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Abstract 

Across a species range, spatially-varying environments can drive the evolution of local 

adaptation. Multiples sources of environmental heterogeneity, at small and large scales, draw 

complex landscapes of selection which may challenge adaptation, particularly when gene flow 

is high. Because linkage opposes gene flow but also limits the efficiency of natural selection 

by contrasting pressures, the key to multidimensional adaptation may reside in the 

heterogeneity of recombination along the genome. Structural variants like chromosomal 

inversions are important recombination modifiers that form massive co-segregating genomic 

blocks linking together alleles at numerous genes. In this study, we investigate the influence 

of chromosomal rearrangements on genetic variation to ask how their contribution to 

adaptation with gene flow varies across geographic scales. We sampled the seaweed fly 

Coelopa frigida along a bioclimatic gradient of 10° of latitude, a salinity gradient and across a 

range of heterogeneous, patchy habitats. We assembled a high-quality genome to analyse 

1,446 low-coverage whole-genome sequences, and we found large non-recombining genomic 

regions, including putative inversions. In contrast to the collinear regions depicting extensive 

gene flow, inversions and low-recombining regions differentiated populations more strongly, 

either along an ecogeographic cline or at a fine-grained scale. Those genomic regions were 

disproportionately involved in associations with environmental factors and adaptive 

phenotypes, albeit with contrasting patterns between the different recombination modifiers. 

Altogether, our results highlight the importance of recombination in shaping the selection-

migration balance and show that a set of several inversions behave as modular cassettes 

facilitating adaptation to environmental heterogeneity at local and large scales. 
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Introduction 

Environmental variation is widespread and, across its range, a species experiences variable 

conditions across both small and large geographic scales. With various sources and various 

scales of environmental heterogeneity, local adaptation is a complex process driven by 

multiple dimensions of selection but constrained by the distribution of genetic diversity within 

the genome and the intensity of gene flow acting on it (Savolainen et al. 2013; Tigano and 

Friesen 2016). Gene flow is also a multifarious factor depending not only on connectivity, 

which varies across geographical scales, but also genomic recombination, which varies along 

the genome (Tigano and Friesen 2016; Semenov et al. 2019). Recombination determines 

whether alleles at nearby loci remain co-associated or are shuffled to different genomic 

combinations from one generation to the other; and thus whether selection and drift act on 

long haplotypes composed of several loci or on shorter fragments (Samuk et al. 2017; Martin 

et al. 2019; Semenov et al. 2019). Hence, the landscape of recombination influences adaptive 

trajectories since a linked genetic architecture is predicted to favor adaptation in a context of 

high gene flow (Yeaman 2013) while independent groups of genes may be necessary to adapt 

to several axes of environmental variation (Lotterhos et al. 2018). Accordingly, the relative 

scale of connectivity and environmental variation shapes the distribution of genetic variation 

across a species’ range from widespread to spatially structured polymorphism (Tigano and 

Friesen 2016; McDonald and Yeaman 2018). However, while patterns of genetic diversity and 

divergence are generally heterogeneous along the genome, it is yet unclear to what extent 

such heterogeneity relates to variability in recombination landscape (Ortiz‐Barrientos and 

James 2017; Stevison and McGaugh 2020).  

Chromosomal inversions are major modifiers of the recombination landscape because 

recombination is reduced in heterozygotes bearing a derived and ancestral arrangement 

(Hoffmann et al. 2004). Furthermore, they modify recombination along large fractions of the 

genome since the same species can have multiple polymorphic inversions, each of them 

covering hundreds of kilobases or megabases (Wellenreuther and Bernatchez 2018). For 

instance, five polymorphic inversions are shared worldwide in Drosophila melanogaster 

(Kapun and Flatt 2019) and the maize (Zea mays) bear an inversion of 100Mb (Fang et al. 

2012). The last decade has shown that such inversion polymorphisms are more common than 

previously thought in a wide range of species and has brought important insights into the role 

of inversions in shaping adaptive variation (reviewed in (Hoffmann and Rieseberg 2008; 

Wellenreuther and Bernatchez 2018; Mérot, Oomen, et al. 2020). Inversions with large-effect 

on complex multi-trait phenotypes, such as life-history, behaviour, and colour patterns, 

confirm that arrangements can behave as alleles of a “supergene”, linking together 

combinations of alleles within each arrangement (Joron et al. 2011; Schwander et al. 2014; 

Kirubakaran et al. 2016; Wellenreuther and Bernatchez 2018; Yan et al. 2020). Likewise, 

covariation between inversion frequencies and environmental variables (Kapun et al. 2016; 

Kirubakaran et al. 2016; Faria, Chaube, et al. 2019; Huang and Rieseberg 2020) support the 

prediction that locally-adaptive loci clustered within an inversion is a favourable architecture 

for adaptation with gene flow (Kirkpatrick and Barton 2006; Yeaman 2013). However, most of 
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our knowledge about large inversions remains restricted to a few classic examples found by 

contrasting strikingly-different phenotypes or ecotypes and is hence limited to a subset of 

adaptive inversions along one dimension of selection (Joron et al. 2011; Lindtke et al. 2017; 

Wellenreuther and Bernatchez 2018; Faria, Chaube, et al. 2019; Mérot, Oomen, et al. 2020). 

Contrary to smaller structural variants which are increasingly catalogued by naive 

bioinformatic approaches (Ho et al. 2019), very few studies have finely scanned genomes to 

search for large chromosomal rearrangements without a priori grouping (but see (Huang et 

al. 2020; Todesco et al. 2020). Such a bottom-up approach is now needed to document the 

diversity of structural polymorphism and to integrate multiple large rearrangements in 

population genomics (Mérot, Oomen, et al. 2020). This will help to make sense of 

heterogeneous effects from drift, migration, and selection on genetic variation along the 

genome, as well as to understand the role of inversions in adaptation at multiple scales and 

to multiples sources of environmental variation. 

 

Coelopa frigida is a seaweed fly that inhabits piles of rotting seaweed, so-called wrackbeds, 

on the coasts of the Northern Atlantic (Fig. 1). It provides an exemplar system to investigate 

how several chromosomal inversions contribute to genetic variation across space and 

environments at different scales. C. frigida is known to harbour one large inversion on 

chromosome I (hereafter called Cf-Inv(1)) that is polymorphic in Europe and America (Butlin, 

Collins, et al. 1982; Mérot et al. 2018), as well as four additional large polymorphic inversions 

described in one British population (Aziz 1975). The largest of these inversions is Cf-Inv(1), 

encapsulates 10% of the genome and has two arrangements: α and β. These alternative Cf-

Inv(1) arrangements have opposing effects on body size, fertility and development time, a 

combination of traits which results in different fitness depending on the local characteristics 

of the wrackbed (Butlin, Read, et al. 1982; Day et al. 1983; Butlin and Day 1985; Edward and 

Gilburn 2013; Wellenreuther et al. 2017; Berdan et al. 2018; Mérot et al. 2018; Mérot, 

Llaurens, et al. 2020). Almost nothing is known about the other inversions but, given that a 

large fraction of the C. frigida genome is impacted by polymorphic inversions, one can expect 

that these rearrangements play a significant role in structuring genetic variation and in 

enabling local adaptation. Spatial genetic structure and connectivity in C. frigida remain 

poorly-described although occasional long-distance migration bursts have been documented 

and regular dispersal is expected between nearby subpopulations occupying discrete patches 

of wrackbed (Egglishaw 1960; Dobson 1974). Coelopa frigida occupies a wide climatic range, 

being present from temperate to subarctic zones; it occurs along salinity gradients in the Baltic 

or St Lawrence R. Estuary, and also copes with variability in the quality and the composition 

of its wrackbed habitat (Egglishaw 1960; Dobson 1974). Coelopa frigida thus faces several 

sources of habitat heterogeneity, varying at both large and local scales, for which, depending 

on the scale of dispersal, a tightened genomic architecture may be favourable. 

 

In the present study, we investigated how chromosomal inversions contribute to local 

adaptation across different scales of environmental heterogeneity, and how such 
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recombination modifiers shape the distribution of genetic diversity. To address this issue, 

using the seaweed fly Coleopa frigida as a biological model, we strived to adopt a systematic 

approach for localizing multiple chromosomal rearrangements, and we analysed genetic 

variation across several dimensions of environmental variation including a 1,500 km climatic 

gradient, a salinity gradient, and fine-scale, patchy habitat variation. We built the first 

reference genome assembly for C. frigida and leveraged the power derived from whole-

genome sequencing of 1,446 flies. First, we analysed patterns of genetic polymorphism along 

the genome to identify putative recombination modifiers such as inversions. We expected to 

find several megabase-wide regions characterized by high linkage disequilibrium and strong 

differentiation between haplotypic clusters. Second, we examined the geographic genetic 

structure to assess the scale of connectivity across the landscape covered by our study. We 

tested the hypothesis that this species is characterised by high gene flow possibly opposed by 

recombination suppression, spatially-varying selection, and their interaction. Third, we tested 

genotype-environment and genotype-phenotype associations to ask what is the genetic 

architecture underlying adaptation to various sources of environmental variation acting at 

different geographic scales. We tested the prediction that recombination modifiers represent 

modular cassettes of adaptation with gene flow and uncovered contrasted dynamics between 

the different inversions, related to the modularity and geographic scale of adaptation. 

