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 Peptidome based immune stratification in sepsis 

Abstract 23 

Sepsis has been called “the graveyard of pharmaceutical companies” due to the numerous failed 24 
clinical trials. The lack of tools to monitor the immunological status in sepsis constrains the 25 
development of immunomodulatory therapies. Here, we evaluated a test based on whole plasma 26 
peptidome acquired in a MALDI-TOF-mass spectrometer used for bacterial biotyping and machine-27 
learning algorithms to discriminate the different immunological phases of sepsis. In this proof of 28 
concept study, two discrete lipopolysaccharide-(LPS) induced murine models emulating the pro- and 29 
anti-inflammatory phases that occur during sepsis were evaluated. The LPS group was inoculated 30 
with a single high dose of LPS, recalling the proinflammatory phase, and the IS groups was subjected 31 
to increasing doses of LPS to induce the anti-inflammatory/immunosuppression phase. Unstimulated 32 
mice served as controls.  Both experimental groups showed the hallmarks of pro- and anti-33 
inflammatory phases respectively; the LPS group showed leukopenia and higher levels of cytokines 34 
and tissue damage markers, and the IS group showed neutrophilia, lymphopenia and significantly 35 
lower antibody titers upon immunization. Principal component analysis of the plasma peptidomes 36 
formed three discrete clusters that mostly coincided with the experimental groups. In addition, 37 
machine-learning algorithms discriminated the different experimental groups with a sensitivity and 38 
specificity of up to 95.7% and 90.9% respectively. Our data reveal the potential of plasma peptidome 39 
analysis by MALDI-TOF-mass spectrometry as a simple, speedy and readily transferrable method for 40 
sepsis patient stratification that would contribute to therapeutic decision-making based on their 41 
immunological status.  42 
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1 Introduction 43 

Sepsis constitutes one the major causes of death in intensive care units (Vincent et al., 2009; Novosad 44 
et al., 2016) with an incidence of 31.5 million cases and 7-9 million deaths annually (Fleischmann et 45 
al., 2016). The impact of sepsis in developing regions such as Latin America is elusive due to the 46 
limited number of prevalence studies, but the high incidence rate of infectious diseases and the 47 
inequities in the access to health care indicates that sepsis is an alarming health problem in the region 48 
(Machado et al., 2017; Azevedo et al., 2018; Estenssoro et al., 2018; Estenssoro et al., 2019).  49 

The redefinition by the Sepsis-3 consensus highlights the need to integrate the information on the 50 
etiological agent and the host response status and strongly emphasizes that the dysregulated host 51 
response as a key component of sepsis (Singer et al., 2016).  52 

From the immunological point of view, sepsis is characterized by the predominance of an 53 
overwhelming pro-inflammatory response during the early stages with a concomitant anti-54 
inflammatory and immunosuppressive response that becomes predominant in the later stages (van der 55 
Poll et al., 2017; Venet et al., 2018; Rubio et al., 2019). Sepsis has earned the epithet of “the 56 
graveyard of pharmaceutical companies” due to the numerous failed clinical trials and this could be 57 
related to an inappropriate timing for the application of immunomodulatory interventions (Rubio et 58 
al., 2019). The lack of tools to monitor the host immune status constrains the evaluation of novel 59 
immunomodulatory therapeutic approaches. Despite the efforts put in biomarker search in the past 60 
decades, only a handful of molecules, such as procalcitonin, proved to be useful in the clinical setting 61 
under specific conditions, and the fact that efficient biomarkers not necessarily correspond to key 62 
mediators adds further complexity (Parlato and Cavaillon, 2015). Moreover, none of them determines 63 
the quickly changing immunological status of the host (Pierrakos and Vincent, 2010; van der Poll et 64 
al., 2017; Parlato et al., 2018; van Engelen et al., 2018b; Venet et al., 2018; Al Jalbout et al., 2019; 65 
Gunsolus et al., 2019; Rubio et al., 2019; Schenz et al., 2019).  66 

