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12 Abstract   

13 Cortical  areas  seem  to  form  a  hierarchy  of  intrinsic  timescales,  but  whether  this  is  causal  to                                 

14 cognitive  behavior  remains  unknown.  In  particular,  decisions  requiring  the  gradual  accrual  of                         

15 sensory  evidence  over  time  recruit  widespread  areas  across  this  hierarchy.  Here,  we  causally                           

16 tested  the  hypothesis  that  this  recruitment  is  related  to  the  intrinsic  integration  timescales  of                             

17 these  widespread  areas.  We  trained  mice  to  accumulate  evidence  over  seconds  while                         

18 navigating  in  virtual  reality,  and  optogenetically  silenced  the  activity  of  many  cortical  areas                           

19 during  different  brief  trial  epochs.  We  found  that  the  inactivation  of  different  areas  primarily                             

20 affected  the  evidence-accumulation  computation  per  se,  rather  than  other  decision-related                     

21 processes.  Specifically,  we  observed  selective  changes  in  the  weighting  of  evidence  over  time,                           

22 such  that  frontal  inactivations  led  to  deficits  on  longer  timescales  than  posterior  cortical  ones.                             

23 Likewise,  large-scale  cortical  Ca 2+  activity  during  task  performance  displayed  different  temporal                       

24 integration  windows  matching  the  effects  of  inactivation.  Our  findings  suggest  that  distributed                         

25 cortical   areas   accumulate   evidence   by   leveraging   their   hierarchy   of   intrinsic   timescales.   

  

  

26 Introduction   

27 The  cerebral  cortex  of  both  rodents  and  primates  appears  to  be  organized  in  a  hierarchy  of                                 

28 intrinsic  integration  timescales,  whereby  frontal  areas  integrate  input  over  longer  time  windows                         

29 than  sensory  areas   (Cavanagh  et  al.,  2020;  Chaudhuri  et  al.,  2015;  Gao  et  al.,  2020;  Hasson  et                                   

30 al.,  2008;  Ito  et  al.,  2020;  Kiebel  et  al.,  2008;  Murray  et  al.,  2014;  Runyan  et  al.,  2017;  Soltani  et                                         

31 al.,  2021;  Spitmaan  et  al.,  2020) .  Although  this  idea  has  received  increasing  attention,  there  is                               

32 still   no   causal   evidence   that   such   timescale   hierarchy   is   relevant   for   cognitive   behavior.     
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33 In  particular,  the  decisions  we  make  in  our  daily  lives  often  unfold  over  time  as  we                                 

34 deliberate  between  competing  choices.  This  raises  the  possibility  that  decisions  co-opt  the                         

35 cortical  timescale  hierarchy  such  that  different  cortical  areas  integrate  decision-related                     

36 information  on  distinct  timescales.  A  commonly  studied  type  of  time-extended  decision  making                         

37 happens  under  perceptual  uncertainty,  which  requires  the  gradual  accrual  of  sensory  evidence                         

38 (Bogacz  et  al.,  2006;  Brody  and  Hanks,  2016;  Brunton  et  al.,  2013;  Carandini  and  Churchland,                               

39 2013;  Gold  and  Shadlen,  2007;  Morcos  and  Harvey,  2016;  Newsome  et  al.,  1989;  Odoemene  et                               

40 al.,  2018;  Stine  et  al.,  2020;  Sun  and  Landy,  2016;  Tsetsos  et  al.,  2012;  Waskom  and  Kiani,                                   

41 2018) .  Neural  correlates  of  decisions  relying  on  evidence  accumulation  have  been  found  in  a                             

42 number  of  cortical  and  subcortical  structures,  in  both  primates  and  rodents   ( Brincat  et  al.,                             

43 2018;   Ding  and  Gold,  2010;   Erlich  et  al.,  2015;   Hanks  et  al.,  2015;  Horwitz  and  Newsome,                                

44 1999;  Kim  and  Shadlen,  1999;  Koay  et  al.,  2020;  Krueger  et  al.,  2017;  Murphy  et  al.,  2020;                                   

45 Orsolic  et  al.,  2021;  Scott  et  al.,  2017;  Shadlen  and  Newsome,  2001;  Wilming  et  al.,  2020;                                 

46 Yartsev  et  al.,  2018) .  Likewise,  we  have  previously  shown  that,  when  mice  must  accumulate                             

47 evidence  over  several  seconds  to  make  a  navigational  decision,  the  inactivation  of  widespread                           

48 dorsal  cortical  areas  leads  to  behavioral  deficits,  and  that  these  areas  encode  multiple                           

49 behavioral  variables,  including  evidence   (Pinto  et  al.,  2019) .  However,  we  do  not  understand                           

50 which   aspects   of   these   decisions   lead   to   such   widespread   recruitment   of   brain   structures.     

51 Here,  we  hypothesized  that  the  pattern  of  widespread  recruitment  of  cortical  areas                         

52 during  prolonged  evidence  accumulation  can  be  explained  by  their  underlying  timescale                       

53 hierarchy.  To  test  this,  we  trained  mice  to  accumulate  evidence  over  seconds  towards                           

54 navigational  decisions,  and  used  brief  optogenetic  inactivation  of  single  or  combined  cortical                         

55 areas,  restricted  to  one  of  six  epochs  of  the  behavioral  trials.  We  show  that  the  inactivation  of                                   

56 widespread  areas  in  the  dorsal  cortex  affects  primarily  the  evidence  accrual  process,  rather                           
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57 than  other  decision-related  computations.  Further,  the  inactivation  of  different  areas  affects                       

58 accumulation  over  distinct  timescales,  such  that  to  an  approximation  frontal  areas  encode                         

59 sensory  evidence  over  longer  temporal  windows  than  posterior  areas.  In  agreement  with  this,                           

60 we  show  that  cortical  activity  during  the  accumulation  task  displays  a  gradient  of  timescales,                             

61 which  are  longer  in  frontal  areas.  Our  findings  thus  suggest  that  evidence  is  accumulated  by                               

62 distributed  cortical  regions  leveraging  an  existing  hierarchy  of  temporal  integration  windows.                       

63 Further,  to  our  knowledge,  they  provide  the  first  causal  demonstration  that  this  hierarchy  is                             

64 important   for   cognitive   behavior.     

  

  

65 Results   

  

66 Brief  inactivation  of  different  cortical  areas  leads  to  accumulation  deficits  on  distinct                         

67 timescales.   We  trained  mice  to  accumulate  evidence  over  relatively  long  timescales  while                         

68 navigating  in  virtual  reality  (VR)(Figure  1A) (Pinto  et  al.,  2018) .  The  mice  navigated  a  3  m-long                              

69 virtual  T-maze  and  during  the  first  2  m  (~4  s)  they  encountered  salient  objects,  or  towers,  along                                   

70 the  walls  on  either  side,  and  after  a  delay  of  1  m  (~2  s)  turned  into  the  arm  corresponding  to  the                                           

71 highest  perceived  tower  count.  The  towers  were  visible  for  200  ms,  and  appeared  at  different                               

72 positions  in  each  trial,  obeying  spatial  Poisson  processes  of  different  underlying  rates  on  the                             

73 rewarded  and  non-rewarded  side.  Compatible  with  our  previous  reports   (Koay  et  al.,  2020;                           

74 Pinto  et  al.,  2018,  2019) ,  task  performance  was  modulated  by  the  difference  in  tower  counts                               

75 between  the  right  and  left  sides  (Figure  1B,  n  =  20).  Crucially,  beyond  allowing  us  to  probe                                   

76 sensitivity  to  sensory  evidence,  the  task  design  decorrelated  the  position  of  individual  towers                           

77 from  the  animals'  position  in  the  maze  across  trials.  This  allowed  us  to  build  a  logistic                                 
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78 regression  model  that  used  the  net  sensory  evidence  (∆  towers,  or  #R  –  #L)  from  each  of  four                                     

79 equally-spaced  bins  from  the  cue  region  to  predict  the  choice  the  mice  made.  In  other  words,                                 

80 we  inferred  the  weight  of  sensory  evidence  from  different  positions  in  the  maze  on  the  final                                 

81 decision.  While  individual  mice  showed  different  evidence-weighting  profiles,  fitting  the  model                       

82 on  aggregate  data  yielded  a  flat  evidence-weighting  curve  (Figure  1C,  n  =  100,787  trials),                             

83 indicating  that  on  average  the  mice  weighted  evidence  equally  from  throughout  the  maze   (Pinto                             

84 et  al.,  2018) .  Note  that  all  of  the  analyses  presented  below  are  performed  on  aggregate  data                                 

85 (combined  across  mice,  see  Materials  and  Methods),  such  that  our  baseline  condition  is  of                             

86 even   evidence   weighting   throughout   the   maze.     

87 Our  previous  results  have  shown  that  cortical  contributions  to  the  performance  of  this                           

88 task  are  widespread   (Pinto  et  al.,  2019) ,  but  our  whole-trial  inactivations  did  not  allow  us  to                                 

89 tease  apart  the  nature  of  the  contributions  of  different  areas.  Here,  we  addressed  this  by  asking                                 

90 how  different  dorsal  cortical  regions  contribute  to  the  weighting  of  sensory  evidence  in  order  to                               

91 make  a  perceptual  decision.  To  do  this  we  cleared  the  intact  skull  of  mice  expressing                               

92 Channelrhodopsin-2  (ChR2)  in  inhibitory  interneurons  (VGAT-ChR2-EYFP,  n  =  20),  and  used  a                         

93 scanning  laser  system  to  bilaterally  silence  different  cortical  regions,  by  activating  inhibitory                         

94 cells  (Figure  1D)   (Guo  et  al.,  2014;  Pinto  et  al.,  2019) .  We  targeted  7  different  areas  –  primary                                     

95 visual  cortex  (V1),  medial  secondary  visual  cortex  (mV2,  roughly  corresponding  to  area  AM),                           

96 posterior  parietal  cortex  (PPC),  retrosplenial  cortex  (RSC),  the  posteromedial  portion  of  the                         

97 premotor  cortex  (mM2),  the  anterior  portion  of  the  premotor  cortex  (aM2),  and  the  primary                             

98 motor  cortex  (M1)  – as  well  as  two  combinations  of  these  individual  ares,  namely  posterior                             

99 cortex  (V1,  mV2,  PPC  and  RSC)  and  frontal  cortex  (mM2,  aM2  and  M1).  Cortical  silencing                               

100 occured  in  one  of  six  trial  epochs:  1 st ,  2 nd  or  3 rd  quarter  of  the  cue  region  (0  –  50  cm,  50  –  100                                               

101 cm  or  100  – 150  cm,  respectively),  1 st  or  2 nd  half  of  the  cue  region  (0  –  100  cm  or  100  – 200  cm,                                             
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102 respectively),  or  delay  region  (200  – 300  cm).  We  tested  all  the  54  possible  area-epoch                             

103 combinations  (Figure  1–table  supplement  1).  This  large  number  of  experimental  conditions                       

104 allowed  us  to  assess  how  the  inactivation  of  different  areas  affects  the  use  of  current  or  past                                   

105 sensory   evidence   towards   a   final   decision.    

