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Abstract 

COVID-19 patients display a wide range of disease severity, ranging from asymptomatic to critical 

symptoms with high mortality risk. Our ability to understand the interaction of SARS-CoV-2 infected 

cells within the lung, and of protective or dysfunctional immune responses to the virus, is critical to 

effectively treat these patients. Currently, our understanding of cell-cell interactions across different 

disease states, and how such interactions may drive pathogenic outcomes, is incomplete. Here, we 

developed a generalizable workflow for identifying cells that are differentially interacting across 

COVID-19 patients with distinct disease outcomes and use it to examine five public single-cell RNA-

seq datasets with a total of 85 individual samples. By characterizing the cell-cell interaction patterns 

across epithelial and immune cells in lung tissues for patients with varying disease severity, we 

illustrate diverse communication patterns across individuals, and discover heterogeneous 

communication patterns among moderate and severe patients. We further illustrate patterns derived 

from cell-cell interactions are potential signatures for discriminating between moderate and severe 

patients.  

  

Introduction  

Infection with SARS-CoV-2 causes COVID-19 and is driving the ongoing pandemic impacting the 

global population. The respiratory system is the primary route of infection for SARS-CoV-2, due to a 

combination of airborne transmission (1) and the presence of the SARS-CoV-2 receptor ACE2 in 

human airways (2–4). SARS-CoV-2 infection causes a spectrum of symptoms. Patients can be 

asymptomatic, exhibit mild symptoms, or develop severe disease with increased risk of death (5, 6). 

Disease outcome is dictated by a combination of direct viral effects on patient tissues (7), protective 

antiviral immunity (8) and overexuberant antiviral or inflammatory immune responses driving tissue 
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damage (9, 10). However, it is not clear why some patients experience mild symptoms while others 

succumb to the illness, and how communication between host compartments controls the disease 

progression.  

 

On inoculation, SARS-CoV-2 can infect cells in the oral/nasal mucosa (11) and nasopharynx 

expressing low levels of ACE2 (12), with the virus descending to the lower airways in some patients to 

infect ACE2+ type II alveolar epithelial cells (13). In more severe disease, SARS-CoV-2 infected cells 

likely enhance or alter their communication networks to recruit additional immune support, in part 

through excessive local innate immune engagement (14) which can then recruit neutrophil and T cells 

from the blood which further escalate the inflammatory cascades leading to a “cytokine storm” in 

patients with severe disease (15), (16). This vicious cycle eventually drives pathological inflammatory 

cell and fluid accumulation and extensive tissue damage, leading to lung stiffness, impaired O2/CO2 

exchange (together called acute respiratory distress syndrome; ARDS), and death. Paradoxically, many 

patients do exhibit lower airway infection/inflammation yet experience only mild disease, and it is 

unclear why these patients avoid critical disease. 

 

To define the cellular transcriptional responses involved in COVID-19 severity, single-cell RNA-seq 

has been performed on patient samples, including peripheral blood mononuclear cells (PBMCs), 

bronchoalveolar lavage. These studies further reinforce the notion that excessive inflammation 

correlates with negative disease outcome (17, 18). Beyond cell identification (19), single-cell analysis 

can also be used to infer cell-cell interactions (20–22) and these approaches can help inform disease 

mechanisms. 

 

In this study, we harness collections of single-cell COVID-19 data sets available to evaluate the 

molecular patterns associated with disease severity. Recognizing the importance of cell-cell 
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communication networks within the infected lung, we develop a generalizable workflow to explore 

cell-cell interactions. We then apply our novel workflow to analyze the cell-cell communication 

networks from patients with varying disease severity and pinpoint critical cell types and cell-cell 

communication channels that mark healthy network communication as well as discriminate disease 

severity.  

 

Results 

Generalizable workflow to identify and measure cell-cell communication in individuals  

We develop a generalizable workflow based on statistical learning strategies that allow us to visualize, 

identify and characterize cell-cell interaction patterns (Fig. 1A). The workflow begins with joint 

classification using scClassify (19) based on four reference datasets (see Material and Methods) to 

refine cell type annotations. Next, to partition cell heterogeneity, unsupervised clustering is performed 

on each annotated cell type to further define subgroups of cells with the potential to identify cellular 

subtypes associated with different disease progression. Cluster merging (23) is used here to prevent 

overclustering. Finally, we calculate a cell-cell interaction score/measure for each individual COVID-

19 sample between different cellular subtypes. Applying this workflow to single-cell data with 

multiple individuals will generate a large matrix for each individual sample with columns representing 

cell types and rows representing ligand-receptor pairs (Fig. 1A). Each ligand-receptor pair is further 

grouped into different pathways to facilitate interpretation. Details of this workflow are described in 

the Materials and Methods section.  

 

We examined five publicly available single-cell RNA-seq datasets from COVID-19 patients with 

different degrees of severity, using samples from nasopharyngeal (NS), bronchoalveolar lavage fluid 

(BALF), and PBMCs, including a total of 415,856 cells from 24 healthy controls, 30 moderate and 31 

severe samples (Fig. 1B). In NS and BALF tissues (24, 25), we re-annotated the cells using four 
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healthy human lung scRNA-seq datasets (4, 26, 27) including 189,967 cells and 44 cell types. For the 

Chua dataset with 5 healthy controls, 14 moderate and 13 severe samples (Supplementary Fig. 1A-B), 

scClassify is able to identify additional cell types and provide further refinement as illustrated in Fig. 