 

 
Figure 1: Coelopa frigida sampling across an environmental gradient 
Map of the 16 sampling sites, coloured by geographic region. The background of the map displays the gradient 
of annual mean air temperature. The insert shows the location of the study area at a wider scale. Photos show 
Coelopa frigida and its habitat of seaweed beds. 
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Results 

To facilitate the analysis of large chromosomal rearrangements and genome-wide variation, 

we built the first reference genome assembly for Coelopa frigida using a combination of long-

read sequencing (PacBio) and linked-reads from 10xGenomics technology. A high-density 

linkage map (28,639 markers segregating across 6 linkage groups) allowed us to anchor and 

orientate more than 81% of the genome into 5 large chromosomes (LG1, LG2, LG3, LG4, LG5) 

and one small sex chromosome (LG6). This karyotype was consistent with previous 

cytogenetic work on C. frigida (Aziz 1975) and with the ancestral state in Diptera (Vicoso and 

Bachtrog 2015; Schaeffer 2018). The final assembly produced 6 chromosomes and 1832 

unanchored scaffolds with a N50 of 37.7 Mb for a total genome size of 239.7 Mb. This 

reference had a high level of completeness, with 96% (metazoa) and 92% (arthropods) of 

universal single-copy orthologous genes completely assembled. It was annotated with a highly 

complete transcriptome (87% complete BUSCOs in the arthropods) based on RNA-sequencing 

of several ontogenetic stages and including 35,999 transcripts. 

To analyse genomic variation at the population-scale, we used low-coverage (~1.4X) whole-

genome sequencing of 1,446 flies from 16 locations along the North American Atlantic coast 

(88-94 adult flies/location). Sampled locations spanned a North-South gradient of 1,500km, 

over 10° of latitude, a pronounced salinity gradient in the St Lawrence Estuary, and a range of 

habitats with variable seaweed composition and wrackbed characteristics (Fig. 1, Table S1). 

After alignment of the 1,446 sequenced individuals to the reference genome, we filtered for 

quality and coverage and reported 2.83 million single-nucleotide polymorphisms (SNPs) with 

minor allelic frequency (MAF) higher than 5% for differentiation analyses.  

 

 Two large chromosomal inversions structure intraspecific genetic variation 

Decomposing whole-genome variation through a principal component analysis (PCA) revealed 

that the 1st and 2nd principal components (PCs) contained a large fraction of genetic variance, 

respectively 21.6 % and 3.9 %, and partitioned the 1,446 flies into 9 discrete groups (Fig 2A). 

Along PC1, the three groups corresponded to three genotypes of the inversion Cf-Inv(1) (αα, 

αβ, ββ), as identified with two diagnostic SNPs (Mérot et al. 2018) with respectively 100% and 

98.3% concordance (Table S2). Along PC2, three distinct groups were identified that 

corresponded neither to sex nor geographic origins, and thus possibly represented three 

genotypes for another polymorphic inversion. 

Admixture and clustering analyses supported the same strong structure as seen in the PCA 

(Fig. 2B). The two major genetic groups corresponded to the homokaryotypes of Cf-Inv(1) (αα 

and ββ), and the admixed individuals to the heterokaryotypes αβ. When increasing the 

number of genetic groups (K=4), we detected two additional genetic groups corresponding to 

the extreme clusters on PC2, with admixed individuals being the intermediate group.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2020. ; https://doi.org/10.1101/2020.12.28.424584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.28.424584


6 
 

 

Figure 2: Two large chromosomal inversions structure within-species genetic variability 
(A) Principal component analysis (PCA) of whole-genome variation. Individuals are coloured by karyotypes at the 
inversion Cf-Inv(1), as determined previously with a SNP marker (Mérot et al. 2018). Ellipse indicates secondary 
grouping along PC2. (B) Analyses of population structure and admixture based on Bayesian clustering with K=2 
clusters and K=4 clusters. Each column represents the individual probability of belonging to a given cluster. 
Individuals are ordered based on their karyotype at Cf-Inv(1), and then based on karyotype at Cf-Inv(4.1) inferred 
from PC2 scores. (C) Along the genome, correlation between PC1 scores of local PCAs performed on windows of 
100SNPs and PC1 scores of the PCA performed on the whole genome; FST differentiation between the two 
homokaryotypes of Cf-Inv(1) in sliding-windows of 25kb; and observed heterozygosity in the three karyotypic 
groups of Cf-Inv(1) smoothened for visualization. Dashed lines represent the inferred boundaries of the inversion 
Cf-Inv(1) (D) Linkage disequilibrium (LD) in LG1. The upper triangle includes all individuals and the lower triangle 
include homokaryotes for the most common arrangement. Bars represent the position of the inversion. (E) 
Correlation between PC1 scores of local PCAs performed on windows of 100SNPs and PC2 scores of the PCA 
performed on the whole genome; FST differentiation between the two homokaryotypes of Cf-Inv(4.1) in sliding- 
windows of 25kb; and observed heterozygosity in the three karyotypic groups of Cf-Inv(4.1) smoothened for 
visualization. Dashed lines represent the inferred boundaries of the inversion Cf-Inv(4.1) (F) Linkage 
disequilibrium (LD) in LG4. In both LD plots, the colour scale shows the 2nd higher percentile of the R² value 
between SNPs summarized by windows of 250kb.  
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To assess which regions of the genome reflected the patterns observed in the global PCA, we 

performed local PCA on windows of 100 SNPs along all the genome and evaluated the 

correlation between PC1 scores of each local PCA and PCs scores of the global PCA (Fig. 2C). 

PC1 was highly-correlated with a region of 25.1 Mb on LG 1, indicating the genomic position 

of the large Cf-Inv(1) inversion (Table 1). PC2 was highly correlated with a smaller region of 

6.9 Mb on LG4 (Fig. 2G), consistent with the hypothesis of an inversion, hereafter called Cf-

Inv(4.1). 

The two regions Cf-Inv(1) and Cf-Inv(4.1) presented several other characteristics typical of 

large polymorphic inversions with non-recombining haplotypic arrangements. First, 

differentiation was very high in the inverted region (Fig. 2D-F), reaching FST values up to 1 

between the two homokaryotypes, and intermediate between the heterokaryotypes and 

homokaryotypes (Fig. S1). Almost no differentiation was observed between the karyotypes 

outside the inverted region. Second, the intermediate group on the PCA (heterokaryotypes) 

was characterized by high heterozygosity for all SNPs in the inverted region while extreme 

groups (homokaryotypes) showed a lack of heterozygosity (Fig 2E-G). Third, throughout the 

inverted region, linkage disequilibrium (LD) was very high when considering all individuals, but 

low within each group of homokaryotypes (Fig 2H-I), meaning that recombination is limited 

between the arrangements but occurs freely in homokaryotypes bearing the same 

arrangement.  

 

 C. frigida exhibit other regions affected by recombination modifiers including 

putative chromosomal rearrangements  

Looking for other putative polymorphic inversions, we re-analysed the local PCA performed 

along the genome and used a method based on multidimensional scaling (MDS) to identify 

clusters of PCA windows displaying a similar pattern (Li and Ralph 2019; Huang et al. 2020). 

Besides the aforementioned Cf-Inv(1) and Cf-Inv(4.1) inversions, that drove the 1st and 2nd axis 

of the MDS, we identified five outlier genomic regions across the different MDS axes (Fig.3, 

Fig. S2). In all five regions, a large proportion of variance was captured along the 1st PC (>50%), 

and linkage disequilibrium was high (Fig. 3A-B).  

Two regions on LG4 represented convincing putative inversions of 2.7Mb and 1.4Mb, 

respectively. In both regions, the PCA displayed three groups of individuals with high 

clustering confidence, the central group was highly-heterozygous and the extreme groups 

were very divergent (Fig. 3E, Fig. S3). Genetic diversity was also higher or at the same level as 

the rest of the genome (pi > 0.01, Fig. S4). Karyotype assignment was the same between the 

two putative inversions, indicating that they are either tightly-linked or belong to a single 

inversion. The hypothesis of two linked inversions seemed more plausible because the high 

density of linkage map markers and the non-null recombination rate across this area of 50 cM 

provided confidence in the genome assembly and supported a gap of 5 Mb between them. 

Moreover, previous cytogenetic work showed that one chromosome of C. frigida exhibits a 
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polymorphic inversion on one arm (possibly Cf-Inv(4.1)) and, on the other arm, two 

polymorphic inversions which rarely recombine (Aziz 1975). Both inversions were 

subsequently analysed together and called Cf-Inv(4.2) and Cf-Inv(4.3).  

The other three regions, spanning 6.8 Mb on LG2, 6.3 Mb on LG3 and 16.7 Mb on LG5, 

represented complex areas that behaved differently than the rest of the genome. 

Recombination was locally reduced, both in the linkage map and in wild populations, as 

indicated by the linkage disequilibrium (Fig. 3A-C). Those regions included several clusters of 

outlier windows, supporting non-recombining haplotypic blocks of medium size (<1Mb or < 

10 000 SNPs) that appeared partially linked (Fig. S5-S7). These blocks, characterised by high 

diversity, were interspersed by regions of low diversity (Fig. S4). Hence, while the whole area 

or some clusters may correspond to structural rearrangements, possibly nested, complex or 

misassembled, we conservatively chose, in the absence of more information, to consider 

those three portions of the genome as “low-recombining regions”.  