  

  

106 Figure  1.   Temporally  specific  inactivation  of  multiple  dorsal  cortical  regions  during  performance  of                           
107 a   VR-based   evidence-accumulation   task.     
108 ( A )   Schematics  of  the  experimental  set-up.  ( B )  Psychometric  functions  for  control  trials,  showing  the                             
109 probability  of  right-side  choice  as  a  function  of  the  strength  of  right  sensory  evidence,  ∆  towers  (#R  –                                     
110 #L).  Thin  gray  lines:  best-fitting  psychometric  functions  for  each  individual  mouse  (n  =  20).  Black  circles:                                 
111 aggregate  data  (n  =  100,787  trials),  black  line:  fit  to  aggregate  data,  error  bars:  binomial  confidence                                 
112 intervals.  ( C )  Logistic  regression  curves  for  the  weight  of  sensory  evidence  from  four  equally-spaced  bins                               
113 on  the  final  decision,  from  control  trials.  Thin  gray  lines:  individual  animals,  thick  black  line:  aggregate                                 
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114 data,  error  bars:  ±  SD  from  200  bootstrapping  iterations.  ( D )  Experimental  design.  We  bilaterally                             
115 inactivated  7  dorsal  cortical  areas,  alone  or  in  combination,  while  mice  performed  the                           
116 accumulating-towers  task.  Bilateral  inactivations  happened  during  one  of  six  regions  in  the  maze                           
117 spanning  different  parts  of  the  cue  region  or  delay.  We  thus  tested  a  total  of  54  area-epoch                                   
118 combinations.  ( E )  Effects  of  subtrial  inactivations  on  overall  performance  during  all  54  area-epoch                           
119 combinations.  Each  panel  shows  inactivation-induced  change  in  overall  %  correct  performance  for  each                           
120 inactivation  epoch,  for  data  combined  across  mice.  Error  bars:  S.D.  across  10,000  bootstrapping                           
121 iterations.   Circles   indicate   significance   according   to   the   captions   on   the   leftmost   panel.     

 
 

122 Compatible  with  our  previous  whole-trial  inactivation  experiments   (Pinto  et  al.,  2019) ,                       

123 we  found  that  the  inactivation  of  all  tested  cortical  areas  significantly  affected  behavioral                           

124 performance,  though  to  varying  degrees  (Figure  1E,  Figure  1–figure  supplement  1).                       

125 Furthermore,  we  observed  a  variety  of  effect  profiles  across  regions  and  inactivation  epochs,                          

126 as  assessed  by  the  difference  between  the  evidence-weighting  curves  separately  calculated                       

127 for  'laser  off'  and  'laser  on'  trials  (Figure  1–figure  supplement  2).  Different  effects  were                             

128 observed  even  comparing  regions  that  were  in  close  physical  proximity  (e.g.  V1  and  mV2).                             

129 Additionally,  all  tested  areas  had  significant  effects  in  at  least  a  subset  of  conditions  (Figure                               

130 1–figure   supplement   2,   p<0.05,   bootstrapping).     

131 Most  changes  in  the  evidence-weighting  curves  happened  for  evidence  concomitant  to                       

132 or  preceding  laser  onset,  indicating  that  the  manipulations  primarily  affected  the  processing                        

133 and/or  memory  of  the  evidence,  i.e.  the  accumulation  process  itself  (Figure  1–figure                         

134 supplement  2).  To  quantify  this,  for  each  cortical  area  we  aligned  the  control-subtracted                           

135 evidence-weighting  curves  from  different  inactivation  epochs  by  the  position  of  laser  onset,                         

136 and  focused  on  the  changes  in  weights  of  evidence  occurring  up  to  100  cm  in  the  past  (~2s,                                     

137 Figure  2A).  While  some  variability  in  these  laser-onset-triggered  curves  suggests  that  the                         

138 effects  of  inactivation  depend  somewhat  on  the  exact  inactivation  epoch,  the  aligned  curves                           

139 from  different  epochs  were  fairly  consistent  (Figure  2B,  gray  lines),  providing  a  concise                           

140 summary  of  the  multiple  experimental  conditions.  Interestingly,  the  effects  varied  systematically                       
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141 according  to  the  inactivated  region.  For  example,  mV2  inactivation  led  to  a  significant  drop  in                               

142 the  weight  of  evidence  occurring  while  the  laser  was  on  (p  =  0.004,  one-sided  paired  t  test),  a                                     

143 trend  towards  affecting  the  memory  of  evidence  occurring  50  cm  in  the  past  (~1  s,  p  =  0.045,                                     

144 not  significant  after  false  discovery  rate  correction),  and  no  discernible  effect  on  evidence                           

145 occurring  100  cm  in  the  past  (~2  s,  p  =  0.41).  Conversely,  aM2  inactivation  led  to  significant                                   

146 decreases  in  weighting  all  evidence  between  100  cm  in  the  past  and  the  time  of  laser  onset  (p                                     

147 <  0.05,  one-sided  paired  t  test),  with  no  differences  in  magnitude  between  position  bins  (F 2,10  =                                 

148 0.27,  p  =  0.77,  mixed-model  one-way  ANOVA).  This  lack  of  modulation  of  effect  size  across  y                                 

149 position  bins  was  also  true  for  the  two  other  frontal  areas,  mM2  and  M1  (Figure  2B,  p  >  0.88).                                       

150 Thus,  subsets  of  cortical  areas  resembled  each  other  in  terms  of  the  effects  of  their                               

151 inactivation.  Indeed,  they  could  be  optimally  grouped  into  three  clusters  using  spectral                         

152 clustering  (Figure  2C).  Cluster  1  contained  all  frontal  areas  in  our  dataset:  M1,  mM2  and  aM2.                                 

153 On  average,  this  cluster  resembled  the  effects  described  for  aM2  above.  In  other  words,  the                               

154 inactivation  of  frontal  areas  tended  to  equally  and  significantly  affect  weights  for  evidence                           

155 occurring  up  to  100  cm  in  the  past,  suggesting  that  these  areas  accumulate  evidence  at  fairly                                 

156 long  timescales  (p  <  0.001  for  all  position  bins,  one-sided  paired  t  test).  Cluster  2  contained                                 

157 mV2  and  PPC,  and  on  average  showed  monotonically  decreasing  effects  of  inactivation  on  the                             

158 weight  of  evidence  as  it  gets  more  distal  from  laser  onset  (p  <  0.02  for  0  and  50  cm,  p  =  0.47                                             

159 for  100  cm).  Thus,  compared  to  the  frontal  area  cluster,  these  posterior  areas  contributed  to                               

160 evidence  accumulation  on  shorter  timescales.  Finally,  cluster  3  contained  V1  and  RSC,  whose                           

161 inactivation  led  to  non-monotonic  changes  in  evidence  weighting,  affecting  current  and                       

162 long-past  evidence  (p  <  0.001),  but  not  evidence  occurring  in  between  (p  =  0.07).  This  is                                 

163 potentially  compatible  with  findings  that  multiple  timescales  of  processing  can  be  present                         

164 within  the  same  cortical  regions   (Bernacchia  et  al.,  2011;  Cavanagh  et  al.,  2020;  Scott  et  al.,                                 
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165 2017;  Spitmaan  et  al.,  2020;  Wasmuht  et  al.,  2018) .  Note  that,  for  stimuli  occurring  while  the                                 

166 laser  is  on,  our  analysis  does  not  allow  us  to  differentiate  between  pure  visual  processing                               

167 deficits  and  deficits  in  evidence  accumulation.  However,  this  confound  does  not  affect  our                           

168 main  conclusions,  since  the  areas  also  differ  in  terms  of  inactivation  effects  on  evidence                             

169 occurring  prior  to  laser  onset.  Importantly,  we  have  previously  verified  in  an  identical                          

170 preparation  that  our  laser  parameters  lead  to  robust  inactivation  and  near-immediate  recovery                         

171 of  pre-laser  firing  rates,  with  little  to  no  rebound   (Pinto  et  al.,  2019) .  Thus,  the  effects  observed                                   

172 here  are  unlikely  to  be  related  to  changes  in  the  average  population  activity  levels  outside  of                                 

173 the  nominal  inactivation  periods,  or  to  different  inactivation  efficiencies  between  different  epoch                         

174 durations.  Moreover,  the  effects  were  not  due  to  increases  in  the  timescale  of  the  behavior                               

175 itself  leading  to  more  forgetting,  since  we  observed  no  significant  laser-induced  decreases  in                           