With the advent of artificial intelligence algorithms including machine learning (ML) (López 67 
Fernández et al., 2016), top-down analysis of unlabeled biological samples is gaining ground. This is 68 
the case of matrix-assisted light desorption ionization-time of flight-mass spectrometry (MALDI-69 
TOF-MS), a powerful tool that is currently spreading in the clinical setting for microbiological 70 
biotyping and in biomedical research for the study of biological samples in several diseases including 71 
sepsis (Ludwig and Hummon, 2017; Hou et al., 2019). 72 

Taking into account that around 50% of all sepsis cases are caused by Gram-negative bacteria (van 73 
Engelen et al., 2018a; Dolin et al., 2019), we (Rearte et al., 2010a; Rearte et al., 2010b; Landoni et 74 
al., 2012; Martire-Greco et al., 2014; Rearte et al., 2014; Córdoba-Moreno et al., 2019; Montagna et 75 
al., 2020) and other authors (Opal et al., 1999; Genga et al., 2018) demonstrated that both 76 
inflammatory and anti-inflammatory processes that occur during sepsis can be emulated by 77 
lipopolysaccharides (LPS) in murine models.  78 

Herein, we hypothesized that the pro/anti-inflammatory phases could be discriminated through the 79 
analysis of plasma peptidome spectra generated by MALDI-TOF-MS. Thus, in this study, using LPS-80 
induced murine models emulating the different phases, we developed and evaluated predictive 81 
models based on ML algorithm that would allow the discrimination of the different immunological 82 
phases. 83 

2 Materials and methods 84 
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2.1 Animals 85 

Female and male BALB/c mice (8–12 weeks old) were provided by the IMEX-CONICET-Academia 86 
Nacional de Medicina, Buenos Aires, Argentina. Animals were maintained under a 12 h light–dark 87 
cycle at 22 ± 2 °C and were fed with standard diet and water ad libitum. Animals were bred and 88 
housed in accordance with the NIH Guide and Use of Laboratory Animals (National Research 89 
Council (U.S.), 2011). Experimental designs were approved by the Committee for the Care and Use 90 
of Laboratory Animals (CICUAL) of IMEX-CONICET, Academia Nacional de Medicina de Buenos 91 
Aires. 92 

2.2 Murine Models  93 

All the inoculation and sample collection schemes are depicted in Supplementary Figure 1.  94 

Briefly, for the inflammatory phase model (LPS group), BALB/c mice were inoculated with a lethal 95 
dose 50 (LD50) of LPS of Escherichia coli O111: B4 (100 μg/ mouse; Sigma-Aldrich, St Louis, MO, 96 
USA) intraperitoneally (i. p.) (Córdoba-Moreno et al., 2019). Plasma samples were obtained at 1.5 h 97 
and 6 h after the injection. In the anti-inflammatory/immunosuppression phase model (IS group), 98 
BALB/c mice were inoculated daily with LPS for 10 consecutive days. The inoculation scheme 99 
consisted of increasing doses starting from 5 µg/mouse i. p. for the first 4 days, followed by 50 100 
µg/mouse i. p. for 3 days, and 100 µg/mouse i. p. for the last 3 days (Rearte et al., 2010b). Plasma 101 
samples were obtained 24h after the last LPS dose. A third group of mice inoculated with vehicle 102 
(saline solution) served as control (CTL group). The plasma in this group was collected at the same 103 
time points indicated in the experimental groups. Peripheral blood was collected by submandibular 104 
bleeding method in order to maximize the quality of the sample. Part of the heparinized samples were 105 
used for blood cell count and the remaining volume was centrifuged twice (400xg, 10 min at 4ºC) 106 
and plasma were stored at -20ºC until analysis. 107 