1C. For example, the original “outliers epithelial” cluster was refined to “ciliated cells”, and 

“secretory” cells to “goblet” cells. By accounting for such refinement, the new annotation recapitulates 

78% of the original published analysis. The classified cell types are clearly identified by known 

markers (Supplementary Fig. 1C), and further clustering of the Chua dataset generates 50 subclusters. 

Similar reannotation is applied to the Liao dataset (Supplementary Fig. 2A-B) resulting in 15 cell types 

and 52 subclusters.  

  

Cell-cell interactions are significantly different in patients with COVID-19 compared to healthy 

individuals 

To identify cell-cell interaction (CCI) differences with respect to disease severity in each dataset, we 

calculate the CCI scores that represent the communication probabilities among all pairs of subclusters 

across all ligand-receptor pairs (see Materials and Methods for details). Our group-specific CCI scores 

(CCIgroup) aggregate the scores across all different pathways between each major cell type pair for 

different disease severity groups, represented as a network graph with thicker edges indicating stronger 

cell-cell interaction. Our results highlight that in healthy controls, most cell-cell interactions are 

between basal, ciliated, and goblet cells of the lung epithelium, with dendritic cells providing immune 

surveillance (Fig. 2A). As disease severity increases, cell-cell interactions become dominated by 

interactions between the lung epithelium and proinflammatory players within the immune 

compartment (Fig. 2A-C, Supplementary Fig. 3A-E). Overall, we observe significantly less 

communication (fewer edges in Fig. 2A) in healthy individuals compared to moderate (Fig. 2B) and 

severe patients (Fig. 2C).  
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We next study the cell-cell interaction in all three datasets (18, 28, 29). Applying our developed 

workflow, we unified the annotation across all three datasets (Supplementary Fig. 4A). We used the 

Wilk dataset (with 44,721 cells and 20 cell types) as a reference (28) to reannotate the cell types for the 

Zhang dataset and the Arunachalam dataset. Cells with the same annotation were well integrated with 

scMerge (30) (Supplementary Fig. 4A), indicating that similar cell types exist in the three studies. We 

observe distinct cell type compositions of these three studies, potentially due to different sampling or 

cell isolation procedures (Supplementary Fig. 4B). In all three PBMC studies, we observe that in 

monocyte-related interactions, COVID-19 patients generally have more cell-cell interactions than 

healthy controls (Supplementary Fig. 5A-C). The results across all five datasets suggest that cell type 

composition alone from single-cell experiments may not sufficiently discriminate between patients 

with different disease severity. This, along with the varying cell-cell interaction patterns across disease 

groups supports the further examination of the association between cell-cell interaction with disease 

outcomes and progression.  

  

Reduced T cell interactions and increased monocyte interactions in severe COVID-19 patients 

across different compartments 

Focusing on immune cell interactions in the upper airway, we observe different cell type interaction 

patterns across patients with different disease severity (Fig. 2D, Supplementary Fig. 3F) in the Chua 

dataset. Compared to moderate patients, severe patients have less T cell to T cell interaction (illustrated 

by the thick blue edge on the T cell node in Fig. 2D) and more macrophage to macrophage interaction 

(marked by thick red edge on the macrophage node in Fig. 2D). Between different cell types, we see 

higher interactions between monocyte/macrophage or T cells towards neutrophils in severe patients, 

consistent with previous findings (31). Similar patterns are observed in the Liao dataset where T cell to 
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T cell interaction was higher in moderate patients, while interactions involving neutrophils and 

monocytes increased in severe patients (Supplementary Fig. 2C).  

 

The enrichment of monocyte dominated interactions in severe patients is also observed in all three 

PBMC datasets (Supplementary Fig. 5D-F). Interestingly, two of the PBMC datasets (Zhang and 

Arunachalam) illustrate that severe patients have a decrease in CD8 memory T cell interactions. The 

lack of T cell interactions in severe patients suggests potential T cell depletion, a finding supported by 

previous studies that lymphopenia is associated with severe disease (32–34). Together, these data 

provide validation that our workflow can confirm known mechanisms and highlight new biology for 

further investigation.  

 

Monocyte/macrophage and neutrophil interaction in severe patients are dominated by CXCL, 

IL1 and other inflammation pathways  

Focusing on individual pathways, Fig. 3A illustrates that all pathways can be broadly grouped into six 

large clusters. In particular, two of these pathway-clusters (pathway-cluster 2 marked by orange and 

pathway-cluster 4 marked by pink) are dominated by inflammatory pathways and these have 

significantly higher interaction between monocytes and neutrophils in severe patients compared to 

moderate (Fig. 3A-B). This is consistent with findings that in the productive immune response to 

SARS-CoV-2 infection, alveolar macrophages recognize and phagocytize apoptotic cells; however, 

under a dysfunctional immune response, excessive activation and accumulation of 

monocytes/macrophages and neutrophils leads to the overproduction of inflammatory cytokines which 

then damages the lung and other organs (35, 36). 

 

To further delineate differences between moderate and severe patients observed in Fig. 2D (shown by 

thick red edges between monocytes and neutrophils), we investigated which subpopulations of 
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monocytes actively interact with neutrophils (Supplementary Fig. 6A-B). The two inflammatory 

pathway-clusters mentioned above show that different cellular subtypes of monocytes in severe 

patients have significantly higher interaction scores in different pathways (Fig. 3B). More specifically, 

we found that in severe patients, cellular subtype “monocyte 1” interacts with neutrophils through IL1, 

and CCL pathways, whereas interactions in moderate patients are dominated instead by TNF. 