176 running   speed   (Figure   2–figure   supplement   1).     
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177 Figure  2.   Inactivating  different  cortical  areas  leads  to  evidence-accumulation  deficits  on  distinct                         
178 timescales.     
179 ( A )  Illustration  of  the  analysis  method  presented  in  panels  B  and  C,  using  area  aM2  as  an  example.  Top                                       
180 six  plots:  effects  of  inactivating  area  aM2  during  different  epochs  on  evidence-weighting  curves  (laser  off                               
181 -  laser  on).  Blue  shading:  laser-on  epoch,  error  bars:  ±  SD  across  10,000  bootstrapping  iterations,  data                                 
182 combined  across  mice.  Bottom  plot:  Six  top  plots  are  aligned  by  laser  onset  (gray  lines),  and  combined                                   
183 to  include  the  first  data  point  during  'laser  on',  and  two  preceding  data  points.  See  panel  B  for                                     
184 conventions.  Error  bars,  ±  SEM  across  experimental  conditions.  ( B )  Laser-onset-aligned  changes  in                         
185 evidence-weighting  curves  for  each  bilaterally  targeted  area  (laser  on  -  laser  off).  Thin  gray  lines,                               
186 individual  inactivation  epochs  (n  =  6  for  y  =  0,  4  for  y  =  50  and  3  for  y  =  100).  Thick  black  lines,  average                                                   
187 across  conditions.  Error  bars,  ±  SEM  across  experimental  conditions.  Shaded  areas  indicate  laser  on.                             
188 Circles  below  the  lines  indicate  statistical  significance  according  to  the  caption  on  the  bottom  (one-sided                               
189 paired  t  test  vs.  zero,  corrected  for  multiple  comparisons).  P-values  on  top  of  each  panel  are  from  a                                     
190 one-way  ANOVA  with  repeated  measures  with  different  y  positions  as  factors.  ( C )  Average                           
191 laser-onset-aligned  changes  in  evidence-weighting  curves  for  each  custer  (caption  on  top).  Error  bars,  ±                             
192 SEM  across  inactivation  epochs  concatenated  for  each  cluster.  Circles  below  the  lines  indicate  statistical                             
193 significance  for  the  cluster  of  corresponding  color,  according  to  the  caption  in  panel  a  (one-sided  paired                                 
194 t   test   vs.   zero,   corrected   for   multiple   comparisons).   
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195 Next,  we  performed  a  similar  analysis  to  assess  changes  in  evidence  weights  after  laser                             

196 offset.  Confirming  our  initial  impression,  the  inactivation  of  most  areas  did  not  impact  evidence                             

197 weighting  prospectively  (Figure  2–figure  supplement  2).  Interestingly,  however,  mV2  and  mM2                       

198 inactivation  led  to  moderately  but  significantly  decreased  use  of  evidence  occurring  100  cm  in                             

199 the  future  (p  <  0.05,  one-sided  paired  t  test),  perhaps  suggesting  an  additional  role  for  these                                 

200 areas  also  in  post-accumulation  decision  processes   (Hanks  et  al.,  2015) .  Thus,  our  inactivation                           

201 data  suggest  that  the  widespread  cortical  involvement  in  this  task  is  largely  related  to  the                               

202 accumulation  of  sensory  evidence,  and  that  different  cortical  areas  accumulate  on  distinct                         

203 timescales.  We  next  wondered  whether  evidence  information  from  different  areas  is  linearly                         

204 combined,  at  least  from  a  behavioral  standpoint.  To  do  this,  we  compared  the  effects  of                               

205 simultaneously  inactivating  all  frontal  or  posterior  areas  to  that  expected  by  a  linear                           

206 combination  of  the  effects  of  inactivating  areas  individually  (i.e.  their  average).  Neither  posterior                           

207 nor  frontal  areas  significantly  deviated  from  the  linear  prediction  (Figure  2–figure  supplement  3,                           

208 p  >  0.05,  two-way  ANOVA  with  repeated  measures,  factors  y  position  and  inactivation  type).                             

209 This  suggests  that  signals  from  the  different  dorsal  cortical  areas  could  be  combined  by                             

210 downstream  regions  in  a  near-linear  fashion.  Candidate  regions  include  the  medial  prefrontal                         

211 cortex,  or  subcortical  structures  such  as  the  striatum  and  the  cerebellum,  which  have  been                             

212 shown  to  be  causally  involved  in  evidence  accumulation   (Deverett  et  al.,  2019;  Yartsev  et  al.,                               

213 2018) .  Other  subcortical  candidates  are  midbrain  regions  shown  to  have  a  high  incidence  of                             

214 choice  signals  in  a  contrast  discrimination  task   (Steinmetz  et  al.,  2019) .  A  caveat  here  is  that                                 

215 the  high  variance  in  the  data  may  have  masked  small  non-linearities  that  could  be  revealed                               

216 with  larger  sample  sizes.  The  possibility  of  a  downstream  integration  of  cortical  signals  is                             

217 agnostic   to   this   limitation,   however.     
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218 A   hierarchy   of   timescales   in   large-scale   cortical   activity   during   evidence   accumulation   

219 Our  inactivation  results  are  reminiscent  of  the  findings  that  cortical  areas  display  a  hierarchy  of                               

220 intrinsic  timescales,  such  that  primary  sensory  areas  tend  to  integrate  over  shorter  time                           

221 windows  than  frontal  and  other  association  areas   (Chaudhuri  et  al.,  2015;  Hasson  et  al.,  2008;                               

222 Murray  et  al.,  2014;  Runyan  et  al.,  2017) .  While  these  are  thought  to  arise  in  part  from  intrinsic                                     

223 cellular  and  circuit  properties  such  as  channel  and  receptor  expression,  amount  of  recurrent                           

224 connectivity  and  relative  proportions  of  inhibitory  interneuron  subtypes   (Chaudhuri  et  al.,  2015;                         

225 Duarte  et  al.,  2017;  Fulcher  et  al.,  2019;  Gao  et  al.,  2020;  Wang,  2020) ,  they  appear  to  be                                     

226 modulated  by  task  demands   (Gao  et  al.,  2020;  Ito  et  al.,  2020) .  Thus,  to  confirm  whether  this                                   

227 timescale  hierarchy  exists  in  the  mouse  cortex  during  performance  of  the  accumulating-towers                         

228 task,  we  reanalyzed  previously  published  data  consisting  of  mesoscale  widefield  Ca 2+  imaging                         

229 of  the  dorsal  cortex  through  the  intact  cleared  skull  of  mice  expressing  the  Ca 2+  indicator                               

230 GCaMP6f  in  excitatory  neurons  (Figure  3A,  Emx1-Ai93  triple  transgenics,  n  =  6,  25                           

231 sessions) (Pinto  et  al.,  2019) .  To  do  this,  we  enhanced  our  previous  linear  encoding  model  (or                               

232 GLM)  of  the  average  activity  of  anatomically  defined  regions  of  interest  (ROIs) (Pinto  et  al.,  2019)                               

233 by  including  two  sets  of  predictors  in  addition  to  task  events.  First,  for  each  ROI  we  added  the                                     

234 zero-lag  activity  of  other  simultaneously  imaged  ROIs  as  coupling  predictors,  similar  to                         

235 previous  work   (Pillow  et  al.,  2008;  Runyan  et  al.,  2017) (Figure  3–figure  supplement  1).  Crucially,                             

236 we  also  included  auto-regressive  predictors  to  capture  intrinsic  activity  auto-correlations  that                       

237 are  unrelated  to  behavioral  events.  In  other  words,  this  approach  allowed  us  to  estimate                             

238 within-task  auto-correlations  while  separately  accounting  for  task-induced  temporal  structure                   

239 in  cortical  dynamics   (Spitmaan  et  al.,  2020) .  Adding  these  new  sets  of  predictors  resulted  in  a                                 

240 large  and  significant  increase  in  cross-validated  model  accuracy,  as  measured  by  the  linear                           

241 correlation  coefficient  between  the  model  predictions  and  a  test  dataset  not  used  to  fit  the                               

12   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2020.12.28.424600doi: bioRxiv preprint 

https://paperpile.com/c/cGPtcX/f2Yvw+G1bfi+8WuG6+YfTF4
https://paperpile.com/c/cGPtcX/f2Yvw+G1bfi+8WuG6+YfTF4
https://paperpile.com/c/cGPtcX/8WuG6+ZxLk1+6InVr+Zol4u+J23ok
https://paperpile.com/c/cGPtcX/8WuG6+ZxLk1+6InVr+Zol4u+J23ok
https://paperpile.com/c/cGPtcX/DvWzC+6InVr
https://paperpile.com/c/cGPtcX/GyERu
https://paperpile.com/c/cGPtcX/GyERu
https://paperpile.com/c/cGPtcX/tEGhP+YfTF4
https://paperpile.com/c/cGPtcX/rwn3l
https://doi.org/10.1101/2020.12.28.424600
http://creativecommons.org/licenses/by-nc-nd/4.0/


242 model  (Figure  3B,  C;  ~0.95  vs.  ~0.3,  F model(6,2,12)  =  1994.85,  p  =  6.2  x  10 -13 ,  two-way  ANOVA                                   

243 with  repeated  measures).  Note  that  these  values  are  computed  on  held-out  raw  data  points                             

244 rather  than  averaged  activity.  Thus,  while  the  original  model  in  our  previous  work  had  low                               

245 cross-validated  accuracies  in  comparison,  those  values  are  compatible  with  other  encoding                       

246 models  of  cortical  activity  in  the  literature  that  used  similarly  stringent  goodness-of-fit  metrics                           

247 (e.g.   Huth   et   al.,   2012;   Pinto   and   Dan,   2015).   

