expression levels of *SARD1* (D) and *FMO1* (E) in the indicated
- genotypes. Total RNA extracted from 12-d-old plate-grown plants treated with 1 μ M
- nlp20 for 4h. *ACT1* was used for normalization, and the expression of each gene in
- mock-treated WT was set as 1. Error bars represent SD from three different biological
- replicates. Different letters indicate genotypes with statistical differences (p < 0.05,
- 780 one-way ANOVA test; n=3).
- 781 All the experiments were repeated twice with similar results.
- 782

Figure S6. Analysis of interactions between SOBIR1 and EDS1/PAD4/ADR1 by TurboID and co-immunoprecipitation analysis.

- 785 *Agrobacterium* carrying the indicated constructs were infiltrated into *N. benthamiana*

leaves for protein expression. Immunoprecipitation of EDS1-FLAG-ZZ,

- 787 PAD4-FLAG-ZZ or ADR1-3FLAG was carried out with anti-FLAG beads. The
- 788 3FLAG-tagged and HATurboID fusion proteins were detected by western blot using
- an anti-FLAG or anti-HA antibody by western blot. The biotinylated proteins were
- 790 detected by western blot using HRP-Streptavidin. Molecular mass marker in
- kiloDaltons is indicated on the left. The experiment was repeated twice with similarresults.
- 793
- 794
- 795


References:

801	1	Zhou, J. M. & Zhang, Y. Plant Immunity: Danger Perception and Signaling. Cell 181, 978-989,
802		doi:10.1016/j.cell.2020.04.028 (2020).
803	2	Jones, J. D. & Dangl, J. L. The plant immune system. <i>Nature</i> 444, 323-329 (2006).
804	3	Monaghan, J. & Zipfel, C. Plant pattern recognition receptor complexes at the plasma
805		membrane. <i>Curr Opin Plant Biol</i> 15 , 349-357, doi:10.1016/j.pbi.2012.05.006 (2012).
806	4	Liebrand, T. W., van den Burg, H. A. & Joosten, M. H. Two for all: receptor-associated kinases
807		SOBIR1 and BAK1. Trends Plant Sci 19, 123-132, doi:10.1016/j.tplants.2013.10.003 (2014).
808	5	Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of
809		the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003-1011 (2000).
810	6	Felix, G., Duran, J. D., Volko, S. & Boller, T. Plants have a sensitive perception system for the
811		most conserved domain of bacterial flagellin. The Plant Journal 18, 265-276 (1999).
812	7	Böhm, H. et al. A conserved peptide pattern from a widespread microbial virulence factor
813		triggers pattern-induced immunity in Arabidopsis. PLoS Pathog 10, e1004491 (2014).
814	8	Albert, I. et al. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature
815		Plants 1, 1-9 (2015).
816	9	Peng, Y., Wersch, R. v. & Zhang, Y. Convergent and divergent signaling in PAMP-triggered
817		immunity and Effector-triggered immunity. Molecular Plant-Microbe Interactions (2017).
818	10	Liang, X. & Zhou, JM. Receptor-like cytoplasmic kinases: central players in plant receptor
819		kinase–mediated signaling. Annual review of plant biology 69, 267-299 (2018).
820	11	Toruño, T. Y., Stergiopoulos, I. & Coaker, G. Plant-pathogen effectors: cellular probes
821		interfering with plant defenses in spatial and temporal manners. Annual review of
822		phytopathology 54 , 419-441 (2016).
823	12	Li, X., Kapos, P. & Zhang, Y. NLRs in plants. Current opinion in immunology 32, 114-121,
824		doi:10.1016/j.coi.2015.01.014 (2015).
825	13	Wang, J. et al. Reconstitution and structure of a plant NLR resistosome conferring immunity.
826		Science 364 (2019).
827	14	Wan, L. et al. TIR domains of plant immune receptors are NAD+-cleaving enzymes that
828		promote cell death. <i>Science</i> 365 , 799-803 (2019).
829	15	Horsefield, S. et al. NAD+ cleavage activity by animal and plant TIR domains in cell death
830		pathways. <i>Science</i> 365 , 793-799 (2019).
831	16	Peart, J. R., Mestre, P., Lu, R., Malcuit, I. & Baulcombe, D. C. NRG1, a CC-NB-LRR protein,
832		together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr
833		<i>Biol</i> 15 , 968-973, doi:10.1016/j.cub.2005.04.053 (2005).
834	17	Qi, T. et al. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant
835		immunity in Nicotiana benthamiana. Proceedings of the National Academy of Sciences 115,
836		E10979-E10987 (2018).
837	18	Lapin, D. et al. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by
838		TIR-domain immune receptors. The Plant cell 31 , 2430-2455 (2019).
839	19	Castel, B. et al. Diverse NLR immune receptors activate defence via the RPW 8 - NLR NRG 1.
840		New Phytologist 222 , 966-980 (2019).
841	20	Wu, Z. et al. Differential regulation of TNL - mediated immune signaling by redundant helper