Accordingly, the fraction of the genome subsequently called “collinear” excluded the seven 

regions identified as “recombination modifiers”, the four inversions (Cf-Inv(1), Cf-Inv(4.1), and 

the linked Cf-Inv(4.2) Cf-Inv(4.3)) as well as the three low-recombining regions (subsequently 

called Cf-Lrr(2), Cf-Lrr(3), Cf-Lrr(5))  

 

Table 1: Name, position and characteristics of the putative inversions and regions appearing as 
cluster of outlier windows in the local PCA analysis. 
PC1 var. indicate the variance explained by a PCA run on SNPs within the target region, and Sum of 
squares (bet/tot) indicates the proportions of between-cluster sum of squares in k-means clustering. 

Name Status Chr. start stop size 

(MB) 

Number 

of SNPs 

PC1 

var. 

(%) 

Sum of 

Squares 

(bet/tot) 

Cf-Inv(1) Known inversion LG1 8342182 33487673 25.1 441000 75 0.99 

Cf-Inv(4.1) Probable inversion LG4 1088816 7995568 6.9 137700 57 0.99 

Cf-Inv(4.2) Probably two linked 

inversions 

LG4 22421881 25145365 2.7 17300 23 0.95 

Cf-Inv(4.3) LG4 30622035 31991919 1.4 23100 28 0.99 

Cf-Lrr(2) Low-recombination region LG2 14083320 20869940 6.8 41000 17 0.88 

Cf-Lrr(3) Low-recombination region LG3 7486933 13829649 6.3 38600 27 0.92 

Cf-Lrr(5) Low-recombination region LG5 15940464 32665323 16.7 134400 13 0.82 
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Figure 3: Detecting other regions affected by recombination modifiers  
(A) LD across the 5 major chromosomes expressed as the 2nd higher percentile of the R² value between SNPs 
summarized by windows of 1Mb. (B) Proportion of variance explained by the 1st PC in local PCAs performed on 
windows of 100 SNPs along the genome, average by sliding-windows of 100kb (step 20kb). (C) Recombination 
rate (in cM/Mb) inferred from the linkage map, smoothened with a loess function accounting for 10% of the 
markers. (D) Position along the genome of clusters of local PCA windows scored as outliers (>4sd) along each axis 
of the MDS, at the upper end in black, and the lower end in grey. Coloured rectangles indicate the position of the 
inversions and the regions of interest gathering outlier clusters or putative inversions. Dashed lines represent 
their inferred boundaries across all plots. (E) PCA performed on SNPs within each region of interest. For the two 
regions on LG4 that appear as two linked putative inversions (Cf-Inv(4.2) and Cf-Inv(4.3)), three clusters were 
identified with high-confidence and coloured as putative homokaryotes and heterokaryotes. The same colours 
are used in both regions since karyotyping was consistent across all individuals. 

 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2020. ; https://doi.org/10.1101/2020.12.28.424584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.28.424584


10 
 

 Geographic genetic structure show contrasting signals within inversions and low-

recombining regions 

Geography also played a major role in structuring genetic variation. On the PCA, the 3rd PC, 

which explained 1.4% of variance, spread genetic variation between individuals along the 

North-South gradient (Fig. 4A). Differentiation between pairs of populations, measured as FST 

on a subset of LD-pruned SNPs, also followed the North-South gradient but was globally weak 

(FST = 0.003 to 0.016, Fig. 4B)), corresponding to an estimation of about 15 to 80 Nem 

(migrants) per generation. Gene flow was even more pronounced at small scale, as we 

detected a strong signal of Isolation-By-Distance (IBD) when examining the correlation 

between genetic distances and Euclidean distances among the 16 populations (R²=0.45, F=97, 

p<0.001, Table S3). We also highlighted a pattern of Isolation-By-Resistance (IBR) since the 

model including least-cost distances along the shoreline (R²=0.63, F=199, p<0.001, Table 2) 

was better supported by the data than the model including Euclidean distances (ΔAIC=47, 

Table S3).  

These IBD and IBR patterns varied significantly along the genome indicating a strong role for 

recombination in modulating them. When considering all SNPs, pairwise differentiation was 

more heterogeneous (FST=0.002 to 0.021, Fig. 4B) and IBR was much weaker, albeit significant 

(R²=0.19, F=29, p<0.001) than when considering LD-pruned SNPs or collinear SNPs. We thus 

calculated pairwise FST between pairs of populations based on different subsets of SNPs, either 

from each recombination modifier or from the collinear genome.  

While all recombination modifiers affected the geographic distribution of polymorphism they 

did so in different ways. The inversions were the most differentiated genomic regions 

between populations in comparison to the collinear genome (Table S3, Fig. S8). Within the Cf-

Inv(1) inversion, there was no association between genetic and geographic distances (Fig. 4C, 

Table 2). In contrast with the collinear genome, genetic differentiation within the inversion Cf-

Inv(1) was very variable both between nearby or distant populations. Conversely, variation 

within the LG4 inversions showed significant IBD/IBR patterns with a slope of correlation 

between genetic and geographic distances significantly steeper than in collinear regions (Fig. 

4C-D, Table 2, Table S4, Fig. S9). The strong divergence between northern and southern 

populations was mirrored by a sharp latitudinal cline of inversion frequencies, ranging from 

0.27 to 0.75 for Cf-Inv(4.1) and from 0.02 to 0.26 for Cf-Inv(4.2/4.3), much steeper than 

random SNPs with similar average frequency (Fig 4E, Fig. S10). Within the three low-

recombining regions, we also observed significant IBD/IBR. Compared to collinear regions of 

the same size, the slope of the correlation between genetic and geographic distances was 

significantly steeper for Cf-Lrr(2) and Cf-Lrr(5) but not for Cf-Lrr(3) (Fig. 4D, Table 2, Table S4, 

Fig. S9). Overall, the different recombination modifiers showed significantly different patterns, 

indicating that genetic differentiation was modulated by processes other than the migration-

drift balance, possibly at different geographic scales for Cf-In(1R) vs. the other modifiers. 
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Table 2: Association between genetic distance and geographic distances measured as least-cost 
distances along the shoreline (Isolation-by-resistance) for the different fractions of the genome. 
Numbers between brackets indicate the limits of the 95% distribution of the slope coefficient. The 
comparison to collinear regions displays the output of a full model comparing each region to the 
collinear genome, providing the direction and the significance (*) of the interaction term. 

SNP subset R² adjusted F p-value intercept slope coefficient Comparison 

All 0.19 29.3 <0.001 0.0085 0.0020 [0.0013-0.0027]  

Collinear 0.54 138.6 <0.001 0.0062 0.0019 [0.0015-0.0022]  

LD pruned 0.63 199.5 <0.001 0.0057 0.0021 [0.0018-0.0024]  

Cf-Inv(1) -0.01 0.3 0.59 0.0137 -0.0006 [-0.0032-0.0018] - * 

Cf-Inv(4.1) 0.29 49.4 <0.001 0.0172 0.0134 [0.0096-0.0172] + * 

Cf-Inv(4.2/4.3) 0.50 121.5 <0.001 0.0075 0.0030 [0.0025-0.0036] + * 

Cf-Lrr(2) 0.44 95.4 <0.001 0.0074 0.0028 [0.0023-0.0034] + * 

Cf-Lrr(3) 0.49 113.1 <0.001 0.0066 0.0019 [0.0016-0.0023] n.s. 

Cf-Lrr(5) 0.55 147.2 <0.001 0.0080 0.0033 [0.0028-0.0038] + * 

 

 

Figure 4: Genetic variation is geographically structured along a North-South gradient and display 
isolation-by-distance  
(A)  3rd and 4th principal component of a PCA on whole-genome variation. Individuals are coloured by their 
geographic region, as on figure 1 (B) Pairwise FST between all population pairs, ordered by proximity from North 
to South and coloured by geographic regions. The values above main diagonal shows FST based on LD-pruned 
SNPs and those below main diagonal show FST based on all SNPs (C-D) Isolation by distance/Isolation by 
resistance displayed as the association between genetic distance (FST/(1-FST) and the distance by the least-cost 
path following the coast. Colours denote the subset of SNPs used for the calculation of the FST. The results are 
displayed in two panels with different y scale to better display the lower values. (E) Latitudinal variation of 
inversion frequencies. 
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 Putative adaptive diversity co-localizes with regions affected by recombination 

modifiers 

To investigate patterns of adaptive variation C. frigida, we analyzed the association between 

SNP frequencies and environmental variables at local (abiotic and biotic characteristics of the 

wrackbed habitat) and large (thermal latitudinal gradient and salinity gradient in the St. 

Lawrence R. Estuary) spatial scales (Fig. 1, Fig. S11, Table S1). Analyses with two different GEA 

methods (latent factor mixed models and Bayesian models) showed consistent results 

highlighting high peaks of environmental associations and large clusters of outlier SNPs within 

the inversions or low-recombining regions, yet varying between the different environmental 

factors and spatial scales (Fig. 5A-E, Table 3, Table S5, Fig. S12-13). We considered SNPs 

consistently identified across analyses to be putatively adaptive. 