248 Motivated  by  our  inactivation  findings,  we  focused  our  analysis  on  the  auto-regressive                         

249 coefficients  of  the  model.  We  observed  that  across  animals  the  rate  of  decay  of  these                               

250 coefficients  over  lags  slowed  systematically  from  visual  to  premotor  areas,  with  intermediate                         

251 values  for  M1,  PPC  and  RSC  (Figure  3D).  To  quantify  this,  we  fitted  exponential  decay                               

252 functions  to  the  auto-regressive  coefficients  averaged  across  hemispheres  (Figure  3D–F),  and                       

253 extracted  decay  time  constants  (𝜏,  Figure  3G).  Compatible  with  our  observations,  𝜏  differed                           

254 significantly  across  cortical  areas  (F 6,30  =  4.49,  p  =  0.002,  one-way  ANOVA  with  repeated                             

255 measures),  being  larger  for  frontal  than  posterior  areas,  in  particular  PPC  and  mV2.  Note  that,                               

256 while  it  is  possible  that  these  coefficients  capture  auto-correlations  introduced  by  intrinsic                        

257 GCaMP6f  dynamics,  there  is  no  reason  to  believe  that  this  affects  our  conclusions,  as  indicator                               

258 dynamics  should  be  similar  across  regions.  Thus,  during  the  evidence-accumulation  task,                       

259 cortical  regions  display  increasing  intrinsic  timescales  going  from  visual  to  frontal  areas.  This  is                             

260 consistent  with  previous  reports  for  spontaneous  activity  and  other  behavioral  tasks   (Chaudhuri                         

261 et  al.,  2015;  Hasson  et  al.,  2008;  Murray  et  al.,  2014;  Runyan  et  al.,  2017) .  Moreover,  it  is  in                                       

262 overall  agreement  with  our  inactivation  findings  (Figure  2),  and  suggests  that  the  different                           

263 intrinsic  timescales  across  the  cortex  support  evidence  integration  over  time  windows  of                         

264 different   durations.     
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265 Figure   3.     A   hierarchy   of   activity   timescales   during   evidence   accumulation.     
266 ( A )  Top:  example  widefield  imaging  field  of  view  showing  GCaMP6f  fluorescence  across  the  dorsal                             
267 cortex.  Bottom:  approximate  correspondence  between  the  field  of  view  and  ROIs  defined  from  the  Allen                               
268 Brain  Atlas,  ccv3.   ( B )  Distribution  of  cross-validated  accuracies  across  mice  (n  =  6,  sessions  for  each                                 
269 mouse  are  averaged)  and  ROIs  (n  =  7,  averaged  across  hemispheres).  ( C )  Example  of  actual  ∆F/F  (gray)                                   
270 and  GLM  predictions  (colored  lines)  for  the  first  5  s  of  the  same  held-out  single  trial,  and  four                                     
271 simultaneously  imaged  ROIs.  Traces  are  convolved  with  a  1-SD  gaussian  kernel  for  display  only.   ( D )                               
272 Auto-regressive  GLM  coefficients  as  a  function  of  time  lags  for  an  example  imaging  session  and  four                                 
273 example  ROIs.  Gray,  coefficient  values.  Colored  lines,  best-fitting  exponential  decay  functions.  ( E )                         
274 Distribution  of   R 2   values  for  the  exponential  fits  across  mice  (n  =  6,  sessions  for  each  mouse  are                                     
275 averaged)  and  ROIs  (n  =  7,  averaged  across  hemispheres).  ( F )  Exponential  decay  functions  for  all  seven                                 
276 cortical  areas,  fitted  to  the  average  across  mice  (n  =  6).  ( G )  Time  constants  extracted  from  the                                   
277 exponential  decay  fits,  for  each  area.  Error  bars,  ±  SEM  across  mice  (n  =  6).  P-value  is  from  a  one-way                                         
278 ANOVA   with   repeated   measures   with   ROIs   as   factors.    

 

 

279 Discussion   

280 Taken  together,  our  results  suggest  that  distributed  cortical  areas  contribute  to                       

281 sensory-evidence  accrual  on  different  timescales.  Specifically,  brief  sub-trial  inactivations                   
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282 during  performance  of  a  decision-making  task  requiring  seconds-long  evidence  accumulation                     

283 resulted  in  distinct  deficits  in  the  weighting  of  sensory  evidence  from  different  points  in  the                               

284 stimulus  stream.  This  was  such  that,  on  average,  the  inactivation  of  frontal  cortical  areas                             

285 resulted  in  decreased  use  of  evidence  occurring  further  in  the  past  from  laser  onset  compared                               

286 to  a  subset  of  posterior  regions  (Figure  2).  Compatible  with  this,  using  an  encoding  model  of                                 

287 large-scale  cortical  dynamics,  we  found  that  activity  timescales  vary  systematically  across  the                         

288 cortex   in   a   way   that   mirrors   the   inactivation   results   (Figure   3).     

289 Our  results  add  to  a  growing  body  of  literature  that  has  revealed  that  the  cortex  of                                 

290 rodents  and  primates  appears  to  be  organized  in  a  hierarchy  of  temporal  processing  windows                             

291 across  regions   (Chaudhuri  et  al.,  2015;  Gao  et  al.,  2020;  Hasson  et  al.,  2008;  Ito  et  al.,  2020;                                     

292 Murray  et  al.,  2014;  Runyan  et  al.,  2017;  Spitmaan  et  al.,  2020) .  Specifically,  to  the  best  of  our                                     

293 knowledge,  they  provide  the  first  causal  demonstration  that  the  contributions  of  different                         

294 cortical  areas  to  decision-making  computations  appear  similarly  arranged  in  a  temporal                       

295 hierarchy.  A  caveat  here  is  that  our  inactivation  findings  do  not  exactly  match  the  smooth                               

296 increases  in  integration  windows  going  from  posterior  to  frontal  areas  that  we  observed  in  our                               

297 neural  data.  Rather,  they  appear  to  reflect  a  more  modular  organization,  as  suggested  by  our                               

298 clustering  results  (see  also  Pinto  et  al.,  2019),  and  one  that  does  not  exactly  map  onto  the                                   

299 expected  monotonic  effects  on  accrual  timescales.  The  latter  could  be  due  the  fact  that  diverse                               

300 timescales  exist  at  the  level  of  individual  neurons  within  each  region   (Bernacchia  et  al.,  2011;                               

301 Cavanagh  et  al.,  2020;  Scott  et  al.,  2017;  Spitmaan  et  al.,  2020;  Wasmuht  et  al.,  2018) ,  and/or                                   

302 that,  other  decision-making  processes  beyond  evidence  accumulation  are  also  affected  by  our                         

303 inactivations.  For  instance,  both  mV2  and  mM2  appeared  to  contribute  to  post-accrual                         

304 decision  processes  (Figure  2–figure  supplement  2).  Nevertheless,  our  results  point  to  accrual                         
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305 timescale  hierarchies  being  a  significant  factor  explaining  the  large-scale  functional                     

306 organization   of   cortical   dynamics   during   evidence-based   decisions.     

307 Our  findings  further  suggest  the  possibility  that  the  logic  of  widespread  recruitment  of                           

308 cortical  regions  in  complex,  time-extended  decisions  may  in  part  rely  on  intrinsic  temporal                           

309 integration  properties  of  local  cortical  circuits,  rather  than  specific  evidence-accumulation                     

310 mechanisms.  For  instance,  it  is  possible  that  simple  perceptual  decisions  primarily  engage  only                           

311 the  relevant  sensory  areas  because  they  can  be  made  on  the  fast  intrinsic  timescales  displayed                               

312 by  these  regions   (Zatka-Haas  et  al.,  2020) .  Along  the  same  lines,  it  is  conceivable  that                               

313 discrepancies  in  the  literature  regarding  the  effects  of  perturbing  different  cortical  areas  during                           

314 evidence  accumulation  stem  in  part  from  differences  in  the  timescales  of  the  various  tasks                             

315 (Erlich   et   al.,   2015;   Fetsch   et   al.,   2018;   Hanks   et   al.,   2015;   Katz   et   al.,   2016;   Pinto   et   al.,   2019) .   

316 An  important  remaining  question  is  whether  evidence  from  the  different  time  windows  is                           

317 accumulated  in  parallel  or  as  a  feedforward  computation  going  from  areas  with  short  to  those                               

318 with  long  integration  time  constants.  The  parallel  scheme  would  be  compatible  with  recent                           

319 psychophysical  findings  in  humans  reporting  confidence  of  their  evidence-based  decisions                     

320 (Ganupuru  et  al.,  2019) .  Conversely,  a  feedforward  transformation  would  be  in  agreement  with                           

321 human  fMRI  findings  during  language  processing   (Yeshurun  et  al.,  2017) ,  and  with  a  previously                             

322 published  model  whereby  successive  (feedforward)  convolution  operations  lead  to                   

323 progressively  longer-lasting  responses  to  sensory  evidence   (Scott  et  al.,  2017) .  Interestingly,                       

324 the  oculomotor  integrator  of  both  fish  and  monkeys  appears  to  be  organized  as  largely                             

325 feedforward  chains  of  integration  leading  to  systematically  increasing  time  constants   (Joshua                       

326 and  Lisberger,  2015;  Miri  et  al.,  2011) ,  perhaps  suggesting  that  this  architecture  is  universal  to                               

327 neural   integrators.     
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328 Much  work  remains  before  obtaining  a  complete  circuit  understanding  of  gradually                       

329 evolving  decisions.  Our  findings  highlight  the  fact  that,  much  like  in  memory  systems   (Jeneson                             

330 and  Squire,  2012) ,  the  timescale  of  decision  processes  is  an  important  feature  governing  their                             

331 underlying  neural  mechanisms,  a  notion  which  should  be  incorporated  into  both  experimental                         

332 and   theoretical   accounts   of   decision   making.     

  

  

333 Materials   and   Methods   

  

334 Animals  and  surgery.   All  procedures  were  approved  by  the  Institutional  Animal  Care  and  Use                             

335 Committee  at  Princeton  University  and   were  performed  in  accordance  with  the  Guide  for  the                             

336 Care  and  Use  of  Laboratory  Animals  (National  Research  Council,  2011) .  We  used  both  male                             

337 and  female  VGAT-ChR2-EYFP  mice  aged  2  –  16  months                   

338 [ B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J,   Jackson  Laboratories,  stock  #  014548,  n  =                 

339 28].  Part  of  the  inactivation  data  from  some  of  these  animals  was  collected  in  the  context  of                                   

340 previous  work   (Pinto  et  al.,  2019) ,  but  the  analyses  reported  here  are  completely  novel.  The                               

341 mice  underwent  sterile  surgery  to  implant  a  custom  titanium  headplate  and  optically  clear  their                             

342 intact  skulls,  following  a  procedure  described  in  detail  elsewhere   (Pinto  et  al.,  2019) .  Briefly,                             

343 after  exposing  the  skull  and  removing  the  periosteum,  successive  layers  of  cyanoacrylate  glue                           

344 (krazy  glue,  Elmers,  Columbus,  OH)  and  diluted  clear  metabond  (Parkell,  Brentwood,  NY)  were                           

345 applied  evenly  to  the  dorsal  surface  of  the  skull,  and  polished  after  curing  using  a  dental                                 

346 polishing  kit  (Pearson  dental,  Sylmar,  CA).  The  headplate  was  attached  to  the  cleared  skull                             

347 using  metabond,  and  a  layer  of  transparent  nail  polish  (Electron  Microscopy  Sciences,  Hatfield,                           

348 PA)  was  applied  and  allowed  to  cure  for  10  –  15  min.  The  procedure  was  done  under  isoflurane                                     
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349 anesthesia  (2.5%  for  induction,  1.5%  for  maintenance).  The  animals  received  two  doses  of                           