842		CNLs. <i>New Phytologist</i> 222 , 938-953 (2019).
843	21	
	21	Dong, O. X. <i>et al.</i> TNL - mediated immunity in Arabidopsis requires complex regulation of the
844	22	redundant ADR1 gene family. <i>New Phytologist</i> (2016).
845	22	Bonardi, V. <i>et al.</i> Expanded functions for a family of plant intracellular immune receptors
846		beyond specific recognition of pathogen effectors. <i>Proc Natl Acad Sci U S A</i> 108 ,
847		16463-16468, doi:10.1073/pnas.1113726108 (2011).
848	23	Wiermer, M., Feys, B. J. & Parker, J. E. Plant immunity: the EDS1 regulatory node. Curr Opin
849		<i>Plant Biol</i> 8 , 383-389, doi:10.1016/j.pbi.2005.05.010 (2005).
850	24	Liu, Y. et al. Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant
851		immunity. <i>The Plant cell</i> 32 , 4002-4016 (2020).
852	25	Zhang, Y. & Li, X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity.
853		Curr Opin Plant Biol 50 , 29-36, doi:10.1016/j.pbi.2019.02.004 (2019).
854	26	Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. Isochorismate synthase is required
855		to synthesize salicylic acid for plant defence. Nature 414 , 562-565 (2001).
856	27	Torrens-Spence, M. P. et al. PBS3 and EPS1 complete salicylic acid biosynthesis from
857		isochorismate in Arabidopsis. Molecular plant 12, 1577-1586 (2019).
858	28	Rekhter, D. et al. Isochorismate-derived biosynthesis of the plant stress hormone salicylic
859		acid. <i>Science</i> 365 , 498-502, doi:10.1126/science.aaw1720 (2019).
860	29	Zhang, Y. et al. Control of salicylic acid synthesis and systemic acquired resistance by two
861		members of a plant-specific family of transcription factors. Proc Natl Acad Sci U S A 107,
862		18220-18225 (2010).
863	30	Wang, L. et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid
864		signaling. <i>Plant J</i> 67 , 1029-1041, doi:10.1111/j.1365-313X.2011.04655.x (2011).
865	31	Cheng, Y. T. et al. Stability of plant immune-receptor resistance proteins is controlled by
866		SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc Natl Acad Sci U S A 108,
867		14694-14699, doi:1105685108 [pii]10.1073/pnas.1105685108 (2011).
868	32	Liu, J. <i>et al.</i> The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2
869		activation via MEKK2 scaffolding. <i>Nature Plants</i> 6, 1106-1115 (2020).
870	33	Dong, O. X. <i>et al.</i> Individual components of paired typical NLR immune receptors are
871		regulated by distinct E3 ligases. <i>Nature plants</i> 4 , 699-710 (2018).
872	34	Zhang, Y. <i>et al.</i> TurboID-based proximity labeling reveals that UBR7 is a regulator of N NLR
873	-	immune receptor-mediated immunity. <i>Nature communications</i> 10 , 1-17 (2019).
874	35	Wu, Z. et al. Plant E3 ligases SNIPER 1 and SNIPER 2 broadly regulate the homeostasis of
875	33	sensor NLR immune receptors. The EMBO journal 39 , e104915 (2020).
876	36	Wan, W. L. <i>et al.</i> Comparing Arabidopsis receptor kinase and receptor protein - mediated
877	50	immune signaling reveals BIK1 - dependent differences. <i>New Phytologist</i> 221 , 2080-2095
878		(2019).
879	27	Li, F. <i>et al.</i> Modulation of RNA polymerase II phosphorylation downstream of pathogen
880	37	perception orchestrates plant immunity. <i>Cell host & microbe</i> 16 , 748-758 (2014).
	20	
881 000	38	Kong, Q. <i>et al.</i> Two Redundant Receptor-Like Cytoplasmic Kinases Function Downstream of
882 882		Pattern Recognition Receptors to Regulate Activation of SA Biosynthesis. <i>Plant Physiol</i> 171 ,
883	20	1344-1354, doi:10.1104/pp.15.01954 (2016).
884	39	Rao, S. <i>et al.</i> Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered
885		immune signaling. Plant physiology 177, 1679-1690 (2018).

886	40	Sreekanta, S. et al. The receptor-like cytoplasmic kinase PCRK1 contributes to
887	40	pattern-triggered immunity against Pseudomonas syringae in Arabidopsis thaliana. The New
888		phytologist 207 , 78-90, doi:10.1111/nph.13345 (2015).
889	41	Branon, T. C. <i>et al.</i> Efficient proximity labeling in living cells and organisms with TurbolD.
890	41	Nature biotechnology 36 , 880-887 (2018).
	40	
891 802	42	Ngou, B. P. M., Ahn, HK., Ding, P. & Jones, J. D. Mutual potentiation of plant immunity by
892 802	42	cell-surface and intracellular receptors. <i>bioRxiv</i> (2020).
893 894	43	Yuan, M. <i>et al.</i> Pattern-recognition receptors are required for NLR-mediated plant immunity. <i>bioRxiv</i> (2020).
895	44	Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J. & Katagiri, F. Network properties of robust
896		immunity in plants. <i>PLoS Genet</i> 5, e1000772 (2009).
897	45	Sun, T. <i>et al.</i> ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity.
898	45	Nature communications 6 , 10159, doi:10.1038/ncomms10159 (2015).
899	46	Palma, K. <i>et al.</i> Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of
900	40	an Immune Receptor. <i>PLoS pathogens</i> 6 , doi:ARTN e1001137
901		DOI 10.1371/journal.ppat.1001137 (2010).
901 902	47	
902 903	47	Yi, H. & Richards, E. J. Phenotypic instability of Arabidopsis alleles affecting a disease
	48	Resistancegene cluster. <i>BMC plant biology</i> 8 , 36 (2008).
904 005	48	Kato, H., Saito, T., Ito, H., Komeda, Y. & Kato, A. Overexpression of the TIR-X gene results in a
905		dwarf phenotype and activation of defense-related gene expression in Arabidopsis thaliana.
906	40	Journal of plant physiology 171 , 382-388 (2014).
907	49	Swiderski, M. R., Birker, D. & Jones, J. D. The TIR domain of TIR-NB-LRR resistance proteins is a
908		signaling domain involved in cell death induction. <i>Molecular plant-microbe interactions</i> 22 ,
909	50	157-165 (2009).
910	50	Pruitt, R. N. <i>et al.</i> Arabidopsis cell surface LRR immune receptor signaling through the
911	- 4	EDS1-PAD4-ADR1 node. <i>bioRxiv</i> (2020).
912	51	Wang, ZP. <i>et al.</i> Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates
913		homozygous mutants for multiple target genes in Arabidopsis in a single generation. <i>Genome</i>
914		biology 16 , 144 (2015).
915	52	Liu, Y., Huang, X., Li, M., He, P. & Zhang, Y. Loss-of-function of Arabidopsis receptor-like kinase
916		BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. <i>The New</i>
917		phytologist 212 , 637-645, doi:10.1111/nph.14072 (2016).
918	53	Xu, F. <i>et al.</i> Two N-terminal acetyltransferases antagonistically regulate the stability of a
919		nod-like receptor in Arabidopsis. <i>Plant Cell</i> 27 , 1547-1562, doi:10.1105/tpc.15.00173 (2015).
920	54	Glazebrook, J., Rogers, E. E. & Ausubel, F. M. Isolation of Arabidopsis mutants with enhanced
921		disease susceptibility by direct screening. <i>Genetics</i> 143 , 973-982 (1996).
922	55	Feys, B. J. et al. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within
923		an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 17,
924		2601-2613 (2005).
925	56	Li, X., Zhang, Y., Clarke, J. D., Li, Y. & Dong, X. Identification and cloning of a negative regulator
926		of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 98,
927		329-339 (1999).
928	57	Bi, D., Cheng, Y. T., Li, X. & Zhang, Y. Activation of plant immune responses by a
929		gain-of-function mutation in an atypical receptor-like kinase. Plant Physiol 153, 1771-1779