At a large geographic scale, association with climatic variation along the latitudinal gradient 

showed a strong excess of outlier SNPs in the four inversions and the low-recombining regions 

of LG2 and LG5. Those regions exhibited particularly strong peaks of association (BF >50, Fig. 

5A) and 2 to 5 times more outliers than expected by chance (Table 3). However, this was not 

the case for Cf-Lrr(3). These results were consistent whether or not the model was controlled 

by the geographic population structure (Fig. S12-S13). Association with thermal variation only 

(without accounting for precipitation) was extremely strong in inversion Cf-Inv(4.1) which 

contained 36% of outliers (odds ratio of 7, Fig. S14). Variation along the salinity gradient, which 

also spanned variation in tidal amplitude, was significantly associated with a more limited 

number of SNPs but a large excess of such outliers were found in Cf-Lrr(3) and Cf-Lrr(5) (Tab.3).  

Table 3: Genomic repartition of candidate SNPs associated with environmental variables  

Repartition of the candidate SNPs associated with each environmental variation using the 

combination of two GEA methods. N is the number of outliers SNPs within a given region, % 

is the proportion of the outliers found in this region and OR indicate the odd-ratio. Values in 

bold with a star indicate significant excess of candidate SNPs in a Fisher exact test. Results 

obtained for each GEA method are presented in Table SX. 

 
Tested SNPs Climate Salinity 

Bed abiotic 

characteristics 

Algal composition 

(PC1: 

Laminaria/Fucus) 

Algal composition 

(PC2) 

 N % N % OR N % OR N % OR N % OR N % OR 

All 1155978  3635   
509   

780   
372   

2740   

Collinear 814279 70% 556 15% 0.2 301 59% 0.8 163 21% 0.3 254 68% 1.0 390 14% 0.2 

Cf-Inv 

(1)  176963 15% 1474 41% 2.6* 64 13% 0.8 584 75% 4.9* 77 21% 1.4* 1494 55% 3.6* 

Cf-Inv 

(4.1)  57323 5.0% 480 13% 2.7* 15 2.9% 0.6 11 1.4% 0.3 14 3.8% 0.8 33 1.2% 0.2 

Cf-Inv 

(4.2/4.3)  17019 1.5% 111 3.1% 2.1* 8 1.6% 1.1 8 1.0% 0.7 3 0.8% 0.5 26 0.9% 0.6 

Cf-Lrr(2) 20458 1.8% 93 2.6% 1.4* 6 1.2% 0.7 9 1.2% 0.7 3 0.8% 0.5 15 0.5% 0.3 

Cf-Lrr(3) 16313 1.4% 11 0.3% 0.2 28 5.5% 3.9* 0 0.0% 0.0 3 0.8% 0.6 7 0.3% 0.2 

Cf-Lrr(5) 53623 4.6% 910 25% 5.4* 87 17% 3.7* 5 0.6% 0.1 18 4.8% 1.0 775 28% 6.1* 
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At finer geographic scale, outlier SNPs associated with wrackbed abiotic characteristics (depth, 

temperature and salinity) were strongly enriched within the inversion Cf-Inv(1) with an odds-

ratio of 5, including outliers with very strong support (BF >20, Fig. 4C). No other recombination 

modifiers showed such enrichment or association with wrackbed abiotic characteristics. 

Variation in algal composition of the wrackbed, driven by the relative abundance of two 

dominant seaweeds, Fucaceae or Laminariaceae, was significantly associated with outliers 

SNPs quite widespread in the genome although they were overrepresented in the inversion 

Cf-Inv(1) by an odds-ratio of 1.4. Variation in secondary components of the substrate were 

more difficult to interpret as they co-varied with latitude and temperature (Fig. S11), but it 

was also associated with a large number of SNPs in the inversion Cf-Inv(1) and in Cf-Lrr(5) with 

odds-ratio of 3.6 to 6 (Fig. 5E). 

 

Figure 5: Environmental and phenotypic associations 
Candidate SNPs associated with (A) climatic variation along the North-South gradient, (B) salinity variation along 
the Estuarian gradient, (C) variations in abiotic characteristics of the wrackbed habitat, (E-F) variation in 
wrackbed algal composition. The manhattan plot shows the Bayesian factor from the environmental association 
analysis performed in Baypass, controlling for population structure. (G) Candidate SNPs associated with wing 
size. The manhattan plot shows the pvalues from the GWAS. Points are coloured according to false-discovery 
rate (black: <0.00001, red: <0.0001, orange: <0.001). Dashed lines represent the inferred boundaries of all 
regions affected by recombination modifiers. 
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 Genotype-phenotype association 

Variation in wing size (a proxy for body size) was strongly associated to the inversion Cf-Inv(1) 

using GWAS. Among the 124,701 candidate SNPs identified by the GWAS, more than 99.8% 

were located within the inverted region (Fig. 5F). In contrast, when running the same analysis 

on each group of homokaryotypes, we found almost no candidate SNPs associated with size 

variation (0 on the group of αα, and up to 3 SNPs when lowering the FDR to p=0.01 for the 

group ββ, Fig. S15). Gene ontology analysis among the SNPs significantly associated with size 

or among the genes present in the inversion Cf-Inv(1) unveiled an enrichment in several 

biological processes (Table S6-S7) among which morphogenesis, muscle development or 

neural system development, all consistent with large differences in wing size and life-history.  

As a measure of thermal adaptation, we evaluated the recovery time after a chill coma in the 

fly progeny genotyped to build the linkage map. Cold-shock resistance localized to a QTL on 

LG4, which explained about 13% of the variation (Fig. S16). The main peak was located on LG4 

around 25-28Mb. This broad QTL encompassed multiple outliers SNPs associated with climatic 

variation, and multiple annotated genes, among them two heat-shock proteins, which may 

represent relevant candidates for thermal adaptation (Uniprot P61604 at position 25,128,992 

and P29844 at position 26,816,283). The peak was also between the two putative inversions 

Cf-Inv(4.2) and Cf-Inv(4.3), and there was a secondary peak at 8MB, around the breakpoint of 

Cf-Inv(4.1). It is noteworthy that the whole chromosome LG4 showed a high LOD value above 

2, higher than any markers on another chromosomes (Fig. S16), possibly due to non-

recombining paternal markers showing partial association with cold-shock resistance. 

Discussion 

Analysing more than a thousand whole genomes of C. frigida flies revealed that a large fraction 

of the genome is affected by recombination modifiers, including four large chromosomal 

inversions. These megabase-long stretches of the genome appear to play a predominant role 

in shaping genetic variation across two large-scale environmental gradients as well as 

heterogeneous patchy habitats. Yet, the different inversions showed contrasting patterns, 

which may be related to different selective forces acting on them since they both were 

disproportionately enriched in putatively adaptive variants strongly associated with non-

overlapping ecological factors or phenotypes. In particular, the largest inversion Cf-Inv(1) was 

associated with body size and co-varied at a fine-scale with wrackbed habitat characteristics 

while inversion on LG4 displayed clinal variation along a geo-climatic gradient. Below, we 

discuss how our results provide new insights into the evolutionary role played by 

recombination modifiers such as inversions, and how our data suggest that those regions 

represent modular cassettes for local adaptation at different geographic scales in the face of 

high gene flow. 
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 Low-coverage sequencing of a large fly dataset provides deep insights into genetic 

variation across species range and individual genomes 

Studying genetic variation across a species range is more accurate and powerful when 

sampling encompasses both fine and coarse geographical scales and multiple environmental 

conditions. When searching for signatures of adaptation or putative rearrangements an 

additional high density of genetic markers is required (Fuentes‐Pardo and Ruzzante 2017). This 

creates the need to balance effort across the number of samples, the portion of the genome 

sequenced (i.e. reduced representation or whole-genome re-sequencing), and the depth of 

sequencing. To maximise insights, we sequenced the whole genome of 1,446 wild-collected 

flies but reduced individual coverage to about 1.4X. This strategy has been used efficiently in 

few pioneer studies in human genomics (Martin et al. 2020), conservation genomics 

(Therkildsen et al. 2019) and population genomics (Clucas et al. 2019). Simulations confirmed 

that sequencing many samples at low depth (1X) provides more robust estimates of allele 

frequencies and accurate population parameters than sequencing few samples at high depth 

(Alex Buerkle and Gompert 2013), particularly so with high coverage at the population level, 

as in this study. Additionally, thanks to a low-cost barcoding library preparation (Therkildsen 

and Palumbi 2017),  individual information was retained, which allowed parameters that 

require individual information (LD, Hobs) to be accurately calculated and to perform individual 

analysis such as phenotypic associations. Importantly, allelic frequencies were also unbiased 

by a priori or unbalanced pooling as it may happen in pool-seq (Fuentes‐Pardo and Ruzzante 

2017), and any grouping could be subsequently chosen for the analyses.  