2.3 Immunological, hematological and biochemical parameters 108 

Peripheral blood leukocytes were counted in a Coulter hematology analyzer (Diatron Abacus Junior 109 
Vet, Budapest, Hungary) at 1.5 h and 24 h post LPS for the LPS and the IS groups respectively. 110 
Proinflammatory (TNF-α; IL-12p70; IFN-γ; IL-6) and anti-inflammatory cytokines (IL-10, TGF-β) 111 
were determined in plasma by ELISA at the indicated time points (OptEIA set; BD Biosciences, San 112 
Diego, CA, USA) according to the manufacturer’s instructions. The tissue damage markers creatinine 113 
(Cre), alanine aminotransferase (ALT) and aspartate transaminase (AST) were determined in plasma, 114 
at 6 and 24 h in the LPS and IS groups respectively, using a kit from BioTecnica (Varginha, Minas 115 
Gerais, Brazil) and the MINDRAY BS-200E auto-analyzer according to the manufacturer’s 116 
instructions.  117 

For flow cytometry analysis, 24 h after the last LPS dose, a splenocyte suspension was obtained and 118 
the cells were immunolabeled as described previously (Rearte et al., 2010b; Rearte et al., 2014). The 119 
following cell types were evaluated: CD4 (FITC-anti-CD4, clone RM4-5) and CD8 (PECy5-anti-120 
CD8, clone 53-6.7) T-lymphocytes, B-lymphocytes (FITC-anti-CD45R-B220, clone RA3-6B2), 121 
polymorphonuclear neutrophils (FITC-anti-CD11b, clone M1/70 and PE-anti-Ly6G, clone 1A8). The 122 
expression levels of PDL-1 (PE-anti-PDL-1, clone MIH5) on the CD11b gate of myeloid lineage 123 
cells were also evaluated. Labeled monoclonal antibodies were obtained from Invitrogen and BD 124 
PharmingenTM. Cells were acquired in a Becton Dickinson FACScan flow cytometer using Cell 125 
Quest software (Becton Dickinson, San Jose, CA, USA).  126 
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Primary antibody response to sheep red blood cells (SRBC) was evaluated by immunizing animals 24 127 
h after the last dose of LPS (5x108 SRBC /mouse, 0.1ml i. p.). The anti-SRBC antibody titer was 128 
evaluated in serum through an hemagglutination assay 7 days after immunization as described 129 
previously (Rearte et al., 2010b; Rearte et al., 2014).  130 

2.4 Acquisition of MALI-TOF-MS spectra  131 

Plasma samples were analyzed with the MALDI Biotyper System (Bruker Daltonik GmbH, Bremen, 132 
Germany). Total number of plasma samples analyzed per group were n = 29 for the LPS group, n = 133 
22 for the IS group and n= 25 for the CTL group. Plasma samples were analyzed with the standard 134 
method for microbial biotyping. Briefly, 1μl of plasma was loaded onto each spot in duplicate and 1 135 
μl of the matrix (alpha-cyano-4-hydroxycinnamic acid matrix in 50% acetonitrile and 2.5% 136 
trifluoroacetic acid) was added to each dried spot. 137 

Continuous mass spectra were obtained with a Microflex LT/SH MALDI-TOF mass spectrometer 138 
using the flexControl software version 3.4.135.0. Acquisition conditions were ionization mode: LD+, 139 
acquisition method: MBT_FC.par, acquisition mode: qsim, tof Mode: linear, acquisition Operator 140 
Mode: linear, and digitizerType: Bruker BD0G5, within a mass range of 2,000-20,000 Da. Spectra 141 
were obtained in the manual mode, using 60% of laser intensity with 40 laser repetition in each shot 142 
and reaching between 400-500 spectra by acquisition. Internal calibration was performed every day 143 
following manufacturer’s instructions (bacterial test standard; Bruker Daltonik GmbH).  144 

2.5 MALDI-TOF-MS data pre-processing 145 

We generated a dataset containing 152 mass spectra from plasma samples corresponding to the three 146 
mice groups in duplicate. Mass spectra were read as fid/aqus files with MALDIquantForeign (v0.10) 147 
(Gibb, 2019) and they were processed using MALDIquant (v1.16.2) (Gibb and Strimmer, 2012) R 148 
package. Briefly, spectra were square root-transformed, smoothed using the Savitzky-Golay 149 
algorithm, and were baseline-corrected applying the SNIP process across 100 iterations.   150 

