Abstract
Chromatin interactions play important roles in regulating gene expression. However, the availability of genome-wide chromatin interaction data is limited. Various computational methods have been developed to predict chromatin interactions. Most of these methods rely on large collections of ChIP-Seq/RNA-Seq/DNase-Seq datasets and predict only enhancer-promoter interactions. Some of the ‘state-of-the-art’ methods have poor experimental designs, leading to over-exaggerated performances and misleading conclusions. Here we developed a computational method, Chromatin Interaction Neural Network (ChINN), to predict chromatin interactions between open chromatin regions by using only DNA sequences of the interacting open chromatin regions. ChINN is able to predict CTCF-, RNA polymerase II- and HiC-associated chromatin interactions between open chromatin regions. ChINN also shows good across-sample performances and captures various sequence features that are predictive of chromatin interactions. To apply our results to clinical patient data, we applied CHINN to predict chromatin interactions in 6 chronic lymphocytic leukemia (CLL) patient samples and a cohort of open chromatin data from 84 CLL samples that was previously published. Our results demonstrated extensive heterogeneity in chromatin interactions in patient samples, and one of the sources of this heterogeneity were the different subtypes of CLL.
Competing Interest Statement
The authors have declared no competing interest.