350 meloxicam  for  analgesia  (1  mg/kg  I.P  or  S.C.),  given  at  the  time  of  surgery  and  24  h  later,  as                                       

351 well  as  peri-operative  I.P.  injections  of  body-temperature  saline  to  maintain  hydration.  Body                         

352 temperature  was  maintained  constant  using  a  homeothermic  control  system  (Harvard                     

353 Apparatus,  Holliston,  MA).  The  mice  were  allowed  to  recover  for  at  least  5  days  before  starting                                 

354 behavioral  training.  After  recovery  they  were  restricted  to  1  –  2  mL  of  water  per  day  and                                   

355 extensively  handled  for  another  5  days,  or  until  they  no  longer  showed  signs  of  stress.  We                                 

356 started  behavioral  training  after  their  weights  were  stable  and  they  accepted  handling.  During                           

357 training,  the  full  allotted  fluid  volume  was  typically  delivered  within  the  behavioral  session,  but                             

358 supplemented  if  necessary.  The  mice  were  weighed  and  monitored  daily  for  signs  of                           

359 dehydration.  If  these  were  present  or  their  body  mass  fell  below  80%  of  the  initial  value,  they                                   

360 received  supplemental  water  until  recovering.  They  were  group  housed  throughout  the                       

361 experiment,  and  had  daily  access  to  an  enriched  environment   (Pinto  et  al.,  2018) .  The  animals                               

362 were   trained   5   –   7   days/week.      

363 The  analysis  reported  in  Figure  3  (widefield  Ca 2+  imaging)  is  from  data  collected  in  the                               

364 context  of  a  previous  study   (Pinto  et  al.,  2019) ,  although  the  analysis  is  novel.  The  data  was                                   

365 from  6  male  and  female  mice  from  triple  transgenic  crosses  expressing  GCaMP6f  under  the                             

366 CaMKIIα  promoter  from  the  following  two  lines:  Ai93-D;CaMKIIα-tTA  [IgS6 tm93.1(tetO-GCaMP6f)Hze                   

367 Tg(Camk2a-tTA)1Mmay/J,  Jackson  Laboratories,  stock  #  024108]  and  Emx1-IRES-Cre                 

368 [B6.129S2-Emx1 tm1(cre)Krj /J,  Jackson  Laboratories,  stock  #  005628].  These  animals  also                   

369 underwent   the   surgical   procedure   described   above.      

  

370 Virtual  reality  apparatus.   The  mice  were  trained  in  a  virtual  reality  (VR)  environment  (Figure  1A)                               

371 described  in  detail  elsewhere   (Pinto  et  al.,  2018) .  Briefly,  they  sat  on  an  8-inch  hollow                               
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372 Styrofoam®  ball  that  was  suspended  by  compressed  air  at  ~60  p.s.i,  after  passing  through  a                               

373 laminar  flow  nozzle  to  reduce  noise  (600.326.5K.BC,  Lechler,  St.  Charles,  IL).  They  were                           

374 head-fixed  such  that  their  snouts  were  aligned  to  the  ball  equator  and  at  a  height  such  that                                   

375 they  could  run  comfortable  without  hunching,  while  still  being  able  to  touch  the  ball  with  their                                 

376 full  paw  pads  (corresponding  to  a  headplate-to-bal  height  of  ~1  inch  for  a  25-g  animal).  Ball                                 

377 movements  were  measured  using  optical  flow  sensors  (ADNS-3080  APM2.6)  and  transformed                       

378 into  virtual  world  displacements  using  custom  code  running  on  Arduino  Due                       

379 ( https://github.com/sakoay/AccumTowersTools/tree/master/OpticalSensorPackage ).  The  ball       

380 sat  on  a  custom  3D-printed  cup  that  contained  both  the  air  outlet  and  the  movement  sensor.                                 

381 The  VR  environment  was  projected  onto  a  custom-built  toroidal  Styrofoam®  screen  using  a                           

382 DLP  projector  (Optoma  HD141X,  Fremont,  CA)  at  a  refresh  rate  of  120  Hz  and  a  pixel  resolution                                   

383 of  1024  x  768.  The  screen  spanned  ~270˚  of  azimuth  and  ~80˚  of  elevation  in  the  mouse's                                   

384 visual  field.  The  whole  set-up  was  enclosed  in  a  custom-built  sound-attenuating  chamber.  The                           

385 VR  environment  was  programmed  and  controlled  using  ViRMEn   (Aronov  and  Tank,  2014)                         

386 ( https://pni.princeton.edu/pni-software-tools/virmen ),  running  on  Matlab  (Mathworks,  Natick,            

387 MA)   on   a   PC.     

  

388 Behavioral  task.   We  trained  the  mice  in  the  accumulating-towers  task   (Pinto  et  al.,  2018) .  The                               

389 mice  ran  down  a  virtual  T-maze  that  was  3.3  m  in  length  (y),  5  cm  in  height  and  a  nominal  10                                           

390 cm  in  width  (x,  though  they  were  restricted  to  the  central  1  cm).  The  length  of  the  maze                                     

391 consisted  of  a  30-cm  start  region  to  which  they  were  teleported  at  the  start  of  each  trial,                                   

392 followed  by  a  200-cm  cue  region  and  a  100-cm  delay  region.  The  cue  and  the  delay  region  had                                     

393 the  same  wallpaper  designed  to  provide  optical  flow.  During  the  cue  region,  the  mice                             

394 encountered  tall  white  objects  (2  x  6  cm,  width  x  height),  or  towers,  that  appeared  at  random                                   
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395 locations  in  each  trial  at  a  Poisson  rate  of  7.7  m -1  and  2.3  m -1  on  the  rewarded  on                                     

396 non-rewarded  side,  respectively  (or  8.0  and  1.6  m -1  in  some  sessions),  with  a  12-cm  refractory                               

397 period  and  an  overall  density  of  5  m -1 .  The  towers  appeared  when  the  mice  were  10  cm  away                                     

398 from  their  drawn  locations,  and  disappeared  200  ms  later  (roughly  corresponding  to  the  time                             

399 over  which  the  tower  sweeps  across  the  visual  field  given  average  running  speeds).  After  the                               

400 maze  stem  the  mice  turned  into  one  of  the  two  arms  (10.5  x  11  x  5  cm,  length  x  width  x  height),                                             

401 and  received  a  reward  if  they  turned  to  the  arm  corresponding  to  the  highest  tower  count  (4–8                                   

402 µL  of  10%  v/v  sweet  condensed  milk).  This  was  followed  by  a  3-s  inter-trial  interval,  consisting                                 

403 of  1  s  of  a  frozen  frame  of  the  VR  environment  and  2  s  of  a  black  screen.  An  erroneous  turn                                           

404 resulted   in   a   loud   sound   and   a   12-s   timeout.     

405 Each  daily  behavioral  session  (~1  h,  ~200  –  250  trials)  started  with  warm-up  trials  of  a                                 

406 visually  guided  task  in  the  same  maze,  in  which  towers  appeared  only  on  the  rewarded  side                                 

407 and  additionally  a  30-cm  tall  visual  guide  visible  from  the  start  of  the  trial  was  placed  in  the  arm                                       

408 corresponding  to  the  reward  location.  The  animals  progressed  to  the  main  task  when  they                             

409 achieved  at  least  85%  correct  trials  over  a  running  window  of  10  trials  in  the  warm-up  task.                                   

410 During  the  accumulating-towers  task,  performance  was  evaluated  over  a  40-trial  running                       

411 window,  both  to  assess  side  biases  and  correct  them  using  an  algorithm  described  elsewhere                             

412 (Pinto  et  al.,  2018) ,  and  to  trigger  a  transition  into  a  10-trial  block  of  easy  trials  if  performance                                     

413 fell  below  55%  correct.  These  blocks  consisted  of  towers  only  on  the  rewarded  side,  and  were                                 

414 introduced  to  increase  motivation  but  were  not  included  in  the  analyses.  No  optogenetic                           

415 inactivation  was  performed  during  either  warm-up  or  easy-block  trials.  In  the  widefield  imaging                           

416 experiments,  the  behavioral  sessions  contained  several  visually  guided  (warm  up)  blocks   (Pinto                         

417 et   al.,   2019) .   These   were   excluded   from   the   present   analyses.   
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418 Laser-scanning  optogenetic  inactivation.   We  used  a  scanning  laser  setup  described  in  detail                         

419 elsewhere   (Pinto  et  al.,  2019) .  Briefly,  a  473-nm  laser  beam  (OBIS,  Coherent,  Santa  Clara,  CA)                               

420 was  directed  to  2-D  galvanometers  using  a  125-µm  single-mode  optic  fiber  optic  (Thorlabs,                           

421 Newton,  NJ)  and  reached  the  cortical  surface  after  passing  through  an  f-theta  scanning  lens                             

422 (LINOS,  Waltham,  MA).  We  used  a  40-Hz  square  wave  with  an  80%  duty  cycle  and  a  power  of                                     

423 6  mW  measured  at  the  level  of  the  skull.  This  corresponds  to  an  inactivation  spread  of  ~  1.5  – 2                                       

424 mm   (Pinto  et  al.,  2019) .  While  this  may  introduce  confounds  regarding  ascribing  exact                           

425 functions  to  specific  cortical  areas,  we  have  previously  shown  that  the  effects  of  whole-trial                             

426 inactivations  at  much  lower  powers  (corresponding  to  smaller  spatial  spreads)  are  consistent                         

427 with  those  obtained  at  6  mW.  To  minimize  post-inactivation  rebounds,  the  last  100  ms  of  the                                 

428 laser  pulse  consisted  of  a  linear  ramp-down  of  power   (Guo  et  al.,  2014;  Pinto  et  al.,  2019) .  We                                     

429 performed  inactivations  during  the  following  trial  epochs:  1 st ,  2 nd  or  3 rd  quarter  of  the  cue  region                                 

430 (0  –  50  cm,  50  –  100  cm  or  100  – 150  cm,  respectively),  1 st  or  2 nd  half  of  the  cue  region  (0  –  100                                                 

431 cm  or  100  – 200  cm,  respectively),  or  delay  region  (200  – 300  cm).  Thus,  the  epochs  were                                 

432 defined  according  to  the  animals'  y  position  in  the  maze.  Because  of  this,  the  onset  time  of  the                                     

433 power  ramp-down  was  calculated  in  each  trial  based  on  the  current  speed  and  the  expected                               

434 time  at  which  the  mouse  would  reach  the  laser  offset  location.  The  system  was  controlled                               

435 using  custom-written  code  in  Matlab  running  on  a  PC,  which  sent  command  analog  voltages  to                               

436 the  laser  and  galvanometers  through  NI  DAQ  cards.  This  PC  received  instructions  for  laser                             

437 onset,   offset   and   galvanometer   position   from   the   ViRMEn   PC   through   digital   lines.   

