
 

Figure S4. dPCA analysis of beta bursting. Same as in Figure 3 but for calculated over patterns of beta 

bursting.  
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Figure S5. Same as Figure 4B, but for gamma bursting.  
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Methods 
 

We analyzed data from two previous studies (Warden and Miller, 2010; Lundqvist et al., 2016). In total 

the two studies included three experimental tasks (task 1 & 2 from Warden and Miller, 2010; task 3 from 

Lundqvist et al., 2016). For details of training and data collection, please see those studies. Briefly, each 

task involved two Rhesus macaques that were trained until they performed well above chance. They were 

trained with positive reward (juice) only and maintained in accordance with the National Institutes of 

Health guidelines and the policies of the Massachusetts Institute of Technology Committee for Animal 

Care).   

For each recording, a new set of acute electrode pairs (tungsten, epoxy-coated, FHC) was lowered through 

a grid. Between 8 and 20 prefrontal electrodes were recorded from simultaneously on each session (34 

sessions for Task 1 and 2, 30 sessions for Task 3). Task 1 and Task 2 were recorded on the same sessions 

in a blocked design. Only electrodes containing isolatable units were kept for further analysis.  

 

Signal Processing  

Preprocessing Task 1 and 2: At first, all electrodes without any isolatable neurons were removed. Then, a 

notch filter with constant phase across a session was applied to remove 60-Hz line noise and its second 

harmonic. On some sessions there were high-power, broadband frequency artifacts; these sessions were 

discarded from further analysis. 

Preprocessing Task 3: We first removed apparent noise sources from the signal. In particular, a notch filter 

was applied to remove 60-Hz line noise with constant phase across a session. In addition, we removed 

periodic deflections seen in the evoked potentials (every 47 ms, lasting 1 ms, on a subset of electrodes, 

phase locked to stimulus onset). The signal was filtered and downsampled to 1 kHz (from 30kHz).  

For spectral analysis we applied multi-taper analysis (with a family of orthogonal tapers produced by 

Slepian functions; Slepian, 1978; Thomson, 1982; Jarvis and Mitra, 2001). The multi-taper approach was 

adopted with frequency-dependent window lengths corresponding to six to eight oscillatory cycles and 

frequency smoothing corresponding to 0.2–0.3 of the central frequency, f0, i.e., f0 ± 0.2f0, where f0 were 

sampled with the resolution of 1 Hz (this configuration implies that two to three tapers were used). The 

spectrograms were estimated with the temporal resolution of 1 ms. Typically we present total power of 

raw LFPs (after removal of noise) without subtracting any baseline or estimated evoked content.  

 

Burst Extraction  

To extract bursts of high power events on a single trial level we utilized a previously developed method 

(Lundqvist et al., 2016; 2018a). In the first step of the oscillatory burst identification, a temporal profile of 

the LFP spectral content within a frequency band of interest was estimated. We used two alternative 

methods of spectral quantification (see above). We either narrow-band-filtered LFP trials and extracted 

the analytic amplitudes (envelope) or we used single-trial spectrograms, obtained with the multi-taper 

approach, to calculate smooth estimates of time-varying band power (all presented results were obtained 

with the multi-taper approach; the results for the two methods were very similar). Next we defined 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2021. ; https://doi.org/10.1101/2020.12.30.424833doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424833
http://creativecommons.org/licenses/by-nc-nd/4.0/


oscillatory bursts as intervals during individual trials when the respective measure of instantaneous 

spectral power exceeded the threshold set as two SDs above the trial mean value for that particular 

frequency, and with the duration of at least three cycles. Having the burst intervals extracted for the beta 

band (20–35 Hz) and three gamma sub-band oscillations (40–65, 55–90, and 70–100 Hz) from each trial, 

we defined a single-trial point process (binary state: no burst vs burst within a 10-ms window) with the 

resolution of 10 ms and trial-average measure, a so-called burst rate for each spectral band. This quantity 

corresponds to the chance of a burst occurrence on an individual electrode at a particular time in the trial 

(a proportion of trials where a given electrode displays burst-like oscillatory dynamics around the time 

point of interest sliding over the trial length).  

 

Statistical Methods  

The majority of tests performed in this study were nonparametric due to insufficient evidence for model 

data distributions. To address the multi-comparisons problem, we employed Kruskal-Wallis, Friedman’s, 

and Wilcoxon’s signed-rank tests where appropriate. In addition, for the comparison between temporal 

profiles of the normalized firing rates within versus outside oscillatory bursts, we resorted to a 

permutation test on the largest cluster-based statistics (Maris and Oostenveld, 2007), originally proposed 

to increase the test sensitivity based on the known properties of the data (here being temporal 

dependency). Finally, some attention should be given to the way we report correlations between the 

measures of time-varying spectral band content and burst rate statistics. The correlation analyses were 

performed on individual electrodes and only the summary statistics (mean and SE) for the electrode-wise 

significant effects (p < 0.01) are presented. 

 

Estimation of information  

The bias-corrected PEV (Olejnik and Algina, 2003) was estimated across trials with different conditions 

from firing rates averaged in 50-ms bins across trials within each trial. We performed two-way ANOVA 

where trials had multiple groupings (i.e. stimulus or delay/task). All correct trials were used, as the groups 

were well balanced each session. The bias correction was used as it avoids the problem of non-zero mean 

PEV for small sample sizes.  

As a result, (bias-corrected) PEV allowed for the quantification of information carried by the modulation 

of firing rates or burst rates of individual units accounting for the stimulus, task or task epoch (delay 1 vs 

delay 2).  

 

Demixed principal component analysis  

To identify low-dimensional manifold for neural activity, we performed a demixed principal components 

analysis (dPCA) (Kobak et al., 2016). This approach allows not only for compressing the data, similarly to 

PCA, but also separates the underlying components with respect to the requested task parameters by 

demixing the dependencies of the population activity on the task parameters. In a nutshell, demixing is 

achieved by minimising the reconstruction error between the projections and the neural activity averaged 

over trials (unlike in PCA where the reconstruction error on single trials is minimised) and over the 
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requested task parameters. In addition, when compared to PCA the method used here benefits from 

greater flexibility offered by using two different linear mappings for encoding vs decoding. More technical 

as well as theoretical details of dPCA can be found in (Kobak et al., 2016). 

In our analyses dPCA was applied to both spiking data (firing rates obtained by convolving the spike point 

process with 50-ms wide Gaussian kernel) and oscillatory bursts in beta and gamma bands (burst point 

process convolved with 50-ms wide Gaussian kernel). To achieve demixing effect we grouped trials  into 

task (Task 1 vs Task 2)- and stimulus (Cue 1)-dependent sets, and analyzed trials in the interval from 100 

ms prior to the first sample cue (Cue 1) until the first test cue (Test 1). Apart from task and stimulus-

dependent components, dPCA also produced a condition independent component corresponding to low-

dimensional time-dependent task activity.  

 

Data availability.  

All relevant data and code will be available from the corresponding author on reasonable request. 
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