The peaks were detected by a function that estimates the noise of mass spectrometry data by 151 
calculating the median absolute deviation (MAD). The signal-to-noise-ratio (SNR) was set up in 4, 152 
with a half Window Size of 40 and a tolerance of 0.2 for peak binning. Duplicates were averaged 153 
except from one replicate corresponding to the CTL group that was removed due to low quality and 154 
76 averaged spectra were subject to further analysis. Peaks that occurred in less than 33% of the 155 
spectra were removed. MALDI-TOF-MS data were transformed by a categorization of the peak 156 
intensity, performed with the Binda R package (Gibb, 2015) which compares the intensity value with 157 
the peak group average, returning 1 when it was equal or higher and 0 when it was lower. The 158 
analysis workflow is depicted in the Figure 1. 159 

2.6 Statistical analysis  160 

2.6.1 Immunological, hematological and biochemical parameters 161 
Graph Pad Prism 6 software (GraphPad Software, San Diego, CA) was used for statistical analysis 162 
and plotting. The number of mice or biological replicates (n) analyzed in each experiment were the 163 
replicates considered for statistical analysis. Values are expressed as the mean ± standard error of the 164 
mean (SEM) of n samples. No outliers were removed. The assumption test to determine the Gaussian 165 
distribution was performed by the Kolmogorov and Smirnov method. For parameters with a Gaussian 166 
distribution, the differences between two experimental groups were assessed by unpaired Student’s t 167 
test, and for multiple group comparisons, as the differences in peripheral blood leukocytes, were 168 
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analyzed using a one-way ANOVA followed by a Tukey’s multiple comparison test. For parameters 169 
with a non-Gaussian distribution, comparisons between two experimental groups were performed 170 
using Mann–Whitney U test. All statistical tests were interpreted in a two-tailed fashion and a P<0.05 171 
was considered statistically significant. 172 

2.6.2 MALDI-TOF-MS data 173 
Statistical analysis and plotting were performed using Rstudio. Programmed peaks selection was 174 
performed in the entire dataset seeking for biomarkers of each class representing the different 175 
experimental groups by the Binary Discriminant Analysis (BDA) algorithm, which outputs the 176 
t.score (Class means vs. Pooled mean) of each peak. The sign of the t.score indicates the presence 177 
(positive t.score) or absence (negative t.score) of that peak in each group. A significance level of 95% 178 
was achieved if the modulus of the t.score was equal or higher than 2.5. The best-extracted features 179 
were then used to perform a hierarchical k-means clustering-principal component analysis (PCA) 180 
with the factoextra R package (Kassambara and Mundt, 2019). The binary distance was used to 181 
measure dissimilarity between observations by the ward.D2 agglomeration method with a k of 4. In 182 
addition, spectra were analyzed with the random forest (RF) classifier to test another classification 183 
model based on a different underlying criterion.  184 

Afterwards, two ML methods were applied in the dataset to train both BDA and RF classifiers in R 185 
(Liaw and Wiener, 2002). Initially, the dataset was randomly partitioned into a training set (60% of 186 
plasma samples) and a test set (40% of plasma samples). Programmed feature (peaks) selection was 187 
performed with the respective algorithms in the training set seeking for discriminant peaks 188 
corresponding to each experimental group. The extracted features were then used to train several ML 189 
models. Accuracy, sensitivity, and specificity were used to evaluate the performances of all resulting 190 
models in the test set by a cross-validation strategy.  191 