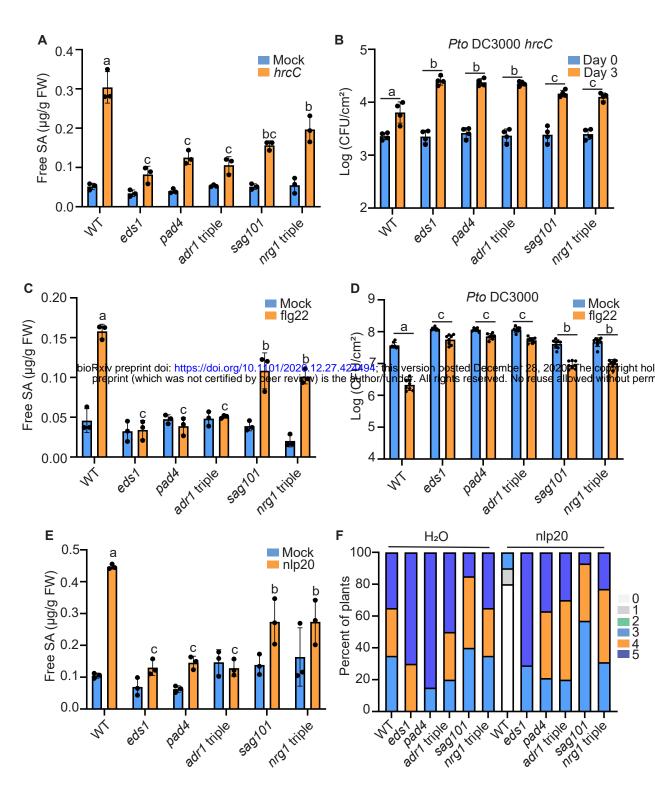

930		(2010).
931	58	Li, L. et al. The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase
932		RbohD to control plant immunity. Cell Host Microbe 15, 329-338,
933		doi:10.1016/j.chom.2014.02.009 (2014).
934	59	Zhang, R. et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis
935		of alternative splicing. Nucleic acids research 45, 5061-5073 (2017).
936	60	Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and
937		bias-aware quantification of transcript expression. Nature methods 14, 417-419 (2017).
938	61	Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level
939		estimates improve gene-level inferences. F1000Research 4 (2015).
940	62	Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
941		RNA-seq data with DESeq2. Genome biology 15, 550 (2014).
942	63	Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of
943		genomic datasets with the R/Bioconductor package biomaRt. Nature protocols 4, 1184
944		(2009).
945		

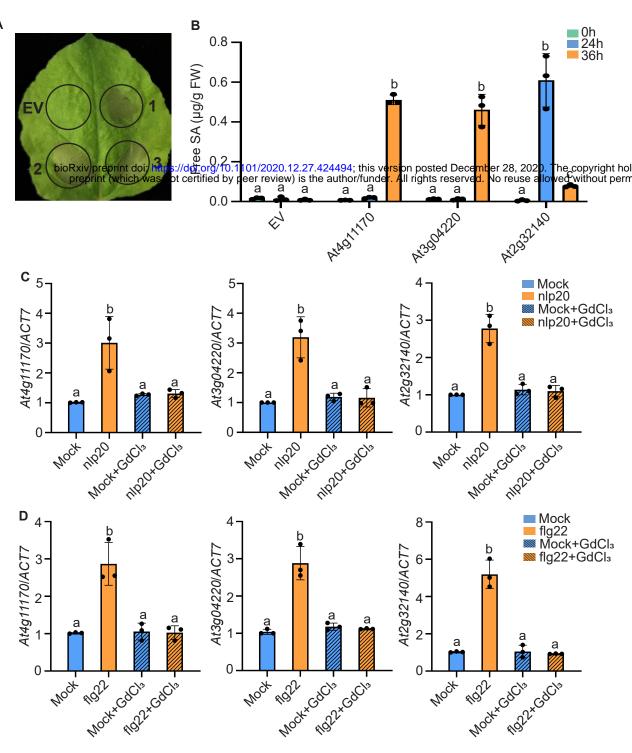
Figure 1. Overexpression of SNIPER1 leads to attenuation of Pto DC3000 hrcC, flg22 and nlp20induced immunity.

(A)Growth of Pto DC3000 hrcC in wild type (WT) Col-0 and two independent SNIPER1 overexpression (OX-SNIPER1) lines. Leaf discs were collected 0 days (Day 0) or 3 days (Day 3) after bacterial infiltration (OD600=0.002). Error bars represent standard deviation (SD) from four biological replicates. The growth of Pto DC3000 hrcC in different genotypes on Day 3 was compared using two-way ANOVA test, and different letters indicate genotypes with statistical differences (p < 0.05; n = 4). The experiment was repeated twice with similar results.

(B, C) Relative expression levels of SARD1 (B) and FMO1 (C) in WT and OX-SNIPER1 plants upon Pto DC3000 hrcC infection. Total RNA was isolated from leaf tissues of 25-d-old soil-grown plants 12 hours after infiltration with Pto DC3000 hrcC (OD600=0.05) or 10 mM MgCl2 (Mock). gPCR was used to examine the genes expression levels. ACT1 was used for normalization, and the expression of each gene in mock-treated WT plants was set as 1. Error bars represent SD from three different biological replicates. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated twice with similar results. (D)Free salicylic acid (SA) levels in four-week-old WT and OX-SNIPER1 plants 12 hours after treatment with 10 mM MgCl2 (mock) or Pto DC3000 hrcC. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated three times with similar results. (E, F) Relative expression levels of SARD1 and FMO1 in WT and OX-SNIPER1 plants upon 1 µM nlp20 (E) or 1 µM flg22 (F) treatment. Total RNA was isolated from 12-d-old plate-grown seedlings 4 hours after spraying with 1 µM nlp20 (A) or 1 µM flg22 (B). ACT1 was used for normalization, and the expression of each gene in the H2O (mock)-treated WT plants was set as 1. Error bars represent SD from three different biological replicates. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated twice with similar results. (G, H) Levels of free SA in WT and OX-SNIPER1 plants upon 1 µM nlp20 (G) or 1 µM flg22 (H) treatment. 25-d-old soil-grown plants samples were collected 24 hours after treatment with nlp20, and 9 hours after treatment with flg22. H2O served as mock treatment. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated three times with similar results. (I) Growth of Hpa Noco2 on the local leaves of WT and OX-SNIPER1 plants with or without nlp20 treatment. Three-week-old plants were pretreated with water (H2O) or 1 µM nlp20 and sprayed with Hpa Noco2 spores (50,000 spores/ml) 24 hours later. Infection was scored at 7 days post inoculation (dpi) by counting the number of conidiophores per infected leaf. A total of 15 plants were scored for each treatment. Disease rating scores are as follows: 0, no conidiophores on the infected leaves; 1, no more than 5 conidiophores on one infected leaf; 2, 6 to 20 conidiophores on one infected leaf; 3, 20 or more conidiophores on one infected leaf; 4, 5 or more conidiophores on two infected leaves; 5, 20 or more conidiophores on two infected leaves. This experiment was repeated twice with similar results. (J) Growth of Hpa Noco2 on the distal leaves of WT and OX-SNIPER1 plants in an SAR assay. 15 plants were used for each treatment. Disease symptoms were scored 7 dpi by counting the number of conidiophores on the distal leaves. Disease ratings: 0, no conidiophores on plants; 1, one leaf is infected with no more than five conidiophores; 2, one leaf is infected with more than five conidiophores; 3, two leaves are infected but with no more than five conidiophores on each infected leaf; 4, two leaves are infected with more than five conidiophores on each infected leaf; 5, more than two leaves are infected with more than five conidiophores. The experiment was repeated twice with similar results.