Individual whole-genome sequencing at low coverage allowed us to uncover the genetic 

structure associated with structural rearrangements in C. frigida and to analyze environmental 

parameters and phenotypes potentially associated with those rearrangements. First, the large 

sample size brought power to make the most of a recently developed method of indirect 

inversion detection (Li and Ralph 2019; Huang et al. 2020). For instance, we would likely have 

missed the inversion(s) Cf-Inv(4.2/4.3) with smaller sample size, since the rare homokaryotype 

frequency was below 2% (26/1446 individuals). Second, the extensive density of markers 

along the genome provided accurate locations for the major inversions although 

characterizing the exact breakpoints remained challenging without long-read sequencing (Ho 

et al. 2019). Third, the retention of individual information allowed us to split the dataset into 

sub-groups of karyotypes as determined from the analyses of sequences and to characterize 

LD, heterozygosity, nucleotide diversity and the differentiation within and between 

karyotypes for all inversions. In fact, unlike systems in which several inversions co-vary along 

eco-geographic gradients (Berg et al. 2017; Christmas et al. 2018; Faria, Chaube, et al. 2019; 

Huang et al. 2020), or appear to do so given the sampling or sequencing design, we observed 

independence between the different inversions in C. frigida, and found contrasting dynamics 

from a geographic and ecological point of view.  

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2020. ; https://doi.org/10.1101/2020.12.28.424584doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.28.424584


16 
 

 Polymorphic inversions structure within-species genetic diversity 

Contrary to our expectations when studying such a wide geographic area for a small insect, 

we uncovered that the major factor explaining genetic variation in C. frigida was not 

geographic distances but structural rearrangements. Despite more than 1,500km (or 3,000 km 

of coastal distance) between the most distant populations, geographic genetic differentiation 

was very weak (Maximal FST <0.02). This is much lower than other coastal specialised insects 

such as the saltmarsh beetle Pogonus chalceus (FST ~0.2, (Van Belleghem et al. 2018) but 

comparable to small Diptera with large distributions like Drosophila melanogaster or D. 

simulans which typically exhibit Fst around 0.01-0.03, likely resulting from both high migration 

rate and large effective population size Ne (Machado et al. 2016; Kapun et al. 2020). Despite 

this weak genetic structure, we detected a strong signal of isolation-by-distance indicating 

that dispersal among populations and subsequent gene flow decreases with distance. 

Furthermore, our analyses also showed that the least-cost distance of coastline better 

explained genetic variation than Euclidean distance. This isolation-by-resistance pattern likely 

results from a stepping stone dispersal process (Gandon and Rousset 1999) where the absence 

of suitable habitat patches in mainland and marine areas drives gene flow along the coastline 

and constraints genetic connectivity. 

In contrast with the overall weak geographic genetic structure, the haplotypic groups for the 

different inversions were highly differentiated, with fixed allelic differences between inverted 

sequences. For the inversion Cf-Inv(1), such genetic divergence was related to extreme body 

size differences, with αα males being three times bigger than ββ males (Butlin and Day 1985; 

Mérot et al. 2018). Such a high phenotypic and genotypic divergence between alternative 

arrangements are comparable to many other old inversions (Hoffmann and Rieseberg 2008; 

Wellenreuther and Bernatchez 2018). With a mean FST across the entire inversion of 0.27, co-

occurring αα and ββ karyotypes also appear as differentiated as closely-related species (Roux 

et al. 2016), albeit with a very different landscape of genetic differentiation. With a high level 

of genetic and phenotypic divergence, often associated to phenotypic differences, inversion 

polymorphisms thus challenge the view of species as homogeneous units. Each non-

recombining arrangement protects standing haplotypic variation that structures biological 

diversity at the intra-specific level.  

 

 Chromosomal inversions represent modular cassettes for adaptation to 

heterogeneous environments 

Across geographic and ecological gradients, inversions may contribute strongly to genetic 

differentiation and often appear as islands of differentiation (Hoffmann et al. 2004). For 

instance, in the mosquito Anopheles gambiae, genetic differentiation along a latitudinal cline 

is almost entirely concentrated in two inversions (Cheng et al. 2012). In the marine snails 

Littorina saxatilis, genetic variation between habitats is largely driven by several inverted 

regions (Morales et al. 2019). Coelopa frigida follows this trend since pairwise FST between 
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populations was higher within the inversions than within collinear regions, albeit at a different 

geographic scale for the different inversions. Along the North-South gradient, differentiation 

between populations was higher and isolation-by-distance was stronger within the inversions 

Cf-Inv(4.1) and Cf-Inv(4.2/4.3) than in collinear regions. FST based on SNPs within an inversion 

combined two levels of genetic variation because differentiation between populations was 

driven by frequency variation at each highly differentiated arrangement. Such frequencies 

showed strong latitudinal clines, resembling the clines observed for several inversions in 

Drosophila that are maintained by selection-migration balance (Kapun et al. 2016). In sharp 

contrast, the genetic differentiation within the inversion Cf-Inv(1) did not depend on 

geographic distances among populations. This pattern was related to the heterogeneous 

frequency of the α/β arrangements, which vary at a fine spatial scale but did not vary clinally. 

Yet, both the clines of Cf-Inv(4.1)/ Cf-Inv(4.2/4.3) and the heterogeneity of Cf-Inv(1) contrasted 

with the homogeneous frequency of collinear variants, supporting the hypothesis that 

ecological factors rather than the mere geographic distance determine inversion distribution, 

which subsequently modulates the genomic landscape of population differentiation at small 

and large geographic scales. 

Genotype-environment associations (GEA) suggest a potential evolutionary role of inversions 

in adaptation to ecological conditions in C. frigida. Our analyses showed that inversion 

frequencies correlated to environmental variation and candidate SNPs disproportionately 

occurred in inverted regions. Here, one question that may arise is whether GEA can be biased 

by LD and whether SNPs comprised within a given inversion are more likely to be detected as 

outliers. We avoided such artefact by following the guidelines and best practices tested with 

simulations including neutral inversions or low-recombining regions (Lotterhos 2019). 

However, it remains that genome scan analyses are more likely to detect regions with strong 

divergence that are resistant to swamping by migration, while dispersed, transient or small-

effect alleles are harder to detect (Yeaman 2015). Moreover, because of the high linkage 

within an inversion, several SNPs may not be causative but simply linked to an adaptive 

variant. Hence, the high density of outlier SNPs within inversions means neither that they are 

full of adaptive alleles, nor that they are the only variants relevant for local adaptation. 

Nevertheless, this high number of outliers combined with some of the strongest association 

statistics point to inversions as major and true candidates for adaptation to heterogeneous 

environments in C. frigida. This follows the prediction that genomic architectures like 

inversions, which can increase linkage disequilibrium between adaptive alleles, is likely to 

preserve clusters of adaptive alleles compared to regions characterized by a less-clustered 

architecture (Kirkpatrick 2010; Yeaman 2013). As such, the seaweed fly C. frigida joins an 

accumulating number of examples of species carrying ecologically-relevant inversions that are 

involved in local adaptation despite high gene flow (Joron et al. 2011; Lindtke et al. 2017; 

Wellenreuther and Bernatchez 2018; Todesco et al. 2019; Huang et al. 2020). 

In many empirical cases, when several inversions are found in the same species, they tend to 

vary along the same environmental axis. For instance, in the silverside fish Menidia menidia, 
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several inverted haploblocks covary along a latitudinal gradient (Tigano et al. 2020; Wilder et 

al. 2020). The same tendency is observed for several inversions differentiating mountain and 

plain African honeybees Apis mellifera scutellata  (Christmas et al. 2018), or dune and non-

dune ecotypes of sunflower Helianthus petiolaris (Todesco et al. 2019; Huang et al. 2020). In 

contrast, for C. frigida, we observed two contrasting evolutionary patterns: The inversion Cf-

Inv(1) was associated with wrackbed characteristics and composition which represents patchy 

habitats at a fine geographic scale. It also functions as a supergene for body size, a trait which 

is usually polygenic yet appears in C. frigida to be controlled largely, if not entirely, by this 

inversion. The ecological and phenotypic associations are consistent with previous work on 

European and American populations (Day et al. 1983; Butlin and Day 1985; Berdan et al. 2018; 

Mérot et al. 2018). They reflect how the quality, composition and depth of the wrackbed, 

possibly reflecting its stability, differently favour the opposite life-history strategies associated 

the inversion. The β arrangement provides quick growth and smaller size while the α 

arrangement provides high reproductive success linked to a larger size but at the expense of 

longer development time. This ecologically-related trade-off combined with heterozygote 

advantage results in strong balancing selection, confirmed in our data by strong heterozygote 

excess (Mérot et al. 2018; Mérot, Llaurens, et al. 2020). Conversely, the inversions Cf-Inv(4.1) 

and Cf-Inv(4.2/4.3) show no deviation from Hardy-Weinberg disequilibrium and a widespread 

polymorphism displaying geographic structure along a latitudinal cline. As Cf-Inv(4.1) and Cf-

Inv(4.2/4.3) are associated with climatic variables, located nearby a QTL for recovery after chill 

coma, we suggest that they likely play a significant role in thermal adaptation.  