3 Results 192 

3.1 Simulation of pro- and anti-inflammatory sepsis phases 193 

The proinflammatory phase was induced with a high dose of LPS (LPS group), whereas the anti- 194 
inflammatory/immunosuppression phase (IS group) was reached with a scheme of increasing doses 195 
of LPS (Suppl. Fig.1). In order to validate the two models, immunological, inflammatory and tissue 196 
damage markers were studied in the two experimental groups as well as in the control group (CTL 197 
group). In accordance with our previous results, the LPS group was characterized by a marked 198 
leukopenia (Suppl. Fig 2a), high plasma levels of pro-inflammatory cytokines such as TNF-α but also 199 
of the anti-inflammatory cytokines IL-10 and TGF-β (Suppl. Fig 3a, b). Tissue enzymes indicative of 200 
damage were also elevated (Suppl. Fig 4a-c). 201 

On the other hand, the IS group showed a leucocytosis due to increased numbers of circulating 202 
granulocytes, particularly of polymorphonuclear neutrophils (Suppl. Fig 2b) (Córdoba-Moreno et al., 203 
2019), along with high plasma levels of TGF- β and low levels of pro-inflammatory cytokines 204 
(Suppl. Fig 3c). No signs of tissue damage were observed in this group (Suppl. Fig 4d-f). As 205 
previously described (Rearte et al., 2010b; Rearte et al., 2014; Montagna et al., 2020), IS mice had a 206 
profound immunological impairment, accompanied by a marked lymphopenia and an increased 207 
number of neutrophils in the spleen, which expressed higher levels of the inhibitory receptor  PDL-1 208 
(Suppl. Fig 5a, 5b). Moreover, the IS group showed significantly lower antibody titers upon 209 
immunization with SRBCs (Suppl. Fig 5c). Collectively, these results indicate that the pro- and anti-210 
inflammatory/immunosuppression phases were emulated in our murine models. 211 
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3.2 MALDI-TOF MS data analysis 212 

Plasma samples of the CTL, IS and LPS groups were analyzed by MALDI-TOF MS in the 2000 – 213 
20,000 Da range. Representative spectra of each experimental group are shown in Suppl. Fig. 6 and 214 
the analysis pipeline is detailed in Figure 1. A statistical analysis set was implemented to test if 215 
MALDI-TOF MS data were useful to discriminate the three experimental groups. First, through a 216 
supervised classification algorithm we looked for peaks that best differentiated the CTL, LPS, and IS 217 
groups. The 20 best discriminant peaks identified by binary discriminant analysis (BDA) and random 218 
forest (RF) algorithms are shown in the Suppl. Fig. 7a and b respectively, which partially overlapped. 219 
Of the 20 best peaks selected by the BDA algorithm, the 10 most discriminant peaks were chosen for 220 
an unsupervised statistical analysis to plot the hierarchical k-means clustering-PCA clusters (Figure 221 
2a). Clusters appeared as three non-superimposed groups, and the first two principal components 222 
explained 76.6% of the variation with good intra cluster homogeneity. Specifically, cluster 2 223 
achieved 100% (16/16) of homogeneity for spectra corresponding to CTL plasma and 64% (16/25) of 224 
CTL spectra fell in this cluster, while for cluster 1 an 85% (29/34) homogeneity was achieved for 225 
spectra corresponding to the LPS group and 100% (29/29) of LPS spectra fell in this cluster (Figure 226 
2b). Lastly, homogeneity of cluster 3 was 77% (20/26) mostly represented by spectra of the IS group, 227 
with 91% of the IS spectra (20/22) included in this cluster. This result shows that the 228 
immunosuppression/anti-inflammatory and pro-inflammatory phases have distinctive plasma 229 
peptidome signatures that allow their discrimination. 230 

3.3 Machine learning analysis 231 

ML algorithms were used to develop a predictive model based on the plasma fingerprints, using a 232 
training data set (14 CTL, 13 IS and 15 LPS samples) challenged with a test data set (11 CTL, 9 IS 233 
and 14 LPS samples; Figure 1). To find the most refined model, a dimensionality reduction was 234 
performed through the selection of different numbers of distinctive peaks in the training set to train 235 
the algorithms, and the performances on the test set were computed for each condition. Specifically, 236 
the top 5, 10, 15, and 20 discriminant peaks for BDA and RF algorithms were evaluated by cross-237 
validation (CV; 5 folds and 20 repetitions) and percentages of accuracy, sensitivity, specificity, 238 
negative predictive value (NPV) and positive predictive value (PPV) in the test data set were 239 
obtained (Table 1).  240 