Figure 2. Contributions of TIR signaling components to *Pto* DC3000 *hrcC*, flg22 and nlp20-induced immunity.

(A) Levels of free SA in four-week-old soil-grown WT, *eds1-24*, *pad4-1*, *sag101-1*, *adr1* triple and *nrg1* triple mutants 12 hours after treatment with 10 mM MgCl2 or *Pto* DC3000 *hrcC* (OD600=0.05) for 12 hours. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated three times with similar results.


(B) Growth of *Pto* DC3000 *hrcC* in 25-day-old soil-grown plants of the indicated genotypes. Leaf discs were collected 0 days (Day 0) or 3 days (Day 3) after Pto DC3000 hrcC (OD600=0.002) infiltration. Error bars represent SD from four biological replicates. The growth of *Pto* DC3000 *hrcC* in different genotypes was compared using two-way ANOVA test, and different letters indicate genotypes with statistical differences (p < 0.05, n = 4). The experiment was repeated twice with similar results.

(C) Levels of free SA in four-week-old soil-grown plants of the indicated genotypes after treatment with water or 1 μ M flg22 for 9 hours. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated three times with similar results.

(D) Growth of *Pto* DC3000 in the leaves of four-week-old WT, *eds1-24*, *pad4-1*, *sag101-1*, *adr1* triple and *nrg1* triple mutant plants after treatment with water or 1 μ M flg22. 24 hours later, the same treated leaves were infiltrated with *Pto* DC3000. Samples were taken 3 days after *Pto* DC3000 inoculation. Error bars represent SD from six biological replicates. The flg22-induced protection among different genotypes was compared using two-way ANOVA test, and different letters indicate genotypes with statistical differences (p < 0.05, n= 6). The experiment was repeated twice with similar results.

(E) Levels of free SA in four-week-old soil-grown plants of the indicated genotypes after treatment with water (mock) or 1 μ M nlp20 for 24h. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated three times with similar results.

(F) Growth of *Hpa* Noco2 on the local leaves of the indicated plants. Three-week-old soil-grown plants were pretreated with water or 1 μ M nlp20 and sprayed with Hpa Noco2 spores (50,000 spores/ml) 24 hours later. Disease ratings are as described in Fig 1. The experiment was repeated twice with similar results.

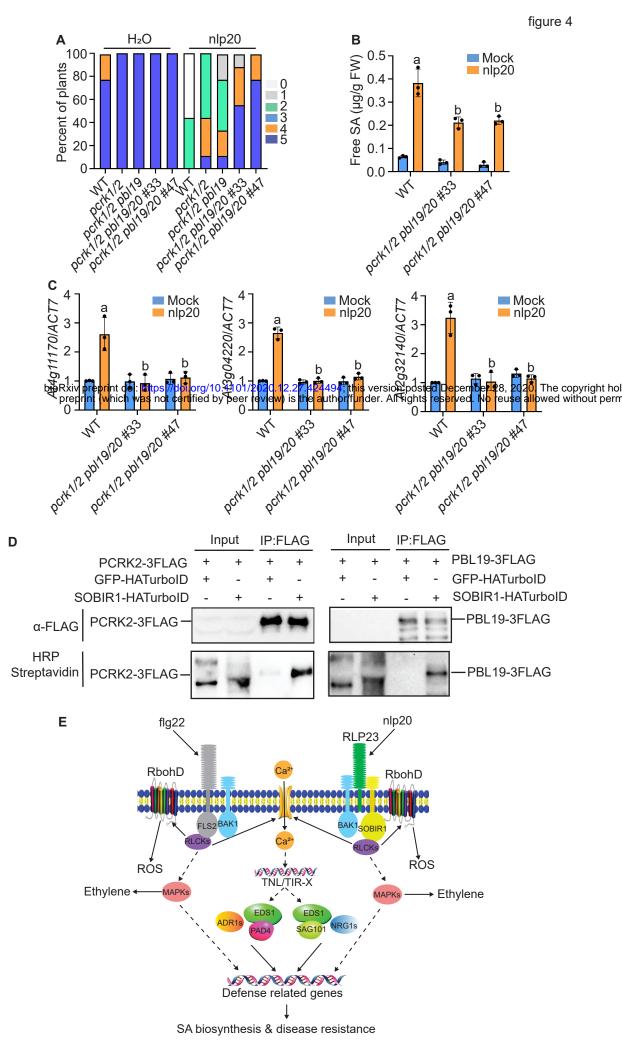


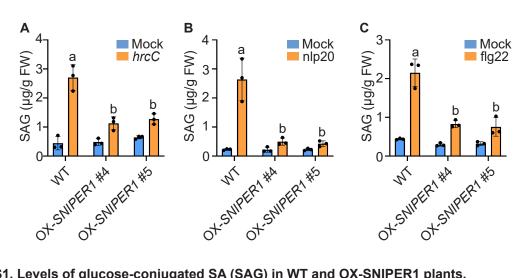
Figure 3. Overexpression of *TIR* genes activates SA biosynthesis in *N. benthamiana*.

(A) Hypersensitive response (HR) in the *N. benthamiana* leaves expressing the *TIR* genes *At4g11170*, *At3g04220* or *At2g32140* through *Agrobacterium tumefaciens* GV3101 (OD600=0.4) infiltration. Photographs were taken 3 days after Agrobacterium infiltration. The empty vector (EV) treatment serves as control; 1, *At4g11170*; 2, *At3g04220*; 3, *At2g32140*.

(B) Levels of free SA in *N. benthamiana* leaves after infiltration of *Agrobacterium* (OD600=0.4) carrying the *TIR* genes from (A). Samples were collected 24 and 36 hours post infiltration, before HR was visible. Error bars represent SD from three biological replicates. Different letters indicate different time course with statistical differences (p < 0.05, one-way ANOVA test; n=3).