438 We  targeted  a  total  of  9  area  combinations,  either  consisting  of  homotopic  bilateral                           

439 pairs  or  multiple  bilateral  locations.  The  galvanometers  alternated  between  locations  at  200  Hz                           

440 (20-mm  travel  time:  ~250  µs)  and,  in  the  case  of  more  than  2  locations,  the  sequence  of  visited                                     
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441 locations  was  chosen  to  minimize  travel  distance.  The  inactivated  locations  were  defined                         

442 based   on   stereotaxic   coordinates   using   bregma   as   reference,   as   follows:     

443 ● Primary   visual   cortex   (V1):   –3.5   AP,   3   ML   

444 ● Medial   secondary   visual   cortex   (mV2,   ~   area   AM):   –2.5   AP,   2.5   ML   

445 ● Posterior   parietal   cortex   (PPC):   –2   AP,   1.75   ML   

446 ● Retrosplenial   cortex   (RSC):   –2.5   AP,   0.5   ML   

447 ● Posteromedial   portion   of   the   premotor   cortex   (mM2):   0.0   AP,   0.5   ML   

448 ● Anterior   portion   of   the   premotor   cortex   (aM2):   +3   AP,   1   ML   

449 ● Primary   motor   cortex   (M1):   +1   AP,   2   ML   

450 ● Posterior   cortex:   V1,   mV2,   PPC   and   RSC   

451 ● Frontal   cortex:   mM2,   aM2   and   M1   

452 To  ensure  consistency  in  bregma  location  across  behavioral  sessions,  the  experimenter                       

453 set  bregma  on  a  reference  image  and  for  each  session  the  current  image  of  the  mouse's  skull                                   

454 was  registered  to  this  reference  using  rigid  transformations.  Different  sessions  contained                       

455 different  combinations  of  areas  and  inactivation  epochs,  resulting  in  partially  overlapping  mice                         

456 and  sessions  for  each  condition.  The  probability  of  inactivation  trials  therefore  varied  across                           

457 sessions,  ranging  from  a  total  of  0.15  –  0.35  across  conditions,  and  from  0.02  –  0.15  per                                   

458 condition.  In  our  experience,  capping  the  probability  at  ~0.35  is  important  to  maintain                           

459 motivation   throughout   the   behavioral   session.     

  

460 Widefield  Ca 2+  imaging.   Details  on  the  experimental  setup  and  data  preprocessing  can  be                           

461 found  elsewhere   (Pinto  et  al.,  2019) .  Briefly,  we  used  a  tandem-lens  macroscope  (1x  –  0.63x                               

462 planapo,  Leica  M  series,  Wetzlar,  Germany)  with  alternating  410-nm  and  470-nm  LED                         

463 epifluorescence  illumination  for  isosbestic  hemodynamic  correction,  and  collected  525-nm                   
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464 emission  at  20  Hz,  using  an  sCMOS  (OrcaFlash4.0,  Hamamatsu,  Hamamatsu  City,  Japan),  with                           

465 an  image  size  of  512  x  512  pixels  (pixel  size  of  ~17  µm).  Images  were  acquired  with  HCImage                                     

466 (Hamamatsu)  running  on  a  PC,  and  synchronized  to  the  behavior  using  a  data                           

467 acquisition-triggering  TTL  pulse  from  another  PC  running  ViRMEn,  which  in  turn  received                         

468 analog  frame  exposure  voltage  traces  acquired  through  a  DAQ  card  (National  Instruments,                         

469 Austin,  TX)  and  saved  in  the  behavioral  log  file.  The  image  stacks  were  motion-corrected  by                               

470 applying  the  x-y  shift  that  maximized  the  correlation  between  successive  frames,  and  then                           

471 were  spatially  binned  to  a  128  x  128  pixel  image  (~68  x  68  µm).  The  fluorescence  values  from                                     

472 pixels  belonging  to  different  anatomical  ROIs  were  averaged  into  a  single  trace,  separately  for                             

473 410-nm  ( F v )  and  470-nm  excitation  ( F b ).  After  applying  a  heuristic  correction  to   F v   (Pinto  et  al.,                                 

474 2019) ,  we  calculated  fractional  fluorescence  changes  as   R  =   F/F 0 ,  where   F 0  for  each  excitation                               

475 wavelength  was  calculated  as  the  mode  of  all   F  values  over  a  30-s  sliding  window  with                                 

476 single-frame  steps.  The  final  ∆F/F  was  calculated  using  a  divisive  correction,   ∆F/F  =   R b  /   R v  –  1.                                     

477 ROIs  were  defined  based  on  the  Allen  Brain  Mouse  Atlas  (ccv3).  We  first  performed  retinotopic                               

478 mapping  to  define  visual  areas,  and  used  the  obtained  maps  to  find,  for  each  mouse,  the                                 

479 optimal   affine   transformation   to   the   Allen   framework.     

  

480 Data  analysis.   All  analyses  of  the  behavioral  effects  of  cortical  inactivations  were  performed  in                             

481 Python  3.7.  Generalized  linear  model  (GLM)  fitting  of  widefield  data  was  performed  in  Matlab,                             

482 and   the   results   were   analyzed   in   Python.     

  

483 Behavioral  data  selection.   Because  of  the  warm-up  and  easy-block  trials,  the  sessions  are                           

484 naturally  organized  into  a  block  structure,  such  that  the  duration  of  each  block  of  the                               

485 accumulating-towers  task  is  of  at  least  40  trials  (see  above).  We  selected  all  trials  from  blocks                                 
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486 in  which  the  control  (laser  off)  performance  was  at  least  60%  correct,  collapsed  over  all  levels                                 

487 of  sensory  evidence.  After  block  selection,  we  excluded  trials  in  which  the  animals  failed  to                               

488 reach  the  end  of  the  maze,  or  in  which  the  total  traveled  distance  exceeded  the  nominal  maze                                   

489 length  by  more  than  10% (Pinto  et  al.,  2018,  2019) .  Additionally,  because  we  were  interested  in                                 

490 assessing  the  effects  of  inactivation  on  accumulation  timescales,  we  excluded  animals  that                         

491 failed  to  use  evidence  from  all  quarters  of  the  cue  region  of  the  maze  to  make  their  decisions  in                                       

492 control  trials.  To  do  this,  we  fitted  the  logistic  regression  model  (see  below)  separately  for  each                                 

493 animal,  bootstrapping  by  sampling  trials  with  replacement  200  times.  We  then  computed  the                           

494 significance  at  each  y  position  bin  as  the  fraction  of  trials  in  which  the  model  coefficient  was                                   

495 equal  to  or  greater  than  zero.  Mice  with  any  coefficients  not  significantly  different  than  zero                               

496 after  false  discovery  rate  correction  (see  below)  were  excluded  from  further  analyses.  These                           

497 selection  criteria  yielded  a  total  of  855  optogenetic  inactivation  sessions  from  20  mice  (average                             

498 ~43/mouse),  corresponding  to  100,787  control  (laser  off)  trials,  and  27,606  inactivation  trials                         

499 (average  ~511/condition,  see  Figure  1–table  supplement  1).  Twenty-five  sessions  from  six  mice                         

500 were   selected   for   widefield   imaging   data   analysis.   

  

501 Analysis  of  behavioral  data.   Overall  performance.  We  calculated  overall  performance  as  the                         

502 percentage  of  trials  in  which  the  mice  turned  to  side  with  the  highest  tower  counts,  separately                                 

503 for   control   and   inactivation   trials.     

504 Running  speed.  Speed  was  calculated  for  each  inactivation  segment  using  the  total  x-y                           

505 displacement.  We  compared  laser-induced  changes  in  speed  to  control  trials  from  the  same                           

506 maze   segment.     

507 Psychometric  curves.  We  computed  psychometric  curves  separately  for  control  and                     

508 inactivation  trials  by  plotting  the  percentage  of  right-choice  trials  as  a  function  of  the  difference                               
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509 in  the  number  of  right  and  left  towers  (#R  –  #L,  or  ∆).  ∆ was  binned  in  increments  of  5  between                                         

510 -15  and  15,  and  its  value  defined  as  the  average  ∆  weighted  by  the  number  of  trials.  We  fitted                                       

511 the   psychometric   curves   using   a   4-parameter   sigmoid:   

  

  

512 Evidence-weighting  curves.  To  assess  how  mice  weighted  sensory  evidence  from                     

513 different  segments  of  the  cue  region,  we  performed  a  logistic  regression  analysis  in  which  the                               

514 probability  of  a  right  choice  was  predicted  from  a  logistic  function  of  the  weighted  sum  of  the                                   

515 net  amount  of  sensory  evidence  from  each  of  4  equally-spaced  segments  (10  –  200  cm,  since                                 

516 no   towers   can   occur   before   y   =   10):   

  

  

517 where  ∆  =  #  right  –  #  left  towers  calculated  separately  for  each  segment.  These  weighting                                 

518 functions  were  calculated  separately  for  'laser  on'  and  'laser  off'  trials.  To  quantify  the                             

519 laser-induced  changes  in  evidence  weighting,  we  simply  subtracted  the  'laser  on'  from  the                           

520 'laser  off'  curves,  such  that  negative  values  indicate  smaller  evidence  weights  in  the  'laser  on'                               

521 condition.   Bin   sizes   were   chosen   to   match   the   resolution   of   our   inactivation   epochs.   