       Taken together, these results support the hypothesis that these different inversions may 

favour local adaptation along different axes of the ecological niche and at different scales of 

local adaptation, thus representing modular adaptive cassettes. Second, these inversions 

follow different evolutionary dynamics driven by different shapes of selection, Cf-Inv(1) being 

a cosmopolitan polymorphism, likely to be maintained over evolutionary times by balancing 

selection, while Cf-Inv(4.1) and Cf-Inv(4.2/4.3) represent divergent polymorphism, likely to 

transition towards fixed differences between lineages under directional or disruptive selection 

(Faria, Johannesson, et al. 2019).  

 

 Exploring low-recombination regions: what are they and why do they matter? 

Beyond the aforementioned inversions, analyzing PCA along the chromosomes also identified 

additional regions that are characterized by distinct haploblocks and high LD. Such outlier 

regions may result from introgression, structural variants, and linked selection (Li and Ralph 

2019). Introgression seems unlikely in our case given the absence of any sympatric sister 

species in our study area. The genetic map confirmed that those outlier regions are 

characterized by low recombination. Yet, current data does not allow us to determine whether 

this is due to structural rearrangements or other recombination modifiers (e. g. centromeres). 

Given the size of those regions (from 6 to 16MB), it could also due to a combination of 
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misassembled structural rearrangements embedded in a low-recombining region; 

haploblocks that are seemingly separated could be adjacent. Our reference genome was 

scaffolded and ordered based on a linkage map from one family. Hence, inversions that are 

heterozygous in the mother, as well as any low-recombining regions, possibly cluster into flat 

and long portions of the map, where marker ordering may be less accurate. The landscape of 

nucleotide diversity was also very heterogeneous: low-recombining regions showed diversity 

peaks, comparable to that recorded in inversions, separated by deserts of diversity, as 

expected under linked selection in low-recombining areas. Additional data such as long-reads 

or connected molecule like Hi-C would be needed to improve the quality of the assembly in 

those specific areas and better characterize their DNA content. Despite these cautionary 

notes, our analysis provides an early annotation of putative structural rearrangements, or at 

least of regions affected by recombination modifiers, that do not behave like the rest of the 

genome in terms of geographic genetic structure and association with environmental factors.  

Like inversions, the low-recombining regions differentiated populations more strongly than 

collinear regions and possibly included haplotypic variants involved in local adaptation. They 

were enriched in candidate SNPs, being associated with climatic variation for the Cf-Lrr(2) and 

Cf-Lrr(5), and with the salinity cline for Cf-Lrr(3). Without certainty about the mechanisms 

behind the reduced recombination, we can only propose alternative hypotheses about the 

evolutionary processes at play. First, if these regions are complex or misassembled structural 

variants, they would represent additional adaptive rearrangements contributing to modular 

adaptation in C. frigida, with different haplotypes bearing one or several locally-adapted 

alleles. If those regions are centromeric, or simply rarely recombining, they would highlight 

the importance of linked selection in structuring intra-specific variation and conversely the 

relevance of low-recombining regions in protecting locally adapted alleles. Evidence for an 

important evolutionary role of low-recombining regions is increasingly reported now that we 

can analyse genomic landscapes in the light of recombination. For instance, in three-spine 

stickleback (Gasterosteus aculeatus), putatively adaptive alleles tend to occur more often in 

regions of low recombination in populations facing divergent selection pressures and high 

gene flow (Samuk et al. 2017). Similarly, regions of low recombination are enriched in loci 

involved in parallel adaptation to alpine habitat in the Brassicaceae Arabidopsis lyrata (Hämälä 

and Savolainen 2019). While further work is needed to characterize the complex low 

recombining regions in C. frigida, identifying several of these regions as outliers of 

differentiation highlights how recombination may matter more than geographic distances in 

structuring intra-specific variation and in modulating the selection-migration balance. 

Conclusions 

Our findings support the growing evidence that large chromosomal inversions play a 

predominant evolutionary role in organisms characterised by extensive connectivity across a 

large geographical range. In those widespread flying insects, like in several marine species, 

migratory birds, and plants, rearrangements strongly structure genetic diversity and represent 

a key genetic architecture for adaptation in the face of gene flow. More importantly, perhaps, 
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the different haplotypic blocks appear adaptive for different selective constraints across a 

range of geographical scales, hence forming a modular architecture allowing not only to cope 

with gene flow but also with various sources and scales of environmental heterogeneity. More 

broadly, our analysis also highlights the importance of regions of low recombination in 

structuring intra-specific genetic variation and favouring environmental adaptation. With 

recombination varying both along the genome and between individuals or haplotypes, 

inversions may represent only the simplest aspect of a complex relationship between 

recombination, selection and gene flow that we are just starting to uncover through the prism 

of structural variants. By optimising whole-genome re-sequencing to include many individuals 

across a species range as done here, future work will have the possibility to better understand 

how the interplay between structural variation and recombination may matter for the 

evolution of diversity and facilitate adaptation to a broad range of environmental 

heterogeneity. 

Methods 

A reference genome assembly for Coelopa frigida 

To generate a reference genome, we sequenced sibling Coelopa frigida females from a 3-

generation inbred family homozygous for the α arrangement at the inversion Cf-Inv(1R), 

obtained by crossing wild C. frigida collected in St Irénée (QC, Canada). A pool of DNA from 

three female siblings was sequenced on 4 cells of Pacific Biosystems Sequel sequencer at 

McGill University and produced a total of 16.1 Gbp (~64x coverage) of long-read sequencing 

data. One additional female from the same inbred family was sequenced following the 

10xGenomics Chromium on one lane of an Illumina HiSeqXTen sequencer at McGill University, 

yielding 82 Gbp (~300x of coverage) of paired-end linked-reads of 150bp.  

An initial assembly was carried out on the PacBio long reads using the Smrt Analysis v3.0 

pbsmrtpipe analysis workflow and FALCON (Chin et al 2013), resulting in 2959 contigs (N50 = 

320 kb), for a total assembly size of 233.7 Mbp. This assembly was subsequently polished by 

using the linked reads from the 10Xgenomics sequencing, first by correcting for sequence 

errors with Pilon  (Walker et al. 2014) and, second, by correcting for misassemblies with 

Tigmint (Jackman et al. 2018). The resulting assembly accounted 3096 contigs with a N50 of 

320 kb. 

To scaffold the genome assembly, we used the program ARKS and LINKS (Coombe et al. 2018; 

Yeo et al. 2018) which relies on linked-reads to scaffold contigs. The resulting assembly 

accounted 2539 scaffolds with a N50 of 735 kb. Then, scaffolds were assembled into 

chromosomes using Chromonomer (Catchen et al. 2020), which anchors and orientates 

scaffolds based on the order of markers in a linkage map (see below). The final assembly 

accounted 6 chromosomes and 1832 unanchored scaffolds with a N50 of 37.7Mb for a total 

of 239.7Mb (195.4 Mb into chromosomes). The completeness of this reference was assessed 

with BUSCO version 3.0.1 (Simão et al. 2015). 
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The genome was annotated by mapping a transcriptome assembled from RNA sequences 

obtained from 8 adults (split by sex and by karyotype at the Cf(Inv(1) inversions), 4 pools of 3 

larvae and pools of C. frigida at different stages (eggs and larvae) and annotated using the 

Triannotate pipeline. More details about the genome and transcriptome assemblies are 

provided as supplementary methods. 

A high-density linkage map and QTL analyses 

 Sequencing and genotyping 

We generate an outbred F2 family of 136 progenies by crossing two F1 individuals of Coelopa 

frigida from different crosses obtained from wild individuals collected in Gaspésie (QC, 

Canada). The mother of the F2 family was genotyped homozygous for the α arrangement at 

the inversion Cf-Inv(1). The progeny, both parents, and two paternal grandparents were 

sequenced using a double-digest restriction library preparation (ddRAD-seq) on IonProton 

(ThermoFisher). Parents and grandparents were sequenced at greater depth than progeny to 

make an accurate catalogue of diploid genotypes possible in the cross. Reads for the 136 

offspring and their parents were trimmed using cutadapt, split per sample using 

process_radtags and aligned on the scaffolded assembly with bwa-mem. Genotype likelihoods 

were obtained with SAMtools mpileup. Only markers with at least 3X of coverage in all 

individuals were kept. We explored more stringent filtering such as 6X and 10X, which led to 

very similar and colinear maps albeit with less marker density, an aspect which was the priority 

for efficient scaffolding. More details are provided in supplementary methods  

 

 Building the map 

Linkage map was built using Lep-MAP3 (Rastas 2017) following a pipeline available at 

https://github.com/clairemerot/lepmap3_pipeline.  With the Filtering module, markers with more 

than 30% of missing data, non-informative markers, and extreme segregation distortion 

(χ2 test, P < 0.001) were excluded. Markers were assigned to linkage groups (LGs) using the 

SeparateChromosomes module with a logarithm of odds (LOD) of 15, a minimum size of 5 and 

assuming no recombination in males. This assigned 28,615 markers into 5 large LGs, as 

expected given previous karyotyping work on Coelopa frigida (Aziz 1975), and 25 sex-linked 

markers into 2 small LGs than were subsequently merged as one. Within each LG, markers 

were ordered with 5 iterations of the OrderMarker module.  The marker order from the run 

with the best likelihood was retained and refined 3 times with the evaluateOrder flag with 5 

iterations each. When more than 1000 markers were plateauing at the same position, usually 

at the beginning, the end or the middle of a LG, all markers at that position were removed. 