(C, D) Induction of the indicated *TIR* genes by nlp20 (C) or flg22 (D). Ten-day-old plate-grown WT plants were transplanted to water 1 day before for recovery and then pretreated with water (Mock) or 100 μ M GdCl3 for 1 hour. Samples were collected 1 hour after supplying with 1 μ M nlp20 or 1 μ M flg22. qPCR was used to examine the genes expression level. *ACT*7 was used for normalization. Error bars represent SD from three different biological replicates. Different letters indicate different treatment with statistical differences (p < 0.05, one-way ANOVA test; n=3) All the experiments were repeated twice with similar results.

Figure 4. PCRK1/2 and PBL19/20 are required for nlp20-induced immunity.


(A) Growth of *Hpa* Noco2 on the distal leaves of WT, *pcrk1/2*, *pcrk1/2 pbl19*, *pcrk1/2 pbl19/20* #33 and *pcrk1/2 pbl19/20* #47 quadruple mutant plants. 21-d-old soil-grown plants were treated with 1 μ M nlp20 and sprayed *Hpa* Noco2 spores (50,000 spores/ml) 24 hours later. The detail method was described in Fig 2F. (B) Levels of free SA in four-week-old soil-grown plants of the indicated genotypes treated with water or 1 μ M nlp20. Samples were collected 24 hours post elicitor treatment. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3).

(C) The induction of At4g11170, At3g04220 and At2g32140 (TIR genes) in the indicated genotypes. Total

- RNA was isolated from seedlings of 10-d-old plate-grown plants 1 h after treatment with 1 μ M nlp20. *ACT*7 was used for normalization, and the expression of each gene in mock-treated WT was set as 1. Error bars represent SD from three different biological replicates. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3).
- (D) Immunoprecipitation and biotinylation of PCRK2/PBL19-3FLAG by SOBIR1-HATurboID in *N. benthamiana*. *Agrobacterium* carrying the indicated constructs were infiltrated into *N. benthamiana* leaves for protein expression. Immunoprecipitation was carried out with anti-FLAG beads. The 3FLAG-tagged proteins were detected using an anti-FLAG antibody. The biotinylated proteins were detected using HRP-Streptavidin. The experiments in (A-D) were repeated twice with similar results.
- (E) A working model for the contribution of TIR signaling in PTI. Upon perception of pathogen elicitors such as flg22 and nlp20, PRRs activate early immune responses such as ROS production, MAPK activation and Ca2+ influx through RLCKs. Elevated cytosolic Ca2+ levels induce the expression of a large number of TIR genes, leading to activation of downstream defense pathways through the EDS1/PAD4/ADR1s and EDS1/SAG101/NRG1s signaling modules. Activation of TIR signaling further induces downstream defense gene expression, resulting in increased SA biosynthesis and enhanced resistance to pathogens. In parallel, activation of MAPKs promotes the biosynthesis of ethylene.

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.27.424494; this version posted December 28, 2020. The copyright hol preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without perm

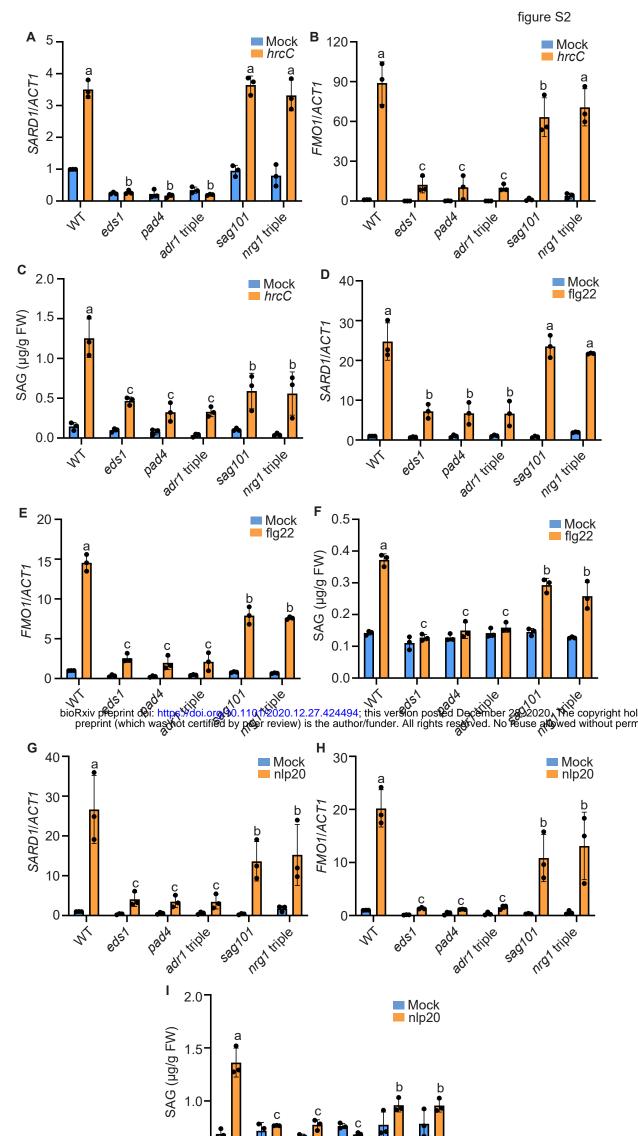
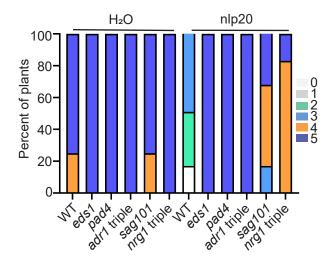


Figure S1. Levels of glucose-conjugated SA (SAG) in WT and OX-SNIPER1 plants.

(A) SAG levels in four-week-old soil-grown WT and OX-SNIPER1 plants treated with 10 mM MgCl2 (mock) or Pto DC3000 hrcC.

(B, C) SAG levels in 25-d-old plants WT and OX-SNIPER1 plants treated with H2O (mock), 1 µM nlp20 (B) or 1 µM flg22 (C). Samples were collected for SAG measurement 24 hr after 1µM nlp20, or 9 hr after 1µM flg22 treatment. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3).

All the experiments were repeated three times with similar results.


Figure S2. Induction of *SARD1* and *FMO1* gene expression and SAG production in TIR signaling mutants upon *Pto* DC3000 *hrcC*, flg22 or nlp20 treatment.

(A, B) Relative expression levels of *SARD1* (A) and *FMO1* (B) in WT, *eds1-24*, *pad4-1*, *sag101-1*, *adr1 adr-L1 adr-L2* (*adr1* triple) and *nrg1a nrg1b nrg1c* (*nrg1* triple) mutant plants after treatment with *Pto* DC3000 *hrcC* (OD600 = 0.05) for 12 hours. Error bars represent SD from three different biological replicates. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3).