522 Laser-triggered  analysis.   For  each  area,  we  aligned  the  evidence-weighting  curves  by                       

523 the  position  of  laser  onset,  which  was  defined  as  y  =  0,  and  used  y  position  bins  going  up  to                                         

524 100  cm  in  the  past.  Thus,  each  inactivation  condition  contributed  up  to  3  bins  of  data,                                 

525 depending  on  the  position  of  laser  onset.  For  inactivations  lasting  more  than  one  position  bin                               

526 (i.e.  100  cm),  we  used  only  the  first  bin  during  the  inactivation  as  the  y  =  0  datapoint.  Given  the                                         
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527 laser  onset  positions  in  our  experiments,  y  =  0  had  six  data  points,  y  =  -50  had  four,  and  y  =                                           

528 -100  had  three.  For  the  laser-offset  triggered  analysis  (Figure  2–figure  supplement  2),  we                          

529 aligned  the  evidence-weighting  curves  by  the  first  bin  following  laser  offset.  Given  the  laser                             

530 offset   positions   in   our   data,   we   analyzed   y   =   50   (n   =   4   conditions)   and   y   =   100   (n   =   3).     

531 Statistics  of  inactivation  effects.  Error  estimates  and  statistics  for  general  performance,                       

532 running  speed  and  logistic  regression  weights  were  generated  by  bootstrapping  this  procedure                         

533 10,000  times,  where  in  each  iteration  we  sampled  trials  with  replacement.  P-values  were                           

534 calculated  as  the  fraction  of  bootstrapping  iterations  in  which  the  control-subtracted                       

535 inactivation  value  was  above  zero.  In  other  words,  we  performed  a  one-sided  test  of  the                               

536 hypothesis  that  inactivation  decreases  performance,  speed  and  evidence  weights  on  decision.                       

537 To  analyze  the  laser-onset  triggered  curves  (Figure  2),  we  used  a  one-way  ANOVA  with                             

538 repeated  measures  with  the  y  position  bin  as  a  factor  to  establish  the  significance  of  the                                 

539 difference  in  the  effects  across  bins.  To  account  for  the  different  number  of  datapoints  per                               

540 spatial  bin,  we  implemented  this  as  a  mixed  model  with  experimental  conditions  as  the  random                               

541 effect.  To  assess  whether  laser  effects  were  significant  for  each  bin  in  the  laser-onset  (or                               

542 offset)-aligned  curves,  we  performed  a  one-sided  t  test  against  zero,  with  inactivation  epochs                           

543 as  data  points.  Finally,  to  compare  the  effects  of  simultaneous  and  individual  area  inactivations                             

544 (Figure  2–figure  supplement  3),  we  performed  a  two-way  ANOVA  with  repeated  measures  with                           

545 factors  y  position  bin  and  inactivation  type,  using  the  individual  inactivation  epochs  as  data                             

546 points   (in   the   case   of   individual   inactivations,   epochs   from   different   areas   were   concatenated).   

547 Clustering  of  evidence-weighting  curves.   We  generated  a  7  x  3  (areas  x                         

548 laser-onset-triggered  inactivation  bins)  matrix  containing  the  average  laser-subtracted                 

549 evidence-weighting  curves,  aligned  by  laser  onset,  for  each  individually  targeted  area.  Thus,  we                           

550 excluded  the  experimental  conditions  in  which  frontal  or  posterior  cortical  areas  were                         
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551 inactivated  simultaneously  from  this  analysis.  We  then  performed  spectral  clustering  into   k                         

552 clusters  on  that  matrix.  We  tested   k  =  2  –  5,  and  chose  the  value  of   k  that  maximized  clustering                                         

553 quality  as  measured  by  the  Calinski-Harabasz  index.  Given  the  small  number  of  areas  per                             

554 cluster,  we  generated  error  estimates  for  each  y  position  bin  by  concatenating  the  individual                             

555 inactivation   conditions   (epochs)   for   all   areas   of   the   cluster.      

  

556 Generalized  linear  model  (GLM)  of  widefield  data.   We  fitted  Ca 2+  activity  averaged  over  each                             

557 anatomically  defined  ROI  with  a  generalized  linear  model  (GLM) (Pinto  et  al.,  2019;  Pinto  and                             

558 Dan,  2015;  Scott  et  al.,  2017) .  For  each  trial  and  y  position  in  the  maze,  we  extracted  ∆F/F                                     

559 (with  native  10-Hz  sampling  frequency)  limited  to  0  ≤  y  ≤  300  cm  (i.e.  trial  start,  outcome  and                                     

560 inter-trial  periods  were  not  included).  Activity  was  then  z-scored  across  all  trials.  ∆F/F  of  each                               

561 area  was  modeled  as  a  linear  combination  of  different  predictors  at  different  time  lags.  In                               

562 addition  to  the  previously  used  task-event  predictors   (Pinto  et  al.,  2019) ,  we  added  coupling                             

563 terms  i.e.  the  zero-lag  activity  of  the  other  simultaneously  imaged  ROIs (Pillow  et  al.,  2008;                               

564 Runyan  et  al.,  2017) ,  as  well  as  auto-regressive  terms  to  capture  activity  auto-correlations  that                             

565 were  independent  of  task  events   (Spitmaan  et  al.,  2020) .  Finally,  we  added  a  term  to  penalize                                 

566 the  L2  norm  of  the  coefficients,  i.e.  we  performed  ridge  regression.  The  full  model  was  thus                                 

567 defined   as:   

  

  

  

568 where   β 0   is  an  offset  term,   λ   is  the  penalty  term  and   is  the  L2  norm  of  the  weight  vector.                                           

569 Additionally,    A ,    C    and    T    are   the   auto-regressive,   coupling   and   task   terms,   respectively:   
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570 In  the  above  equations,   is  the  encoding  weight  for  predictor   x  at  time  lag   i   (in  steps  of  0.1                                         

571 s),  where   x  is  either  a  task  event  or  the  activity  of  the  ROI  at  a  previous  time  point,  and                                            

572 is  the  weight  for  the  zero-lag  activity  for  simultaneously  imaged  ROI   j   (we  had  a  total  of  16  ROIs                                       

573 across  the  two  hemispheres).  In  the  task  term,   is  a  delta  function  indicating  the                               

574 occurrence  of  event   x  at  time   t - i .  Specifically,   tR  indicates  the  occurrence  of  a  right  tower,   tL   of                                     

575 a  left  tower,   ∆  =  cumulative  #R  –  #L  towers,   θ  is  view  angle,   dθ/dt  is  virtual  view  angle  velocity,                                       

576 sp  is  running  speed,   y  is  spatial  position  in  the  maze  stem  (no  lags),  and   ch ,   pch  and   prw  are                                         

577 constant  offsets  for  a  given  trial,  indicating  upcoming  choice,  previous  choice  (+1  for  right  and                               

578 –1   for   left)   and   previous   reward   (1   for   reward   and   –1   otherwise),   respectively.    

579 Cross-validation.  The  model  was  fitted  using  3-fold  cross-validation.  For  each  of  20                         

580 values  of  the  penalty  term   λ ,  we  trained  the  model  using  ⅔  of  the  trials  (both  correct  and  wrong                                      

581 choices),  and  tested  it  on  the  remaining  ⅓  of  trials.  We  picked  the  value  of   λ   that  maximized                                    

582 accuracy,  and  used  median  accuracy  and  weight  values  across  all  10  x  3  runs  for  that   λ.   Model                                     
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583 accuracy  was  defined  as  the  linear  correlation  coefficient  between  actual  ∆F/F  and  that                           

584 predicted   by   the   model   in   the   test   set.   

585 Model  comparison.  We  tested  three  versions  of  the  GLM,  one  with  just  the  task  term   T ,                                 

586 another  one  adding  the  auto-regressive  term   A ,  and  the  other  with  the  coupling  term   C  in                                 

587 addition  to   A  and   T .  All  versions  were  fitted  using  exactly  the  same  cross-validation  data                               

588 partitioning  to  allow  for  direct  comparison.  We  averaged  cross-validated  predictions  over                       

589 hemispheres  and  sessions  for  each  mouse,  performing  the  comparison  with  mouse-level  data.                         

590 Statistical  significance  of  the  differences  between  the  accuracy  of  different  models  was                         

591 computed  using  a  two-way  ANOVA  with  repeated  measures  with  factors  ROI  and  model  type,                             

592 and  individual  model  comparisons  were  made  using  Tukey's  post-hoc  test.  Coefficient  analysis                         

593 in   Figure   3   is   from   the   full   model,   which   had   the   highest   performance.   

  

594 Quantification  of  timescales  from  the  GLM.   To  quantify  the  timescales  from  the  fitted                           

595 auto-regressive  coefficients,  for  each  behavioral  session  we  fitted  an  exponential  decay                       

596 function  to  the  coefficients  between  0.1  and  2  s  in  the  past,  normalized  to  the  coefficient  at  0.1                                     

597 s   (first   bin):   

  

  

  

598 where   B  is  the  offset  term,   A  controls  the  amplitude  of  the  curve,   x  is  the  vector  of  normalized                                       

599 coefficients  and  𝜏  is  the  decay  time  constant.  Fits  were  performed  using  the  non-linear  least                               

600 squares  algorithm.  The  extracted  time  constants  (𝜏)  were  first  averaged  over  hemispheres  and                           

601 sessions  for  each  mouse,  and  statistics  were  performed  on  mouse  averages.  Significance  of                           
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602 the  differences  in  the  time  constants  across  regions  was  assessed  by  performing  a  one-way                             

603 ANOVA   with   repeated   measures,   with   cortical   regions   as   the   factor.     

  

604 False  discovery  rate  correction.   We  corrected  for  multiple  comparisons  using  a  previously                         

605 described  method  for  false  discovery  rate  (FDR)  correction   (Benjamini  and  Hochberg,  1995;                         

606 Guo  et  al.,  2014;  Pinto  et  al.,  2019) .  Briefly,  p-values  were  ranked  in  ascending  order,  and  the                                   

607 i th  ranked  p - value,   P i ,  was  deemed  significant  if  it  satisfied   P i   ≤  ( αi )/ n ,  where   n  is  the  number  of                                       

608 comparisons  and   α   is  the  significance  level.  In  our  case,   α   =  0.05  because  we  defined  all  tests                                     

609 as   one   sided.   