Supplementary Fig. 6C-D shows that “monocyte 1” is marked by genes IL1B, IL1RN, IL8, 

TNFRSF1B and CCL4 and characterized by gene ontology terms “regulation of inflammatory 

response” as well as “regulation of apoptotic signaling pathways”. The cellular subtype “monocyte 2” 

(marked by highly expressed IFI27), interacts primarily with neutrophils through pathways ANNEXIN 

and GALECTIN, which could suggest a role for this cluster in phagocytizing dying neutrophils. The 

cellular subtype “monocyte 3” expressing IFIT2, IFIT3, CCL8, CXCL10, and CXCL11 shows strong 

signatures of type 1 interferon cell-cell signaling (Fig. 3B and Supplementary Fig. 6C), suggesting 

equal support for antiviral immunity in moderate and severe patients. Alternatively, proinflammatory 

signaling via CXCL interactions is mainly through cellular subtype “monocyte 4”, which highly 

expresses CCL2, CXCL1, CXCL2 and CXCL5 (Fig. 3B and Supplementary Fig. 6C).  

 

Similar patterns are observed in the monocyte-neutrophil interaction in BALF (24) tissues where 

patient samples with neutrophils have higher interaction signaling from monocytes through pathways 

CXCL, IL1, GALECTIN, ANNEXIN, and CCL (Fig. 3D) demonstrating the consistency of our cell-

cell interaction results across nasopharyngeal and bronchoalveolar lavage fluid samples. The impact of 

CXCL and IL1 are also found among the four sets of longitudinal samples in the Chua dataset under 

different disease progression, suggesting an increase in interactions of signaling pathways CXCL, IL1 

over time (Fig. 3C). Interestingly, ANNEXIN downregulates across time in severe patients, but 

increases in moderate patients (Fig. 3C).  
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Interaction from goblet cells to immune cells are heterogeneous in moderate patients and severe 

patients  

We observe heterogeneous interaction patterns from goblet cells to immune cells across patients and 

pathways (Fig. 4A). Goblet cells are found to express high levels of genes associated with innate and 

antiviral immune functions indicating that the nasal epithelial cells interacting with immune cells may 

play an important role in reducing early viral load and this is also consistent with recent literature (37). 

We observe one subgroup of severe patients (n = 3; including one deceased patient) showing clear 

differences in cell-cell interaction within the pathway-cluster 1 compared to moderate patients. In 

particular, they show a lack of interaction in the collection of pathways which includes immune 

signaling and costimulation pathways such as CD40, CD80, CD23 and CD86 inflammatory pathways 

IL6, IFN-II, and Th2 cytokines IL-4/IL10 (Fig. 4A). Another subgroup of severe patients (n = 6) show 

clusters with a small subgroup of moderate patients that has low cell-cell interaction for antigen 

presentation (MHC-II), signaling pathways PTN and NPR2, and this subgroup is also lacking the Th2 

cytokine IL-4 and the B cell activating factor BAFF (Fig. 4A). Together, these results point to cohort 

heterogeneity within severe patients implicating immune costimulation or T cell polarizing pathways 

may contribute to disease severity with context.  

 

Focusing on a specific cellular subtype of epithelial cells (goblet 5), we observe a number of increased 

activities in moderate patients in the ANNEXIN pathway. This is most evident between cellular 

subtypes “goblet 5” and “monocyte 5”. This epithelial to immune cell interaction within the 

ANNEXIN pathway also shows an increase in patients under moderate conditions (Fig. 4B). Annexin 

plays a role in phagocytic uptake of dying cells, can drive neutrophil detachment and apoptosis, and 

plays a predominant role in immune resolution (38). Remarkably, glucocorticoids, which are effective 

at treating COVID-19 patients, act via upregulating Annexin I (39), suggesting that natural moderate 

symptoms for COVID-19 may be linked to effective endogenous immune management, or that patients 
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that respond to glucocorticoid drugs elevate Annexin cell communication pathways that then limit 

further inflammation, and this response is detectable via single-cell analysis. We have developed and 

provide an interactive resource (http://shiny.maths.usyd.edu.au/CovidCellInteraction/) to enable further 

investigation of cell-cell interaction at different resolutions from aggregate interaction between two 

major cell types to visualize expression values for specific ligand-receptor pairs.  

 

Cell-cell interaction patterns have the potential to discriminate between moderate and severe 

patients 

Finally, we found that information from cell-cell interactions provides a discriminating signal for 

patients with different disease progression. Fig. 4C shows the principal components of the cell-cell 

interaction matrix for the Chua dataset with samples from healthy controls, moderate and severe 

patients highlighted. Linear discriminant analysis (LDA) shows that based on accuracy, ligand-

receptor features selected based on interaction from epithelial (ciliated and goblet) cells to immune 

cells (LOOCV = 0.8) has a higher discriminating power than using cell type proportion (LOOCV = 

0.4) or ligand and receptor gene expression alone (LOOCV = 0.6). Examples of top selected pathways 

are THBS, BMP and EGF from pathway-cluster 1, and MHC-II and COMPLEMENT from pathway-

cluster 2 (pathway-cluster defined in Fig. 4A). This result is consistent regardless of the statistical 

machine learning methods employed (Supplementary Table 1). The accuracy rate of leave-one-out 

cross-validation (LOOCV) based on the first three PCs using k nearest neighbor classification (k = 3) 

is 84.4%, highlighting the ability of cell-cell interaction features to predict the degree of severity of 

patients. By repeating our workflow on the three PBMC datasets, we further demonstrate that using 

CCI features can achieve higher LOOCV accuracy rate than using cell type composition as features. 