Exploration for more stringent filtering for missing data, different values of LOD or allowing 

recombination in males resulted in very consistent and collinear maps. 

 Estimating recombination rate 

To estimate recombination rate across the genome, we compared position of the markers 

along the genetic map with their position along the genome assembly with MAREYMAP 

(Rezvoy et al. 2007). The Loess method was used to estimate Local recombination rates were 
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estimated with a Loess method including 10% of the markers for fitting the local polynomial 

curve.  

 QTL analysis 

We used the linkage map for QTL (quantitative trait locus) analysis. All individuals used to build 

the map were scored for recovery from chill coma induced by putting them 10 minutes at -

20°C and by reporting behavior when transferred at room temperature. We distinguished 

three categories: “0”, the fly stands immediately or in less than 5 minutes; “1”, the fly recovers 

with difficulties after 5 to 15 minutes; “2”, the fly has not recovered after more than 15 

minutes. A phased map was obtained by performing an additional iteration of the 

OrderMarker module and the option “outputPhasedData=1”. QTL analysis was carried out 

using R/qtl (Broman et al. 2003). LOD scores correspond to the −log10 of the associated 

probabilities between genotype and phenotype with the Haley-knot method. The LOD 

threshold for significance was calculated using 1000 permutations.  

Population-level re-sequencing 

 Sampling and characterisation of sex, size and karyotype 

We analysed 1446 C. frigida, sampled at 16 locations spanning over 10° of latitude (Fig.1A) in 

September/October 2016. Sampling, genotyping and phenotyping are described in details in 

(Mérot et al. 2018). Briefly, adult flies were examined under a binocular magnifier (Zeiss Stemi 

2000C) to confirm species identification and sex. For 1426 flies with wings in good conditions, 

the size was estimated using wing length as a proxy. Genomic DNA was extracted from adult 

flies using a salt-extraction protocol (Aljanabi and Martinez 1997) with a RNase A treatment 

(Quiagen). 1438 flies were successfully genotyped at the inversion Cf-Inv(1) as 

homokaryotypes for each of arrangement or heterokaryotypes (αα, αβ, ββ) using a molecular 

marker developed in (Mérot et al. 2018). 

 Library preparation and sequencing 

DNA quality of each extract was evaluated with nanodrop and on a 1% agarose gel 

electrophoresis. Only samples with acceptable ratios that showed clear high molecular weight 

bands were retained for library preparation. Following (Therkildsen and Palumbi 2017), we 

remove DNA fragments shorter than 1kb by treating each extract with Axygen magnetic beads 

in a 0.4:1 ratio, and eluted the DNA in 10mM Tris-Cl, pH 8.5. We measured DNA concentrations 

with QuantiT Picogreen dsDNA Assay Kit (Invitrogen) and normalised all samples at a 

concentration of 5ng/µL. Then, sample DNA extracts were randomized, distributed in 17 

plates (96-well) and re-normalised at 1ng/µL.  

Whole-genome high-quality libraries were prepared for each fly sample according to the 

protocol described in (Baym et al. 2015; Therkildsen and Palumbi 2017).  Briefly, a 

tagmentation reaction using enzyme from the Nextera kit, which simultaneously fragments 

the DNA and incorporates partial adapters, was carried out in a 2.5 μl volume with 

approximately 1 ng of input DNA. Then, we used a two-step PCR procedure with a total of 12 

cycles (8+4) to add the remaining Illumina adapter sequence with dual index barcodes and 
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amplify the libraries. The PCR was conducted with the KAPA Library Amplification Kit and 

custom primers derived from Nextera XT set of barcodes A,B,C and D (total 384 combinations). 

Amplification products were purified from primers and size-selected with a two-steps Axygen 

magnetic beads cleaning protocol, first with a ratio 0.35:1, keeping the supernatant (medium 

and short DNA fragments), second with a ratio 0.7:1, keeping the beads (medium fragments). 

Final concentration of the libraries were quantified with QuantiT Picogreen dsDNA Assay Kit 

(Invitrogen) and fragment size distribution was estimated with an Agilent BioAnalyzer for a 

subset of 10 to 20 samples per plate.  

Equimolar amount of 293 to 296 libraries were combined into 5 separate pools for sequencing 

on 5 lanes of paired-end 150bp reads on an Illumina HiSeq 4000 at the Norwegian Sequencing 

Center at the University of Oslo. 

 Sequence filtering and processing  

Raw reads were trimmed and filtered for quality  with FastP (Chen et al. 2018). Reads were 

aligned to the reference genome with BWA-MEM (Li and Durbin 2009) and filtered with 

samtools v1.8 (Li et al. 2009) to keep only  unpaired, orphaned, and concordantly paired reads 

with a mapping quality over 10. Duplicate reads were removed with the MarkDuplicates 

module of Picard Tools v1.119. Then, we realigned reads around indels with the GATK 

IndelRealigner (McKenna et al. 2010). Finally, to avoid double-counting the sequencing 

support during SNP calling, we used the clipOverlap program in the bamUtil package v1.0.14 

(Breese and Liu 2013) to soft clip overlapping read ends and we kept only the read with the 

highest quality score in overlapping regions. This pipeline was inspired by (Therkildsen and 

Palumbi 2017) and is available at 

https://github.com/enormandeau/wgs_sample_preparation. 

For most of the analysis, we used the program ANGSD v0.931 (Korneliussen et al. 2014), a 

software specifically designed to take genotype uncertainty into account instead of basing the 

analysis on called genotypes, which was appropriated for the low coverage of our data. The 

pipeline of analysis is available at https://github.com/clairemerot/angsd_pipeline.  For all 

analysis, input reads were filtered to remove reads with a samtools flag above 255 (not 

primary, failure and duplicate reads, tag -remove_bads = 1), with mapping quality below 30 (-

minMapQ = 30) and to remove bases with quality below 20 (-minQ 20). Note that to reduce 

the computational and analytic burden due to small scaffolds, all analyses were performed on 

a reduced genome including the 6 chromosomes and only 135 unanchored scaffolds, selected 

because they were longer than 25kb and bear more than 100 SNPs/scaffold. This reduced 

genome represents more than 89% of the total reference and more than 98.5% of all SNPs. 

As a first step, we ran ANGSD to estimate the spectrum of allele frequency, minor allele 

frequency, depth and genotype likelihoods on the whole dataset (-doSaf -doMaf -doDepth -

doCounts - doGlf). Genotype likelihoods were estimated with the GATK method (-GL 2). The 

major allele was based on the genotype likelihood and was the most frequent allele (-

doMajorMinor 1).  We filtered to keep only SNPs covered by at least one read in at least 50% 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 28, 2020. ; https://doi.org/10.1101/2020.12.28.424584doi: bioRxiv preprint 

https://github.com/enormandeau/wgs_sample_preparation
https://github.com/clairemerot/angsd_pipeline
https://doi.org/10.1101/2020.12.28.424584


24 
 

of the individuals, with a total coverage below 4338 (3 times the number of individuals) to 

avoid including repeated regions in the analysis, and with minor allele frequency above 5%.  

The list of SNPs passing those filters and their respective major and minor alleles was 

subsequently used as the SNPs list for most analysis (-sites). Using PLINK 1.9, we produced a 

subset of SNP pruned for high physical linkage using a sliding-window approach where SNPs 

with a variance inflation factor greater than two (VIF > 2) were removed from 100 SNP 

windows shifted by 5 SNPs after each iteration. 

 Genetic structure, PCA and inversion detection 

Genetic structure in the whole dataset was analysed with NGSadmix (Skotte et al. 2013), which 

uses genotype likelihoods in beagle format from low coverage data to infer putative clustering 

and admixture. We explored a set of clusters from K=2 to K=10. Genetic variation was next 

analysed by extracting an individual covariance matrix with PCAngsd (Meisner and 

Albrechtsen 2018) and decomposed into principal component analysis (PCA) with R, using a 

scaling 2 transformation, which add an eigenvalues correction, to obtain the individuals PC 

scores (Legendre and Legendre 1998). 

To analyse the genetic structure along the genome, we next run PCAangsd (Meisner and 

Albrechtsen 2018) on genotype likelihoods in non-overlapping windows of 100 SNPs to extract 

local covariance matrices, and obtained local PCAs of genetic variation. For each local PCA, we 

analysed the correlation between individuals PC1 scores and PC scores in the PCA performed 

on all the genome. This allowed to locate two (inversions) regions underlying the structure 

observed on PC1 and PC2 (Fig2A). We set the boundaries of those regions as windows with a 

coefficient of correlation above one standard deviation. We also recorded how much variance 

is explained by the first and second component of the local PCAs.  

To scan the genome for other putative inversions or regions structuring the dataset into 

groups of haplotypes, we used the R package Lostruct (Li and Ralph 2019). The previously-

performed local PCAs (including PC1 and PC2) were analysed together to measure the 

similarity of patterns between windows using Euclidian distances. Similarity was then mapped 

using multidimensional scaling (MDS) up to 50 axes. Inspired by the systematic procedure 

developed by (Huang et al. 2020), clusters of outlier similar windows were defined along each 

MDS axis as those with either values greater than 4 standard deviations above the mean or 

values lower than 4 standard deviations below the mean. Adjacent clusters with less than 20 

windows between them were pooled, and clusters with less than 5 windows were not 

considered. Different window sizes (100 to 1000), different subset of PCs (including 1 to 3 PCs) 

and different thresholds for defining clusters yielded consistent results.  