(C, F, I) Four-week-old soil-grown plants of the indicated genotypes were treated with *Pto* DC3000 *hrcC* (OD600=0.05) (D), 1 μ M flg22 (F) or 1 μ M nlp20 (I). Samples were collected for SAG measurement 12 hr after inoculation of *Pto* DC3000 *hrcC*, 24 hr after treatment with 1 μ M nlp20, or 9 hr after treatment with 1 μ M flg22. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). The experiment was repeated three times with similar results.

(D, E) Relative expression levels of *SARD1* (D) and *FMO1* (E) in the indicated genotypes upon flg22 treatment. Total RNA was isolated from 12-d-old plate-grown seedlings 4 h after spraying with 1 μ M flg22. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). (G, H) Relative expression levels of *SARD1* (G) and *FMO1* (H) in the indicated genotypes upon nlp20 treatment. Total RNA was isolated from 12-d-old plate-grown seedlings 4 h after spraying with 1 μ M nlp20. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3). For gene expression analysis in (A, B, D, E, G, H), the expression of each gene in the mock-treated WT plants was set as 1. All gene expression analyses were repeated twice with similar results.

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.27.424494; this version posted December 28, 2020. The copyright hol preprint (which was not certified by peer review) is the author/funder. All rights reserved. Ngutees allowed without perm

Figure S3. Growth of *Hpa* Noco2 on the distal leaves of TIR signaling mutants. mutants.

Three-week-old soil-grown plants were pretreated with water or 1 μ M nlp20 and sprayed with *Hpa* Noco2 spores (50,000 spores/ml) 24 hours later. Disease ratings are as described in Fig 1. The experiment was repeated twice with similar results.

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.27.424494; this version posted December 28, 2020. The copyright hol preprint (which was not certified by peer review) is the author/funder. All rights respondence allowed without permited by the contract of the contr

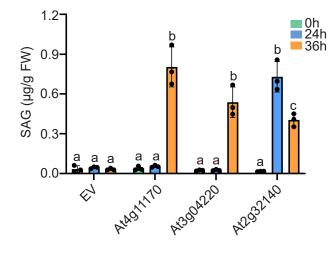
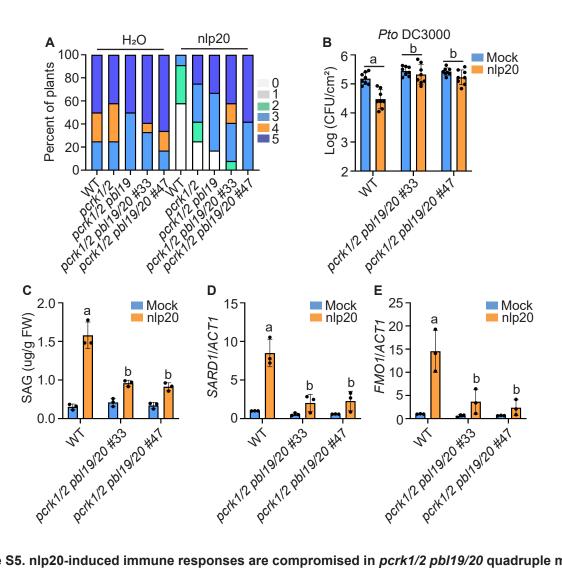
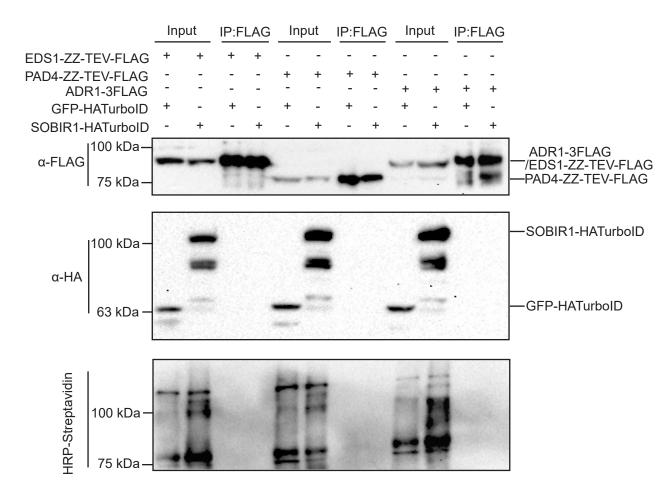



Figure S4. Levels of glucose-conjugated SA (SAG) in *N. benthamiana* leaves after infiltration of *Agrobacterium* carrying the *TIR* genes.

Samples were collected 24 and 36 hours post infiltration of the bacteria (OD600=0.4) before HR was visible. Different letters indicate statistical differences (p < 0.05, one-way ANOVA test; n=3) compared with the empty vector control. The experiment was repeated twice with similar results.

Figure S5. nlp20-induced immune responses are compromised in *pcrk1/2 pbl19/20* quadruple mutant plants.


(A) Growth of *Hpa* Noco2 on the local leaves of WT, *pcrk1/2*, *pcrk1/2 pbl19*, *pcrk1/2 pbl19/20* #33 and *pcrk1/2 pbl19/20* #47 quadruple mutant plants after 1 μ M nlp20 treatment. Infection was scored 7 dpi by counting the number of conidiophores per infected leaf. Detailed methodology was described in Fig 2E. (B) Growth of *Pto* DC3000 in the leaves of four-week-old WT, *pcrk1/2 pbl19/20* #33 and *pcrk1/2 pbl19/20* #47 quadruple mutant plants pre-treated with water or 1 μ M nlp20. 24 hours post elicitor treatment, the treated leaves were infiltrated with Pto DC3000 (OD600=0.001). Samples were taken 3 days after *Pto* DC3000 inoculation. Error bars represent SD from six biological replicates. The nlp20-induced protection among different genotypes was compared using two-way ANOVA test, and different letters indicate genotypes with statistical differences (p < 0.05, n= 6).

(C) Levels of SAG in four-week-old soil-grown plants of the indicated genotypes treated with water or 1 μ M nlp20. Samples were collected 24 hours post elicitor treatment. Different letters indicate statistical differences (p < 0.05, one-way ANOVA test; n=3).

(D, E) Relative expression levels of *SARD1* (D) and *FMO1* (E) in the indicated genotypes. Total RNA extracted from 12-d-old plate-grown plants treated with 1 μ M nlp20 for 4h. *ACT1* was used for normalization, and the expression of each gene in mock-treated WT was set as 1. Error bars represent SD from three different biological replicates. Different letters indicate genotypes with statistical differences (p < 0.05, one-way ANOVA test; n=3).

All the experiments were repeated twice with similar results.

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.27.424494; this version posted December 28, 2020. The copyright hol preprint (which was not certified by peer review) is the author/funder. All rights reserved. Nigeree Stowed without perm

Figure S6. Analysis of interactions between SOBIR1 and EDS1/PAD4/ADR1 by TurboID and co-immunoprecipitation analysis.