Despite the limited samples, repeating our workflow on a smaller dataset within BALF tissues in the 

Liao dataset demonstrates similar findings that cell-cell communication patterns between goblet cells 

to immune cells has potential discriminating power.  
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Discussion  

A better understanding of virus and host cell interaction at the cellular level is an important component 

in understanding infectious disease progression and is critical for developing a treatment for the 

disease. In this paper, we provide a comprehensive workflow to integrate and examine multiple 

COVID-19 single-cell RNA-seq datasets to identify differential cell-cell interaction (CCI) pathways 

with respect to disease. Our initial results in upper airway tissues show strong intra-epithelial 

communication in the healthy lung, whereas the immune system then dominates communication 

pathways during COVID-19. We then discover that despite a higher cell-cell interaction (tCCI score) 

in severe patients compared to moderate patients between immune and neutrophil cells, the CCI scores 

between epithelial and immune cells are heterogeneous among severe patients, with a subpopulation 

illustrating lower CCI score when compared to moderate patients. Furthermore, features extracted from 

cell-cell interactions are potential signatures for discriminating between moderate and severe patients. 

 

In most multi-omics profiling in patients with COVID-19, strong acute inflammatory responses are 

commonly found in most of the cell types as expected. Since the airway epithelium is the primary site 

of infection for SARS-CoV-2 causing disease, investigating how epithelial cells interact with immune 

cells differentially leads to a better understanding of the initial host reaction to viral infection. 

Therefore, examining cell-cell communication offers an analytical approach to characterize specific 

cell type interaction and identify potential immune response drivers that results in different degrees of 

disease severity.  

 

The importance of using a workflow that accounts for cohort heterogeneity in examining severe and 

moderate patients is clearly illustrated when we examine the interaction pattern between nasal 

epithelium as a ligand and various receptors in immune cells. This is a different approach to the one 
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taken by Chua and colleagues (25), where they measure the overall/aggregate interaction between 

epithelial and immune cells and found a higher overall/aggregate interaction between epithelial and 

immune cells in severe patients. Here, when we examine the cell-cell interaction relationships at the 

individual sample level, we observe clear cohort heterogeneity among severe patients, and we are able 

to discover a subgroup of the moderate patients with higher interaction between epithelial and immune 

cells.  

 

In this study, we focus on the cell communication within COVID-19 patients via ligand-receptor 

signaling. Several methods have been developed recently to infer such cell-cell interaction from 

scRNA-seq data, such as CellPhoneDB, SingleCellSignalR, NicheNet and CellChat (20–22, 40). Most 

of these methods aim to identify the significant ligand and receptor gene pair between two cell 

populations with the most recent method CellChat (22) that accounts for additional signaling factors. 

In addition, CellChat systematically categorizes the ligand-receptor pairs based on their signaling 

pathways, providing a comprehensive interpretation of cell-cell communication from single-cell RNA-

seq. There are also other types of cell communication like physical cell interaction that can be further 

investigated. Technology to sequence physically interacting cells like PIC-seq has been used to 

investigate epithelial–immune interaction and infectious disease in mice (41). Application of such 

technology in COVID-19 research will potentially allow characterization of differential physical 

intercellular interaction at high resolution. 

 

Our analysis suggests the heterogeneity of cell-cell interaction patterns within patients, even if they 

have similar degrees of symptoms. One key variability is the sampling time since the onset of 

symptoms, as this may not fully capture the true underlying disease progression within each individual. 

Other potential factors that lead to the variability include age, gender, comorbidities and viral load. 

Currently, with the limited number of samples from patients with similar clinical characteristics, 
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accounting for these uncertainties in modelling is challenging. Towards the future, as more large 

single-cell profiling resources in COVID-19 become publicly available, integrative analysis and meta-

analysis of these studies by incorporating patient diversity to our workflow will provide a more 

comprehensive characterization of cell-cell interaction patterns in COVID-19 patients. Nevertheless, 

using the current databases our workflow supports that cell-cell interactions provide more meaningful 

predictions of disease progression (Figure 4C). 

 

In summary, our novel workflow enables integrative analysis of five different COVID-19 scRNA-seq 

data sets with a total of 415,856 cells and 85 samples. This generalizable workflow was built on the 

latest single-cell analytical methods and enables the identification of differential cell-cell interaction 

across disease progression. We discover clear cohort heterogeneity among the severe patients in the 

interaction between epithelial and immune cells, with signatures that can be linked with patient 

outcome. Together we provide a validated workflow for integration and analysis of diverse single-cell 

sequencing data to pinpoint communication networks that control disease outcome.  

  

Materials and Methods 

Data and preprocessing 

[A] Chua dataset - The raw count matrix and metadata containing patient information are downloaded 

from FigShare: https://doi.org/10.6084/m9.figshare.12436517 (25). This data includes 19 patients with 

critical or moderate disease as well as 5 healthy controls.  

 

[B] Liao dataset - The raw count matrices of single-cell RNA-seq data from bronchoalveolar lavage 

fluid was downloaded from the National Center for Biotechnology Information (NCBI) Gene 

Expression Omnibus (GEO) under the accession number GSE145926. This data has 3 healthy controls, 

3 moderate patients and 6 severe patients (24). 
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[C] Wilk dataset - The raw count matrices of single-cell RNA-seq data from PBMC with metadata 

were downloaded from the COVID-19 Cell Atlas: https://www.covid19cellatlas.org/#wilk20 (28). This 

data contains 6 healthy controls, 3 moderate patients and 4 severe patients. 