While inversions are frequent structure underlying MDS outliers detected by a local PCA 

analysis, similar patterns can be generated by any process locally limiting random mixing of 

alleles, such as strong geographic/species structure, linked selection (REF) or any feature 

limiting recombination like centromeres, TE accumulation or more complex structural 

variants. A typical signature of a simple polymorphic inversion is to appear on a PCA as three 
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groups of individuals, the two homokaryotypes for the alternative arrangement and as an 

intermediate group, the heterokaryotypes. Therefore, all regions of the genome including 

clusters of outlier windows and each cluster detected were further examined either by a PCA 

as single blocks, or divided into several blocks when discontinuous. We then used K-means 

clustering on the first and second PC to identify putative groups of haplotypes. Clustering 

accuracy was maximised by rotation and the discreteness was evaluated by the proportion of 

the between-cluster sum of squares over the total. 

 Inversion analysis 

For the four putative inversions (Cf-Inv(1), Cf-Inv(4.1) and the two related Cf-Inv(4.2/4.3)), K-

means assignment on PC scores was used as the karyotype of the sample. Differentiation 

among karyotypes was measured with Fst statistics, using ANGSD to estimate joint allele-

frequency spectrum, realSFS functions to compute FST in sliding-windows of 25KB with a step 

of 5KB, and subsampling largest groups to balance sample size. Observed heterozygosity was 

calculated for each karyotype and each SNP using the function -doHWE in ANGSD, and then 

averaged across sliding-windows of 25KB with a step of 5KB, using the R package 

windowscanr.  

 Linkage disequilibrium 

Intrachromosomal linkage disequilibrium was calculated among a reduced number of SNPs, 

filtered with more stringent criteria (MAF > 10%, at least one read in 75% of the samples, less 

than 3 times the expected coverage). Pairwise R² values were calculated with NGS-LD (Fox et 

al. 2019) based on genotype likelihood in beagle format obtained by ANGSD, and grouped into 

windows of 1MB. Plots display the 2nd percentile of R² values per paired of windows. For the 

chromosome including inversions (LG1, LG4), R² was calculated first, within all samples, and 

second, within individuals homozygous for the most common orientation, controlling for 

sample size by subsampling the largest group, and plotted by windows of 250kb.   

 

 Geographic structure 

After considering the whole dataset or the groups of haplotypes, we grouped individuals by 

geographic sampling site, hereafter called populations. Allele frequency spectrum and minor 

allele frequency was calculated for each population using the -doMaf function and the 

previously obtained list of polymorphic SNPs and their polarisation as major or minor allele 

(options –sites and –doMajorMinor 3). Positions which were not covered by at least one read 

in 50% of the samples in a given population were filtered out. Pairwise 𝐹𝑆𝑇 differentiation was 

estimated using the realSFS function in ANGDS between all pairs of populations, subsampled 

to a similar size of 88 individuals. The weighted 𝐹𝑆𝑇 between pairs of population were 

computed by including either all SNPs, LD-pruned SNPs, or SNPs from a region of interest 

(inversions/low-recombining regions) or SNPs outside those regions (collinear SNPs). 

 

Isolation-By-Distance (IBD) was tested for each subset of SNPs using a linear model in which 

pairwise genetic distance (𝐹𝑆𝑇/(1-𝐹𝑆𝑇)) was included as the response variable and geographic 
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Euclidian distance was incorporated as an explanatory term. Isolation-by-Resistance was 

tested in the same way, except that physical distances were calculated along the shoreline, by 

inferring the least-cost path through areas of the map between -40 meters of depth and 20 

meters of altitude using the R package marmap. Both models of IBD and IBR were compared 

to a null model using an ANOVA F-test, and to each other using adjusted 𝑅2 and AIC. To 

compare IBD and IBR patterns in each inversion/low-recombining region to the collinear 

genome, we built a full model explaining pairwise genetic distances by physical distances and 

genomic region (collinear vs. inversion) as a co-factor, and assessed the significance of the 

interaction term as well as the direction of the interaction slope coefficient. Since the collinear 

genome include more, and more dispersed, SNPs, we repeated this analysis 100 times with 

randomly-chosen collinear regions including the same number of contiguous SNPs as each 

inversion/low-recombining regions. This provided a distribution of the significance of the 

interaction term and its slope coefficient (Fig. S9). For the inversion Cf-Inv(1), no contiguous 

block with the same number of SNPs could be found in the genome, hence we gathered 3 

blocks of 1/3 the number of SNPs in each of the 100 random replicates.   

 

 Environmental associations  

Environment at each location was described by three categories of variables: large-scale 

climatic/abiotic conditions, local wrackbed abiotic characteristics, and local wrackbed algal 

composition (Table S1). Large-scale climatic/abiotic conditions were extracted for each 

location from public databases and included annual means in precipitations, air temperature, 

sea surface temperature, sea surface salinity and tidal amplitude. Wrackbed abiotic 

characteristics included an estimation of the surface and a measure of depth, internal 

temperature and salinity. Wrackbed composition was an estimation of the relative 

proportions of Laminariaceae, Fucaceae, Zoosteraceae, plant debris and other seaweed 

species. Details about how environmental variables were measured or drawn from databases 

can be found in (Mérot et al. 2018). Correlation between environmental variables was tested 

with a Pearson correlation test, and variation was reduced by drawing a summary variable for 

each group of correlated environmental variables (climatic, salinity/tidal amplitude, abiotic 

characteristic of the wrackbed, algal composition) by retaining the first significant PC of a 

principal component analysis (PCA) on original variables relying on the Kaiser-Guttman and 

Broken Stick criteria (Borcard et al. 2011) (see Fig. S11).  

After filtering for SNPs covered by at least 50% of the individuals in each population (so about 

a coverage of 50X), the matrix of allelic frequencies obtained for the 16 populations accounted 

1,155,978 SNPs. A genetic-environment association (GEA) which evaluate SNPs frequencies as 

function of environmental variables was performed through a combination of two methods 

as recommended by (Villemereuil et al. 2014): (i) latent factor mixed models (LFMM2; (Frichot 

et al. 2013; Caye et al. 2019)), (ii) Bayes factor (BAYPASS) (Gautier 2015). Those three methods 

had also been shown to be robust to the presence of large inversions (Lotterhos 2019). 
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LFMM was run with the R package lfmm2 (Caye et al. 2019), using a ridge regression which 

performed better in simulations including inversions (Lotterhos 2019), and parametrized using 

a K-value of 4 latent-factors based on the number of principal components that explain 

variation in population frequencies. P-values were calibrated following the recommendations 

of (François et al. 2016), using a Benjamini-Hochberg correction with a false-discovery-rate 

(fdr) of 0.05.  

Using Baypass v2.2 (Gautier 2015), a Bayes factor (BP), which evaluate for each SNP the 

strength of an association with an environmental variable, was computed as the median of 

three run under the standard model using the default importance sampling estimator 

approach. Environmental variables were scaled using the -scalecov option. We run this 

analysis twice, first, without controlling for population structure and, second, by controlling 

with a covariance matrix extracted from an initial BayPass model run on the subset of LD-

pruned SNPs without environmental covariables. To calculate a significance threshold for the 

BP factor, we simulated pseudo-observed data with 10,000 SNPs using the “simulate.baypass” 

function, analysed the pseudo-observed matrix of frequencies for each environmental 

variable as described above, and kept the 0.1% quantile as the significance threshold. 

For each GEA method, and the combination of the two, the repartition of candidate SNPs for 

association with environment within and outside inversions/low-recombining regions was 

compared to the original repartition of SNPs. Deviation from this original repartition was 

tested with a Fisher’s exact test, and the magnitude of the excess/deficit of outlier SNPs within 

each region of the genome was reported as the odd-ratio. 

 Phenotypic associations and gene ontology analysis 

We performed a genome-wide association study (GWAS) to detect SNPs associated with wing 

size variation. We used the GWAS implemented in ANGSD program that accounts for the 

genotype uncertainty in low depth NGS data and uses the genotypes likelihood in Beagle 

format (Jørsboe and Albrechtsen 2020). We used the latent genotype model (EM algorithm, -

doAssso=4) where genotype is introduced as a latent variable and then the likelihood is 

maximized using weighted least squares regression. We considered a false discovery rate 

(FDR) of 0.001. The GWAS was applied on the whole dataset (1,426 flies with size information) 

and then on each subset of homaryotes at the inversion Cf-Inv(1) (140 αα and 436 ββ flies with 

size information). 

Using BEDtools, we extracted the list of genes overlapping with significantly-associated SNPs, 

or within a window of 5kb upstream or downstream a gene. We then tested for the presence 

of over-represented GO terms using GOAtools (v0.6.1, pval = 0.05) and filtered the outputs of 

GOAtools to keep only GO terms for biological processes of levels 3 or more, and with an FDR 

value equal below 0.1. We performed the same GO enrichment analysis for the list of genes 

found in the two largest inversions (Cf-Inv(1) and Cf-Inv(4.1)). 
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