Agrobacterium carrying the indicated constructs were infiltrated into N. benthamiana leaves for protein expression. Immunoprecipitation of EDS1-FLAG-ZZ, PAD4-FLAG-ZZ or ADR1-3FLAG was carried out with anti-FLAG beads. The 3FLAG-tagged and HATurboID fusion proteins were detected by western blot using an anti-FLAG or anti-HA antibody by western blot. The biotinylated proteins were detected by western blot using HRP-Streptavidin. Molecular mass marker in kiloDaltons is indicated on the left. The experiment was repeated twice with similar results.

	Log2(Fold	Adjusted p-	Gene		
Gene ID	Change)	value	Name	Description	
AT1G66090	4.182314	2.11E-10		Disease resistance protein (TIR-NBS class)	
AT2G32140	3.410955	6.12E-04		Transmembrane receptor	
AT3G04220	2.978868	5.65E-06		Disease resistance protein (TIR-NBS-LRR class) family	
AT5G41750	2.702796	1.29E-04		Disease resistance protein (TIR-NBS-LRR class) family	
AT3G04210	2.613868	1.24E-08		At3g04210/T6K12_17	
				Toll-Interleukin-Resistance (TIR) domain family	
AT2G20142	2.309786	1.93E-03		protein	
AT4G19520	2.105768	7.57E-06		Probable disease resistance protein At4g19520	
AT5G22690	1.954292	1.70E-05		Disease resistance protein (TIR-NBS-LRR class) family	
AT1G72900	1.927421	1.63E-03		Similar to part of disease resistance protein	
AT1G17600	1.866072	1.21E-04		Disease resistance protein (TIR-NBS-LRR class) family	
AT1G65390	1.706482	1.64E-03	PP2A5	Protein PHLOEM PROTEIN 2-LIKE A5	
AT2G16870	1.65859	4.47E-04		Disease resistance protein (TIR-NBS-LRR class) family	
AT5G44870	1.635193	7.33E-07	LAZ5	Disease resistance protein LAZ5	
AT1G56540	1.63069	2.20E-04		Disease resistance protein (TIR-NBS-LRR class) family	
AT5G41740	1.585872	1.39E-03		Disease resistance protein (TIR-NBS-LRR class) family	
AT4G36150	1.514324	2.73E-03		Disease resistance protein (TIR-NBS-LRR class) family	
AT4G16960	1.493714	5.81E-04		Disease resistance protein (TIR-NBS-LRR class) family	
AT1G72940	1.456181	4.55E-03		At1g72940/F3N23_14	
AT5G46510	1.382137	1.87E-04		Disease resistance protein (TIR-NBS-LRR class) family	
AT5G46470	1.323092	5.59E-05	RPS6	Disease resistance protein RPS6	
AT4G16860	1.316684	2.28E-03	RPP4	Disease resistance protein RPP4	
AT3G44630	1.296601	3.67E-03		Disease resistance protein (TIR-NBS-LRR class) family	
AT4G36140	1.190924	1.25E-04		Disease resistance protein (TIR-NBS-LRR class)	
AT1G31540	1.073651	9.72E-04		Disease resistance protein (TIR-NBS-LRR class) family	
AT5G45250	1.06893	1.61E-03	RPS4	Disease resistance protein RPS4	
				disease resistance protein (TIR-NBS-LRR class),	
AT4G16890	0.86282	4.61E-03	SNC1	putative	

Table S1. TIR-domain containing genes induced by nlp20 treatment for 1 hour compared with H_2O treatment for 1 hour.

Table S2. TIR-domain containing genes induced by nlp20 treatment for 6 hours compared with H ₂ O
treatment for 6 hours.

	Log2(Fold	Adjusted	Gene		
Gene ID	Change)	p-value	Name	Description	
				Disease resistance protein RPP1-WsB,	
AT1G57630	7.14555	3.84E-06		putative	
				Putative disease resistance protein	
AT4G11170	4.73465	4.44E-04		At4g11170	
				Uncharacterized protein PHLOEM	
AT5G45090	3.91362	1.51E-02	PP2A7	PROTEIN 2-LIKE A7	
				Toll-Interleukin-Resistance (TIR) domain	
AT1G47370	3.62641	2.83E-02		family protein	
AT2G32140	3.59523	1.72E-02		Transmembrane receptor	
				Disease resistance protein (TIR-NBS-LRR	
AT5G41750	3.33276	2.23E-04		class) family	
				Disease resistance protein (TIR-NBS	
AT1G66090	3.02848	4.22E-04		class)	
				Similar to part of disease resistance	
AT1G72920	2.84247	3.10E-03		protein	
				Disease resistance protein (TIR-NBS-LRR	
AT5G45000	2.74362	1.49E-02		class) family	
				Toll-Interleukin-Resistance (TIR) domain	
AT2G20142	2.4793	2.51E-02		family protein	
				Disease resistance protein (TIR-NBS-LRR	
AT3G04220	2.28377	2.68E-02		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT5G58120	1.90423	9.43E-03		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT5G41740	1.71984	1.75E-02		class) family	
				Similar to part of disease resistance	
AT1G72900	1.71688	8.78E-02		protein	

Log2(Fold Adjusted Gene Gene ID Change) p-value Name Description Disease resistance protein (TIR-NBS AT1G66090 23.2 2.52E-54 class) 0.00E+00 AT1G65390 19.4 PP2A5 Protein PHLOEM PROTEIN 2-LIKE A5 Probable disease resistance protein 12.3 0.00E+00 At4g19520 AT4G19520 Disease resistance protein (TIR-NBS-LRR AT5G41750 12.3 2.09E-168 class) family Disease resistance protein (TIR-NBS-LRR AT5G41740 11.6 3.96E-217 class) family Similar to part of disease resistance AT1G72900 10 3.40E-31 protein AT2G32140 8.9 1.59E-31 Transmembrane receptor Toll-Interleukin-Resistance (TIR) domain AT2G20142 8.8 1.73E-08 family protein Disease resistance protein (TIR-NBS-LRR AT4G14370 8.4 1.20E-76 class) family AT5G44910 6 5.36E-23 Similarity to disease resistance protein Putative disease resistance protein AT4G11170 5.7 5.69E-09 At4g11170 AT1G51270 Vesicle-associated protein 1-4 5.7 3.59E-66 Disease resistance protein (TIR-NBS-LRR AT1G63860 5.5 8.73E-63 class) family Disease resistance protein (TIR-NBS-LRR AT5G22690 5.3 9.39E-61 class) family Disease resistance protein (TIR-NBS-LRR AT1G63750 5.1 5.65E-42 class) family Disease resistance protein (TIR-NBS-LRR AT3G04220 4.8 1.52E-08 class) family Similar to part of disease resistance AT1G72920 4.3 1.41E-15 protein Disease resistance protein RPP1-WsB, AT1G57630 4.3 1.46E-04 putative Disease resistance protein (TIR-NBS-LRR AT1G56540 3.9 1.62E-11 class) family Disease resistance protein (TIR-NBS-LRR AT3G44630 9.70E-104 class) family 3.9 AT1G56510 3.9 8.21E-75 ADR2 Disease resistance protein ADR2 AT1G72940 1.46E-36 At1g72940/F3N23 14 3.7 Disease resistance protein (TIR-NBS-LRR AT4G16960 class) family 3.6 1.53E-31 3.4 2.85E-11 AT3G04210 At3g04210/T6K12_17

Table S3. TIR-domain containing genes induced by flg22 treatment for 30 min compared with untreated*.