 

[D] Arunachalam dataset - The raw count matrices of single-cell RNA-seq data from PBMC and the 

clinical information were downloaded from GEO under accession number GSE155673. This data has 5 

healthy controls, 3 moderate patients and 4 severe patients (29). The cells with more than 20% 

mitochondrial proportion and UMI count greater than 50,000 are removed from the downstream 

analysis. 

 

[E] Zhang dataset - The raw sequence files of single-cell RNA-seq data from PBMC are downloaded 

from the Genome Sequence Archive of the Beijing Institute of Genomics (BIG) Data Center, BIG, 

Chinese Academy of Science using the accession code HRA000150 (18). Cell Ranger (v3.0.2) with 

human reference version GRCh38 were used to generate the raw count matrices. The data includes 5 

healthy controls, 7 moderate patients and 4 severe patients. Only the cells retained from the original 

study are used. 

 

Processing: For each dataset, we performed size factor standardization and log transformation on the 

raw count expression matrices using the logNormCount function in the R package scater (version 

1.16.2) and generated log transformed gene expression matrices for analysis.  

 

Computational workflow  

Step 1 - Cell type annotation - For a given dataset, we perform a cell type identification using the 

scClassify framework (19). Specifically, to identify the cell types from the Chua dataset and the Liao 

dataset, we performed a modified version of the joint classification from scClassify that incorporates 
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the concept of iterative supervised learning. The initial model is built from four reference datasets 

including annotated cell information from healthy human lungs (4, 26, 27). The final cell type labels 

were determined by the majority vote from individual classification labels using each single reference. 

An additional scClassify model based on the assigned cells was then built to predict the cells that are 

classified as “intermediate” or “unassigned” in the previous step. To identify cell types from the 

PBMC datasets, we used the Wilk dataset as a reference (28) to build the model and use it to predict 

the cell types for the Zhang dataset and the Arunachalam dataset.  

  

Step 2 - Unsupervised clustering for subpopulation identification - We performed unsupervised 

clustering on each classified cell type to identify the cellular subtypes in the Chua dataset and the Liao 

dataset. For each cell type, we first calculate the deviance across cells within each sample using the 

function devianceFeatureSelection implemented in the R package scry (version 1.0.0) . 

Next, we select features that are among the top 1000 largest deviances in more than 50% of the 

samples. We then performed negative binomial generalized principal component analysis (GLM-PCA) 

on the UMI matrix with the selected features (number of components is set to 30) (42). A shared 

nearest neighbor graph is then built based on the GLM-PCA low-dimensional space and used as an 

input for Louvain clustering to identify subclusters, considering each of them as a refined cellular 

subtype. 

 

To prevent over clustering, we follow a similar workflow described in clusterExperiment to collapse 

the identified subclusters (23). Hierarchical clustering is first performed on the aggregated average 

expression of each subcluster to construct a cluster hierarchy, and then from the bottom to top, the 

clusters of the same branches are merged if less than 10 genes are differentially expressed (log fold 

change > 1, FDR < 0.01). Note that we identified some cellular subtypes (ionocytes and squamous) 
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that are inconsistently annotated between the original Chua dataset and scClassify (classified as goblet 

cells). In this instance, based on marker expression, we manually reannotated these two cell types 

using the original annotation for the downstream analysis.  

 

Step 3 - Calculating cell-cell interaction (CCI) 

For a given individual sample and a pair of subclusters (i.e. cellular subtypes) obtained in Step 2, we 

calculate the aggregated ligand-receptor interaction score based on CellChat (22) for each signaling 

pathway. This represents the communication probabilities among all pairs of subclusters across all 

ligand-receptor pairs. The CellChat algorithm aims to identify the significant ligand-receptor gene 

pairs between two cell populations while accounting for important signaling factors, including the 

expression of soluble agonists, antagonists, and stimulatory and inhibitory membrane-bound co-

receptors. Finally, the communication probability of a signaling pathway is defined as the sum of the 

probabilities of its ligand-receptor pairs. 

 

The implementation is available as R code stored at the GitHub, 

https://github.com/SydneyBioX/COVID_CCI_analysis and as a web shiny application at 

http://shiny.maths.usyd.edu.au/CovidCellInteraction/.  

 

Statistical formulation 

The output of the cell-cell interaction analysis can be considered as a three-dimensional array  

representing the cell-cell interaction (CCI) score. Let 𝑥!"# denote the cell-cell interaction (CCI) score 

generated from the computational workflow for a pair of cellular subtypes 𝑐, where 𝑐 ∈ 𝐶 (defined 

below as a set consisting of all pairs of cellular subtypes), pathway 𝑝 with 𝑝 = 1, . . . , 𝑃, and individual 
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sample 𝑘 with 𝑘 = 1, . . . , 𝐾. In general, an individual sample 𝑘 represents the sample from one 

individual collected at a specific time point.  