  

610 Data   and   code   availability   

  

611 Data   analysis   code   and   source   code   for   figures   is   available   at   

612 https://github.com/BrainCOGS/PintoEtAl2020_subtrial_inact.git.  Behavioral  data  from         

613 inactivation  experiments  and  GLM  summary  data  will  be  deposited  on  a  public  repository  upon                             

614 peer-reviewed   publication   of   this   manuscript.     
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Region    Epoch    Num.  control    
trials   

Num.  laser    
trials   

Num.   
mice   

Num.   
sessions   

Total   trial   count   

V1    cue,   1 st    quarter   (0   –   50   cm)    21,741    692    7    189    22,433   
V1    cue,   2 nd    quarter   (50   –   100   cm)    21,646    686    7    189    22,332   
V1    cue,   1 st    half   (0   –   100   cm)    19,753    540    7    158    20,293   
V1    cue,   3 rd    quarter   (100   –   150   cm)    21,580    680    7    185    22,260   
V1    cue,   2 nd    half   (100   –   200   cm)    20,492    585    7    163    21,077   
V1    delay   (200   -   300   cm)    20,013    596    8    162    20,609   
mV2    cue,   1 st    quarter   (0   –   50   cm)    18,372    589    7    159    18,961   
mV2    cue,   2 nd    quarter   (50   –   100   cm)    18,495    577    7    162    19,072   
mV2    cue,   1 st    half   (0   –   100   cm)    14,446    367    3    121    14,813   
mV2    cue,   3 rd    quarter   (100   –   150   cm)    18,429    594    7    160    19,023   
mV2    cue,   2 nd    half   (100   –   200   cm)    14,449    353    3    119    14,802   
mV2    delay   (200   -   300   cm)    15,058    366    5    124    15,424   
PPC    cue,   1 st    quarter   (0   –   50   cm)    15,929    403    6    133    16,332   
PPC    cue,   2 nd    quarter   (50   –   100   cm)    15,993    429    6    134    16,422   
PPC    cue,   1 st    half   (0   –   100   cm)    9,006    615    9    63    9,621   
PPC    cue,   3 rd    quarter   (100   –   150   cm)    15,950    419    6    134    16,369   
PPC    cue,   2 nd    half   (100   –   200   cm)    7,505    266    5    52    7,771   
PPC    delay   (200   -   300   cm)    8,947    616    6    67    9,563   
RSC    cue,   1 st    quarter   (0   –   50   cm)    15,923    422    6    134    16,345   
RSC    cue,   2 nd    quarter   (50   –   100   cm)    16,064    418    6    136    16,482   
RSC    cue,   1 st    half   (0   –   100   cm)    11,736    925    10    86    12,661   
RSC    cue,   3 rd    quarter   (100   –   150   cm)    15,952    432    6    134    16,384   
RSC    cue,   2 nd    half   (100   –   200   cm)    13,116    1,018    8    94    14,134   
RSC    delay   (200   -   300   cm)    9,533    729    8    70    10,262   
Posterior   cue,   1 st    quarter   (0   –   50   cm)    16,147    455    4    126    16,602   
Posterior   cue,   2 nd    quarter   (50   –   100   cm)    16,287    482    4    128    16,769   
Posterior   cue,   1 st    half   (0   –   100   cm)    14,439    355    3    119    14,794   
Posterior   cue,   3 rd    quarter   (100   –   150   cm)    16,252    474    4    127    16,726   
Posterior   cue,   2 nd    half   (100   –   200   cm)    14,038    312    3    118    14,350   
Posterior   delay   (200   -   300   cm)    14,117    357    3    115    14,474   
mM2    cue,   1 st    quarter   (0   –   50   cm)    21,787    703    7    191    22,490   
mM2    cue,   2 nd    quarter   (50   –   100   cm)    21,615    692    7    187    22,307   
mM2    cue,   1 st    half   (0   –   100   cm)    19,972    588    7    161    20,560   
mM2    cue,   3 rd    quarter   (100   –   150   cm)    21,766    674    7    190    22,440   
mM2    cue,   2 nd    half   (100   –   200   cm)    21,015    634    8    167    21,649   
mM2    delay   (200   -   300   cm)    19,755    605    7    159    20,360   
aM2    cue,   1 st    quarter   (0   –   50   cm)    16,025    426    6    135    16,451   
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760 Figure  1–table  supplement  1.  Numbers  of  mice,  sessions  and  trials  for  each  of  the  54  experimental                                 
761 conditions.     
762 Last  line  shows  the  number  of  unique  mice  and  trials  across  all  experiments,  as  conditions  were  partially                                   
763 overlapping   for   a   given   mouse   and   behavioral   session.         
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aM2    cue,   2 nd    quarter   (50   –   100   cm)    16,023    420    6    135    16,443   
aM2    cue,   1 st    half   (0   –   100   cm)    20,338    576    7    166    20,914   
aM2    cue,   3 rd    quarter   (100   –   150   cm)    16,046    425    6    135    16,471   
aM2    cue,   2 nd    half   (100   –   200   cm)    21,210    658    8    169    21,868   
aM2    delay   (200   -   300   cm)    19,737    616    7    158    20,353   
M1    cue,   1 st    quarter   (0   –   50   cm)    13,894    369    6    117    14,263   
M1    cue,   2 nd    quarter   (50   –   100   cm)    13,938    382    6    119    14,320   
M1    cue,   1 st    half   (0   –   100   cm)    14,806    387    3    125    15,193   
M1    cue,   3 rd    quarter   (100   –   150   cm)    14,009    364    6    121    14,373   
M1    cue,   2 nd    half   (100   –   200   cm)    14,774    395    3    122    15,169   
M1    delay   (200   -   300   cm)    14,721    386    3    123    15,107   
Frontal    cue,   1 st    quarter   (0   –   50   cm)    16,255    475    4    126    16,730   
Frontal    cue,   2 nd    quarter   (50   –   100   cm)    16,178    485    4    128    16,663   
Frontal    cue,   1 st    half   (0   –   100   cm)    14,410    369    3    120    14,779   
Frontal    cue,   3 rd    quarter   (100   –   150   cm)    16,065    483    4    123    16,548   
Frontal    cue,   2 nd    half   (100   –   200   cm)    14,392    377    3    121    14,769   
Frontal    delay   (200   -   300   cm)    14,511    365    3    118    14,876   
Total   unique   count    100,787    27,606    20    855    128,393   
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764 Figure  1–figure  supplement  1.   Effects  of  subtrial  inactivations  on  psychometric  functions  during  all                           
765 54   area-epoch   combinations.     
766 Black  lines  show  control  trials  and  blue  lines  show  inactivation  trials,  for  data  combined  across  mice.                                 
767 Error   bars,   binomial   confidence   intervals.   Lines   are   best-fitting   psychometric   functions.      
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768 Figure  1–figure  supplement  2.   Effects  of  subtrial  inactivations  on  evidence-weighting  functions                       
769 during   all   54   area-epoch   combinations.     
770 Black  lines  show  the  inactivation-induced  change  in  evidence  weights  (laser  on  –  laser  off),  and  shaded                                 
771 areas  indicate  inactivation  epoch.  Data  were  combined  across  mice.  Error  bars,  S.D.  across  10,000                             
772 bootstrapping   iterations.   Gray   circles   indicate   statistical   significance   according   to   the   caption   on   top.   
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773 Figure   2–figure   supplement   1.     Inactivation   of   cortical   areas   does   not   decrease   running   speeds.   
774 Effects  of  subtrial  inactivations  on  running  speed  during  all  54  area-epoch  combinations.  Each  panel                             
775 shows  inactivation-induced  change  in  speed  during  the  laser-on  epoch  or  equivalent  maze  regions  in                             
776 control  trials,  for  data  combined  across  mice.  Error  bars:  S.D.  across  10,000  bootstrapping  iterations.                             
777 There  were  no  significant  decreases,  as  assessed  by  a  one-sided  bootstrapping  test  (see  Materials  and                               
778 Methods).     
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779 Figure   2–figure   supplement   2.     Little   effect   on   evidence   weighting   after   laser   offset.   
780 Laser-offset-aligned  changes  in  evidence-weighting  curves  for  each  bilaterally  targeted  area  (laser  on  -                           
781 laser  off).  Thin  gray  lines,  individual  inactivation  epochs  (n  =  4  for  y  =  50,  3  for  y  =  100).  Thick  black  lines,                                               
782 average  across  conditions.  Error  bars,  ±  SEM  across  experimental  conditions,  for  data  combined  across                             
783 mice.  Circles  below  the  lines  indicate  statistical  significance  (one  circle:  p  <  0.05,  two  circles:  p  <  0.01;                                     
784 one-sided   paired   t   test   vs.   zero,   corrected   for   multiple   comparisons).      
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785 Figure  2–figure  supplement  3.   Comparison  between  simultaneous  multi-area  inactivation  and                     
786 average   across   the   corresponding   individually   inactivated   areas.     
787 Average  laser-onset-aligned  changes  in  evidence-weighting  curves  for  each  set  of  experimental                       
788 conditions  (caption  on  top),  for  data  combined  across  mice.  Error  bars,  ±  SEM  across  experimental                               
789 conditions.  Shaded  areas,  laser  on  periods.  P-values  on  top  are  from  a  two-way  ANOVA  with  repeated                                 
790 measures,  factors  inactivation  type  (simultaneous  vs.  individual)  and  y  position.  There  were  no                           
791 differences  between  simultaneous  and  individual  inactivation  of  either  frontal  or  posterior  areas.  On  the                             
792 other  hand,  effects  depended  on  the  distance  of  evidence  from  laser  onset  for  posterior  but  not  frontal                                   
793 areas.   
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794 Figure   3–figure   supplement   1.     GLM   coupling   coefficients   for   ROI   activity   predictors.     
795 For  each  ROI  (rows),  shown  are  the  average  coefficients  (n=6  mice)  for  the  predictors  consisting  of                                 
796 zero-lag  activity  of  the  other  simultaneously  imaged  ROIs.  Note  that  the  diagonal  elements  are  not                               
797 defined  since  zero-lag  self-activity  predictors  were  not  in  the  model.  Data  from  the  somatosensory                             
798 cortex  ROI  has  been  omitted  for  symmetry  with  the  inactivation  data.  L  and  R  indicate  left  and  right                                     
799 hemispheres,   respectively.     
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