				Disease resistance protein (TIR-NBS-LRR	
AT1G31540	3.3	2.24E-46		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT5G58120	3.3	8.42E-38		class) family	
AT5G46470	3.2	4.95E-73	RPS6	Disease resistance protein RPS6	
				Similar to part of disease resistance	
AT1G72910	3.1	1.35E-29		protein	
AT4G16860	3	7.19E-62	RPP4	Disease resistance protein RPP4	
AT1G72930	2.7	5.91E-48	TIR	Toll/interleukin-1 receptor-like protein	
				Disease resistance protein (TIR-NBS-LRR	
AT5G46510	2.7	1.22E-33		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT4G16940	2.5	1.31E-07		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT5G46520	2.4	5.56E-17		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT5G40910	2.4	1.88E-31		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT3G44400	2.3	3.00E-04		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT1G56520	2.2	3.45E-08		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT1G17600	2.1	2.21E-02		class) family	
AT5G45070	2	3.02E-02	PP2A8	Protein PHLOEM PROTEIN 2-LIKE A8	
				Disease resistance protein (TIR-NBS-LRR	
AT5G11250	2	8.32E-06		class)	
				Disease resistance protein (TIR-NBS-LRR	
AT2G16870	1.9	9.09E-02		class) family	
				Disease resistance protein (TIR-NBS-LRR	
AT5G41550	1.9	2.70E-01		class) family	
AT5G44870	1.9	1.07E-10	LAZ5	Disease resistance protein LAZ5	
				Disease resistance protein (TIR-NBS-LRR	
AT4G16890	1.8	2.93E-22	SNC1	class), putative	
				Disease resistance protein (TIR-NBS-LRR	
AT3G44480	1.7	5.62E-17	RPP1	class) family	
				Disease resistance protein (TIR-NBS	
AT1G72950	1.7	6.74E-01		class)	
				Disease resistance protein (TIR-NBS-LRR	
AT1G63740	1.7	3.23E-02		class) family	

*subset directly from Li et al., 2015 Cell Host and Microbe. DOI:10.1016/j.chom.2014.10.018

Table S4. Sequences of primers used in this study.

Primer	5'-3' sequence	purpose
PCRK1-F	GAAGTGAATGCAGAACTTAC	genotyping
PCRK1-R	GAGAATCGCCCAAGATGCAG	genotyping
PCRK2-F	TTGGTGATCTTAAATCTGCC	genotyping
PCRK2-R	ACCAAGTTTGAATGCTCGAC	genotyping
PBL19-F	TCCATCAAAATTCCACTGGTT	genotyping
PBL19-R	AACCAAAAGCCTCTCGATCC	genotyping
EDS1-DelPCR-F	AGAACGTAAGACAGGGTTTG	genotyping
EDS1-DelPCR-R	GATGGAGTCTATATTAAAGAGACG	genotyping
EDS1-Pres-F	ACAAGCCAAAGTGTCAAGCC	genotyping
EDS1-Pres-R	CAAGCATCCCTTCTAATGTC	genotyping
Actin1-F	CGATGAAGCTCAATCCAAACGA	RT-PCR
Actin1-R	CAGAGTCGAGCACAATACCG	RT-PCR
SARD1-RT-F	TCAAGGCGTTGTGGTTTGTG	RT-PCR
SARD1-RT-R	CGTCAACGACGGATAGTTTC	RT-PCR
FMO1-RT-F	TGCCTTTATACAGGGGAACA	RT-PCR
FMO1-RT-R	TGGAAATGCAATGACGTTTG	RT-PCR
EDS1-BsF	ATATATGGTCTCGATTGCTAACCGAGCGCTATCACAGTT	pHEE401E
EDS1-F0	TGCTAACCGAGCGCTATCACAGTTTTAGAGCTAGAAATAGC	pHEE401E
EDS1-R0	AACAAGGGAGATGTATTCTCCGCAATCTCTTAGTCGACTCTAC	pHEE401E
EDS1-BsR	ATTATTGGTCTCGAAACAAGGGAGATGTATTCTCCGC	pHEE401E
PBL20-DT1-BsF0	ATATATGGTCTCGATTGCCAAAATCCAGAGGAAATAGTTTTAGAGCTAGAAATAG	pHEE401E
PBL20-DT2-BsR0	ATTATTGGTCTCGAAACTAGCAATTGGATACTTATTCAATCTCTTAGTCGACTCTA	pHEE401E
PCRK2-Kpn1-F	CCGGGGTACCATGAAATGCTTCTTATTCCCTCT	pBASTA-35S-3FLA G

PCRK2-spe1-R	AAAGAATGTGAGAGCTTGTACTAGTAGGCCTAGA	pBASTA-35S-3FLA G
PBL19-Kpn1-F	CCGGGGTACCATGAACTGTCTGTTCTTGTTC	pBASTA-35S-3FLA G
PBL19-BamH1-R	GGCCGGATCCTCCTCTGACACTAACCCCT	pBASTA-35S-3FLA G
ADR1-KpnI-F	GCGCGGTACCATGGCTTCGTTCATAGATC	pBASTA-35S-3FLA G
ADR1-Sall-R	CGCGTCGACTAATCGTCAAGCCAATCC	pBASTA-35S-3FLA G
EDS1-KpnI-F	CGGGGTACCATGGCGTTTGAAGCTCTTAC	Pcambia1305-FLA G-ZZ
EDS1-Xbal-R	CCGCCGTCTAGAGGTATCTGTTATTTCATCCATC	Pcambia1305-FLA G-ZZ
PAD4-KpnI-F	CGGGGTACCATGGACGATTGTCGATTCGAG	Pcambia1305-FLA G-ZZ
PAD4-BamHI-R	CGCGGATCCAGTCTCCATTGCGTCACTCTC	Pcambia1305-FLA G-ZZ