 

For 𝑁 major cell types, we denote them by the sets 𝑀$, 𝑀%, . . . , 𝑀& and within a given major cell type 

𝑀' consisting of 𝑛' cellular subtypes 𝑚'$, 𝑚'%, . . . , 𝑚'(! 	we can write 𝑀' = {𝑚')|𝑢 = 1, . . . 𝑚, 𝑛'}. We 

can represent a pair of cellular subtypes as 𝑐	 = 	 6𝑚'), 𝑚*+7, where 𝑖, 𝑗	 = 	1, . . . , 𝑁; 	𝑢	 = 	1	, . . , 𝑛' and 

𝑣 = 1, . . . , 𝑛*. Here, we consider  𝑚') as the sender cellular subtype within major cell type 𝑀' and 𝑚*+ 

as the receiver cellular subtype from major cell type 𝑀*. The collection of all pairs of cellular subtypes 

is written as 𝐶	 = 	 <6𝑚'),𝑚*+7|𝑖, 𝑗 = 1, . . . , 𝑁; 𝑢 = 1, . . . , 𝑛'; 𝑣 = 1, . . . , 𝑛*=. We further denote 𝐶-!,-" as 

a subset of 𝐶 containing only pairs of cellular subtypes from major cell type 𝑀' to 𝑀*which is 

represented as 𝐶-!,-" = <6𝑚'), 𝑚*+7|𝑚') ∈ 𝑀'; 	𝑚*+ ∈ 𝑀*=. 

For a given sample 𝑘, the following measures of interest are explored: 

● Subtype cell-cell interaction (sCCI) between a pair of cellular subtypes 𝑐 for an individual 

sample 𝑘 is calculated as sCCI (𝑐, 𝑘)=@ 𝑥!"#" . This measure totals the cell-cell interaction 

score across all pathways. Calculating this score for each pair of cellular subtypes and each 

individual sample is the same as totaling the array 𝑋 across the pathways resulting in a |𝐶| × 𝐾 

two-dimensional matrix. 

● Pathway specific cell-cell interaction (pCCI) from the major cell type 𝑀' to the major cell type  

𝑀* 	for a pathway 𝑝	and an individual sample 𝑘 is pCCI	6𝑀' , 𝑀* , 𝑝, 𝑘7 = @ 𝑥!"#!∈/#!,#"
 where 

𝐶-!,-"is defined as above. This is a measure that sums the cell-cell interaction scores across all 

cellular subtypes between any two major cell types. For each pair of (𝑀' , 𝑀*), calculating this 

statistic for each pathway 𝑝 and individual sample 𝑘 results in a 𝑃 × 𝐾 matrix (see Figure 3A). 
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● Total CCI (tCCI) from major cell type 𝑀' to major cell type 𝑀* for an individual sample 𝑘 is 

defined as 	tCCI6𝑀' , 𝑀* , 𝑘7=F @ x!"#" 	=∑ sCCI(𝑐, 𝑘)!∈/#!,#"!∈/#!,#"
, where 𝐶-!,-" is 

defined as above. This is a measure that sums the cell-cell interaction scores across all cellular 

subtypes between two major cell types and across all pathways. For each individual sample 𝑘, 

calculating the tCCI statistic for each pair of (𝑀' , 𝑀*) will result in a 𝑁 × 𝑁 matrix that can be 

visualized as a heatmap or network graph. 

● Suppose 𝒫 represents a set of pathways belonging to the same cluster termed as a pathway-

cluster (see Clustering in Methods). The pathway-cluster cell-cell interaction for an individual 

sample 𝑘 between a pair of cellular subtypes  is defined as psCCI(𝑐, 𝒫, 𝑘)= $
|𝒫|
@ 𝑥!"#"∈𝒫 . 

 

Association analysis for CCI  

We calculate a group specific cell-cell interaction (CCIgroup) between two cellular subtypes where 

groups represent any treatment of interest. Here it refers to control and disease progression such as 

moderate and severe patients. Let 𝒦group denote a set of individual samples under the same condition 

of interest, where |𝒦group| indicates the size of the set. For example, the total number of samples 

having moderate response to COVID-19 in the dataset (see Fig. 2 A-C). The CCIgroup from the major 

cell types 𝑀' to the major cell types 𝑀* can be calculated by 

CCIgroup6𝑀' , 𝑀* , 𝒦group7=
$

|𝒦group|
F s(tCCI6𝑀' , 𝑀* , 𝑘7)

#∈𝒦group
, where 𝑠(𝑦) = 3456'((4)9

36:;(4)56'((4)9
 is a 

scaling function to scale between individual samples. In practice, the differential CCI from 𝑀' 

to	𝑀*between moderate (CCImoderate) and severe (CCIsevere) patients can be calculated by CCIsevere −

CCImoderate measuring the differential patterns of the cell-cell interaction across different disease 

severity (see Figure 2D).  
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The pathway-cluster cell-cell interaction (used in Figure 3B) for a group of individuals ℒ between a 

pair of cellular subtypes  is simply the sums of psCCI across individual with a group ℒ and can be 

written as $
<𝒦group<|𝒫|

F @ 𝑥!"#"∈𝒫#∈𝒦group
= $

<	𝒦group<
∑ psCCI(𝑐, 𝒫, 𝑘)#∈𝒦group . For a pair of cellular 

subtypes 𝑐, calculating this statistic results in a |𝒫| × |𝒦group| matrix. 

 

Statistical analysis of longitudinal data 

Suppose we have multiple samples collected from the same individual at different time points, say 

𝑘early and 𝑘late then the cell-cell interaction across disease progression is the log-ratio of cell-cell 

interaction (illustrated in Fig. 3C) between these two time points for a given pair of cell types (sender 

cell type 𝑀' ,	receiver cell types 𝑀* within a pathway 𝑝 is log SpCCI6𝑀',𝑀* , 𝑘late7/pCCI6𝑀',𝑀* , 𝑘early7T. 

 

Clustering 

We group various pathways based on the similarity of intercellular communication patterns using 

hierarchical clustering with Euclidean distance and ward.D2 agglomerative method implemented in the 

function hclust in R.  