Between models, RF using the best 20 peaks showed the most consistent values, with sensitivity and 241 
specificity values above 90%. The BDA model trained with the best five peaks showed the best 242 
performance in terms of detection of positive cases, with a sensitivity above 95% (Table 1); this 243 
strategy constitutes the simplest method in terms of both the number of required peaks and 244 
computational demands. These results display the potential of plasma peptidome fingerprints to 245 
develop predictive models.   246 

 247 

4 Discussion 248 

Sepsis constitutes a highly heterogeneous syndrome of complex pathophysiology. The underlying 249 
immunological alterations that include pro-inflammatory, anti-inflammatory and immunosuppressive 250 
components (Rubio et al., 2019) are reflected in septic plasma protein composition and varies over 251 
time according to the disease severity (Hayashi et al., 2019).  252 
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In the last decades, several circulating markers with recognized functions in sepsis were identified. 253 
However, none of these markers showed the specificity and sensitivity required for its clinical use 254 
(Parlato et al., 2018; van Engelen et al., 2018b). Furthermore, methods that rely on immunolabeling 255 
such as ELISA or flow cytometry, are highly specific and sensitive for the detection of low 256 
abundance markers, but requires costly equipment and consumables, as well as specific technical 257 
knowhow. In addition, these techniques are time consuming, limiting their clinical usefulness for 258 
early decision-making.   259 

Regarding biomarker discovery, proteomics proved to be an important source of information. 260 
However, in the classical approaches the plasma samples are subjected to depletion of abundant 261 
proteins (Ludwig and Hummon, 2017) and fractionation to identify individual biomarkers (Hayashi 262 
et al., 2019; Harberts et al., 2020) which requires more analysis time, specific equipment and higher 263 
costs. These constraints led us to explore a top-down strategy that could overcome these difficulties. 264 
Thus, having in mind that we aimed to design a readily transferrable method, our approach was 265 
meant to be as simple as possible and unlabeled whole plasma were directly read by MALDI-TOF-266 
MS.  267 

Our results showed that the performance of the test with whole plasma and standard acquisition 268 
settings used in routine microbiological biotyping were excellent in terms of discriminatory power. 269 
First, an ensemble between supervised and unsupervised algorithms allowed the overall 270 
discrimination of plasma samples corresponding to the three experimental groups. These results 271 
showed that each phase comprise a distinctive MALDI-TOF-MS pattern, which turns this approach 272 
into a promising tool to determine different phases in sepsis. A recent study reported a top-down 273 
plasma analysis showing that differences between samples from healthy donors and cancer patients 274 
could be appreciated without the depletion of large abundant proteins by setting a cut-off at 30KDa 275 
(Cheon et al., 2016), supporting our results. 276 

Furthermore, the performance of our ML algorithms challenged with the test dataset, was able to 277 
identify basal, pro-inflammatory and anti-inflammatory/immunosuppressive phases in a very 278 
satisfactory way, exceeding 90% of accuracy in some of the tested conditions. The cross validation 279 
strategy used herein allows a fine-tuning of the models according to particular needs. Thus, 280 
depending on the clinical and epidemiological settings, algorithms with higher sensitivity and lower 281 
computational demand like our 5-peaks BDA model could be preferred over those with a good 282 
overall accuracy.  283 