 

PMBC data integration 

We integrate the three PBMC datasets using a modified version of scMerge (30). Here, cell types 

annotated by scClassify are used as an input to scMerge to construct pseudo-bulk expression profiles. 

The resulting profiles are used to identify mutual nearest subgroups as pseudo-replicates and to 

estimate parameters of the scMerge model. 
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Machine learning for discrimination 

To select the cell-cell interaction features that discriminate across samples under different conditions, 

we performed a Kruskal-Wallis rank sum test on pathway-specific cell-cell interaction (pCCI) to select 

the pathways that are significantly different across samples from healthy controls, moderate patients 

and severe patients. Feature selection is based on pCCI features with an adjusted p-value less than 0.1 

for the Chua dataset, less than 0.2 for the Wilk and Zhang datasets and less than 0.4 for the 

Arunachalam dataset, we termed these selected features as “Top CCI”. For the Chua dataset, we also 

selected the top pCCI from the cell-cell interaction between the two major epithelial cell types (Goblet 

and Ciliated) and the immune cell types (B cells, dendritic cells, macrophages, monocytes and T cells), 

termed as “Epi-Immune CCI”. We further considered cell type proportion as another type of feature. 

The classification model to predict the samples’ condition is built with linear discriminant analysis 

(LDA) and random forest (RF) on the selected features (Top CCI, Epi-Immune CCI, and cell type 

proportion) as well as k nearest neighbor classification (with k = 1, 3) using the first 3 principal 

components of the pCCI matrix. The classification performance was determined by leave-one-out 

cross-validation.  

 

Gene Ontology analysis 

Differential gene expressions were identified using moderated t-statistics implemented in the R 

package limma (version 3.44.3). The gene set over-representation analysis for the significant DE 

genes (top 100 genes selected) with biological process (BP) gene ontology is measured using the 

“enrichGO” function in the R package clusterProfiler (version 3.16.0) (43). Significant GO 

term is defined by q-value < 0.1.  

 

Interactive graphics implementation 
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To facilitate the interpretation of the complex data set, we have created an online interactive tool which 

allows researchers to explore different parts of the data. The first tab of the tool contains four columns. 

The first column allows the user to select two groups (or individual samples) to compare and it 

displays the associated cell-cell interaction network. The second column shows the difference between 

the two selected groups (or samples) in a heatmap and network form. Selecting a cell type pair from 

the heatmap dissects the interaction into individual pathways and sub-cell types, displayed in the third 

column. Selecting a pathway on this heatmap further dissects the activity into individual ligand-

receptor pairs, displayed in the fourth column. The second tab of the tool allows the user to select a 

gene and its mean expression is shown for each cell type and sample. The user can also select a ligand 

cell type and a receptor cell type and the activity of all pathways between these cell types and 

involving the selected gene are shown. 
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Figures and Tables 

 

 

Fig. 1:  

A. Schematic of the data analytic workflow.  

B. Summary of curated single-cell RNA-seq from COVID-19 studies from different tissues that 

are publicly available.  

C. tSNE plot illustrating cell types from all samples in the Chua dataset based on the reannotation 

using a modified version of the joint classification from scClassify built from four large 

reference datasets of human lungs. 
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Fig. 2:  

A - C. Network representing the group specific cell-cell interaction (CCIgroup) considering different 

disease severity as groups in the Chua dataset from (A) healthy controls (B) moderate patients 

and (C) severe patients. The nodes represent major cell types and the edges represent 

aggregate tCCI interaction signals across individuals from the same group. Thicker edges 

indicate stronger cell cell interaction signals.  

D. Network representing the difference of cell-cell interaction between severe and moderate 

patients. The nodes represent cell types and an edge measures the difference in cell-cell 
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interaction. A red edge indicates an interaction higher in severe patients and a blue edge 

indicates an interaction higher in moderate patients.  
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Fig. 3:  

A. Heatmap of the pathway-specific cell-cell interaction (pCCI) contribution in monocytes as 

ligands and neutrophils as receptors in the Chua dataset, where the rows indicate the signaling 

pathways and columns indicate the samples. The signaling pathways are clustered into 6 

groups. 

B. Dot plot indicating the cell-cell interaction contribution (pathway-cluster cell-cell interaction) 

in monocyte subgroups as ligands and neutrophils as receptors of the pathway-cluster 2 (upper 

panel) and pathway-cluster 4 (lower panel) as defined in (A). The columns indicate the 5 

cellular subtypes of monocytes as ligands and the rows indicate the signaling pathways. A 

larger dot represents a higher level of cell-cell interaction. 
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C. Bar plot indicating the log-ratio of cell-cell interaction contributions between two time points 

(y-axis) for longitudinal samples of 4 patients (2 moderate: BIH-CoV-12, BIH-CoV-15; 2 

severe: BIH-CoV-06, BIH-CoV-07) in monocytes as ligands and neutrophils as receptors. The 

x-axis represents the signaling pathways. 

D. Heatmap of the cell-cell interaction contribution in monocytes as ligands and neutrophils as 

receptors in the Liao dataset, where the rows indicate the signaling pathways and columns 

indicate the samples. The signaling pathways are highlighted by the 6 signaling pathway 

clusters from (A). 
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Fig. 4:  

A. Heatmap of the pathway-specific cell-cell interaction contribution in goblets as ligands and 

immune cells (macrophages, monocytes and T cells) as receptors in the Chua dataset, where the 

rows indicate the signaling pathways and columns indicate the samples. The signaling 

pathways are clustered into 6 groups. 

B. Bar plot indicates the log-ratio of cell-cell interaction contributions between two time points (y-

axis) for longitude samples of 4 patients (2 moderate: BIH-CoV-12, BIH-CoV-15; 2 severe: 

BIH-CoV-06, BIH-CoV-07) in goblets as ligands and immune cells (macrophages, monocytes 

and T cells) as receptors. The x-axis represents the signaling pathways. 

C. PCA for samples using the selected pathway-specific cell-cell interaction features, colored by 

disease severity: the Chua dataset (top left panel), the Wilk dataset (bottom left panel), the 
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Arunachalam dataset (top right panel) and the Zhang dataset (bottom right panel) with the 

corresponding LOOCV accuracy rate for four datasets presented in Supplementary Table 1 .  
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Supplementary Materials 

 

 

 

Supplementary Fig. 1 

A. tSNE plots with the Chua dataset, colored by the disease condition (left panel), and individual 

sample (right panel). 

B. Cell type composition of each individual sample in the Chua dataset. 

C. Boxplots of marker expression for each reannotated cell type. 
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Supplementary Fig. 2 

A. tSNE plot of scRNA-seq data from BALF (the Liao dataset), colored by the reannotation from 

scClassify. 

B. Cell type composition of each sample in the Liao dataset. 

C. Heatmap indicating the difference of group specific cell-cell interaction between different cell 

types in severe patients and moderate patients in the Liao dataset. Red color indicates a higher 

interaction in severe patients and blue color indicates a higher interaction in moderate patients. 

Rows indicate the sender cell types and columns indicate the receiver cell types. 
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Supplementary Fig. 3 

(A-C) Heatmaps indicating the group specific cell-cell interaction between different cell types in (A) 

healthy controls (B) moderate patients (C) severe patients for the Chua dataset. Rows indicate the 

sender cell types and columns indicate the receiver cell types. 

(D-F) Heatmaps indicate the difference in group specific cell-cell interaction between different cell 

types in (D) severe patients and healthy controls (E) moderate patients and healthy controls (F) severe 

patients and moderate patients for the Chua dataset. Red color indicates a higher interaction in severe 

patients and blue color indicates a higher interaction in moderate patients. Rows indicate the sender 

cell types and columns indicate the receiver cell types. 
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Supplementary Fig. 4 

A. tSNE plots of the integrated matrix generated from scMerge for the three PBMC datasets, 

colored by the reannotation of cellular subtypes from scClassify (left panel), and colored by 

datasets (right panel). 

B. Cell type composition of each individual sample in the three PBMC datasets. 
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Supplementary Fig. 5 

(A-C) Heatmaps indicate the difference of group specific cell-cell interaction between different cell 

types in moderate patients and healthy controls (left) and severe patients and healthy controls for (A) 

the Arunachalam dataset (B) the Wilk dataset, and (C) the Zhang dataset. Rows indicate the sender cell 
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types and columns indicate the receiver cell types. (D-F) Heatmaps indicate the difference in cell-cell 

interaction between different cell types in severe patients and moderate patients for (D) the 

Arunachalam dataset, (E) the Wilk dataset, and (F) the Zhang dataset. Red color indicates a higher 

interaction in severe patients and blue color indicates a higher interaction in moderate patients. Rows 

indicate the sender cell types and columns indicate the receiver cell types. 
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Supplementary Fig. 6 

A. tSNE plot of monocytes in the Chua dataset, colored by the five cellular subtypes of 

monocytes. 

B. Stacked bar plots representing the number of cells for healthy, moderate and severe groups. The 

x-axis represents the five cellular subtypes of monocytes for the Chua dataset. 

C. Heatmap indicates the scaled average marker expression of the five cellular subtypes of 

monocytes. 

D. Gene ontology analysis for the cellular subtypes of monocytes.  

 

Supplementary Table 1 
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LOOCV accuracy rate for four datasets using four classification methods: KNN (K = 1), KNN (K = 3), 

linear discriminant analysis (LDA), and random forest (RF). The row “Top CCI” refers to 

classification results based on features selected by Kruskal-Wallis rank sum test on pathway-specific 

cell-cell interaction (pCCI) (See Material and Methods section for more details). The row “Epi-

Immune CCI” refers to classification results based on features selected from the cell-cell interaction 

between the two major epithelial cell types (Goblet and Ciliated) and the immune cell types (B cells, 

dendritic cells, macrophages, monocytes and T cells). The row “cell type proportion” refers to 

classification results based on the cell type proportion. The highlighted cells indicated the best 

performing signature(s) for each of the classification methods.  

 

Chua  

  KNN (K = 1) KNN (K = 3) LDA RF 

Top CCI 0.75 0.72 0.62 0.66 

Epi-Immune CCI 0.81 0.72 0.78 0.72 

Cell type proportion 0.47 0.5 0.44 0.56 

 

Arunachalam  

  KNN (K = 1) KNN (K = 3) LDA RF 

Top CCI 0.83 0.67 0.50 0.67 

Cell type proportion 0.67 0.42 0.67 0.75 
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Wilk  

  KNN (K = 1) KNN (K = 3) LDA RF 

Top CCI 0.92 0.92 1.00 0.77 

Cell type proportion 0.46 0.46 0.62 0.69 

 

Zhang  

  KNN (K = 1) KNN (K = 3) LDA RF 

Top CCI 0.68 0.73 0.82 0.82 

Cell type proportion 0.36 0.27 0.64 0.68 
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