The peaks found in the 2-20KDa range mostly correspond to small peptides. Plasma peptidome has 284 
been proposed as an interesting source of information for diagnostic purposes (Cheon et al., 2016; 285 
Dufresne et al., 2018). These peptides are presumably fragments of larger proteins derived from 286 
digestion by proteases or non-enzymatic degradation (Greening and Simpson, 2017) but the lack of 287 
comprehensive digestome/degradome databases is still a limitation to their study (Shen et al., 2010). 288 
Nevertheless, recent reports demonstrate the importance of plasma peptidome as a useful tool for 289 
clinical monitoring in septic shock (Aletti et al., 2016; Bauza-Martinez et al., 2018). Although the 290 
identification of individual peaks is beyond the objectives of this study, it would be interesting to 291 
evaluate them in the future with specific methods with higher resolving power. 292 

A major limitation of this study is related to the animal models chosen. Although LPS-induced 293 
inflammation/immunosuppression models are widely used, they do not accurately represent the 294 
dynamic physiological changes that occur in sepsis (Lewis et al., 2016). Endotoxin challenge 295 
promotes a faster and transient release of pro/anti-inflammatory mediators compared to the septic 296 
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processes. However, these models allowed us to define two discrete phases that actually occur in a 297 
septic process. For this reason, we considered this was the most appropriate approach to test the 298 
potential of MALDI-TOF-MS analysis in the proof-of concept phase. We are currently validating our 299 
results in a dynamic model of sepsis, the cecal ligation and puncture model, with very encouraging 300 
results. 301 

Our approach has numerous advantages. MALDI-TOF-MS is a simple and speedy method, a critical 302 
feature considering the dynamism of sepsis, which is spreading in the clinical setting even in 303 
resource-constrained regions. In addition, we used an accessible sample as plasma, without complex 304 
pre-processing steps. Finally, we performed our ML analysis in the open source software R that also 305 
guarantees the transferability of the bioinformatics tool.  306 

In conclusion, our results indicate that plasma peptidome analysis by MALDI-TOF-MS has the 307 
potential to be a highly relevant strategy for sepsis patient stratification that could constitute a 308 
powerful tool for therapeutic decision making in sepsis depending on the pro- or anti-inflammatory 309 
phases the patient is undergoing. 310 
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The MS datasets generated for this study as well as the analysis pipelines can be found in GitHub 333 
[https://github.com/MarManLed/SepsisData].  334 
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Tables 487 

Table 1. Performance of the classification models with the top 5, 10, 15, and 20 peaks. 488 

 489 

  490 

Peaks Algorithm A (%) S (%) E (%) PPV (%) NPV (%) 

5 BDA 90.6 95.7 80 90.9 89.8 

10 BDA 85.6 92 72.3 87.4 81.1 

15 BDA 87.6 93.9 74.5 88.5 85.4 

20 BDA 90.1 94.3 81.4 91.4 87.3 

5 RF 88.2 95.7 72.7 88 88 

10 RF 91.2 91.3 90.9 95.5 83.3 

15 RF 88.2 91.3 81.8 91.3 81.8 

20 RF 94.1 95.7 90.9 95.7 90.9 

A = accuracy, S = sensitivity, E = specificity, PPV = positive predictive value, and NPV = negative 
predictive value. 
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Figure legends 491 

Figure 1. MALDI-TOF- MS data analysis pipeline. Abbreviations. CTL: control group; IS: 492 
immunosuppression/anti-inflammatory group; LPS: pro-inflammatory group; BDA: binary 493 
discriminant analysis; RF: random forest. 494 

Figure 2. Unsupervised statistical analysis. (a) Hierarchical k-means clustering (Hkmc)-Principal 495 
Component Analysis (PCA) cluster plot using the top ten peaks selected by the binary discriminant 496 
analysis (BDA) algorithm. Labels contain the mice ID and the experimental groups. PC1 (Dim1, x-497 
axis) and 2 (Dim2, y-axis) are depicted. Spectra were clustered into three groups using the Hkmc 498 
algorithm, which are represented with three different colors. 95% confidence ellipses were added 499 
around cluster means, assuming a multivariate normal distribution. (b) Hkmc-PCA cluster 500 
composition. The green color represents the CTL mice group, the blue represents the IS group, and 501 
the red color represents the LPS group. 502 

 503 
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