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Abstract  

Physical interactions of proteins play key roles in many important cellular processes. Therefore, 
it is crucial to determine the structure of protein complexes to understand molecular mechanisms 
of interactions. To complement experimental approaches, which usually take a considerable 
amount of time and resources, various computational methods have been developed to predict 
the structures of protein complexes. In computational modeling, one of the challenges is to 
identify near-native structures from a large pool of generated models. Here, we developed a deep 
learning-based approach named Graph Neural Network-based DOcking decoy eValuation scorE 
(GNN-DOVE). To evaluate a protein docking model, GNN-DOVE extracts the interface area 
and represents it as a graph. The chemical properties of atoms and the inter-atom distances are 
used as features of nodes and edges in the graph. GNN-DOVE was trained and validated on 
docking models in the Dockground database. GNN-DOVE performed better than existing 
methods including DOVE, which is our previous development that uses convolutional neural 
network on voxelized structure models. 

Keywords: protein docking, docking model evaluation, graph neural networks, deep learning, 
protein structure prediction 
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1 Introduction 

Experimentally determined protein structures provide fundamental information about the 
physicochemical nature of biological function of protein complexes. With the recent advances in 
cryo-electron microscopy, the number of experimentally determined protein complex structures 
has been increasing rapidly. However, experimental methods are costly in terms of money and 
time. To aid the experimental efforts, computational modeling approaches for protein complex 
structures, often referred to as protein docking (1), have been extensively studied over the past 
two decades. 

Protein docking methods aim to build the overall quaternary structure of a protein 
complex from the tertiary structure information of individual chains. Similar to other protein 
structure modeling methods, protein docking can also be divided into two main categories: 
template-based methods (2, 3), which use a known structure as a scaffold of modeling, and ab 
initio methods, which assemble individual structures and score generated models to choose most 
plausible ones. In ab initio methods, various approaches were used for molecular structure 
representations (4) (5). These include docking conformational searches, such as Fast Fourier 
Transform (6, 7), geometric hashing (4, 8), and particle swarm optimization (9), and for 
considering protein flexibility (10, 11). Development of new methods aim to extend and surpass 
the capabilities of simple pairwise docking, such as multi-chain docking (12-14), peptide-protein 
docking (15-17), docking with disordered proteins (18), docking order prediction (19, 20), and 
docking for cryo-EM maps (21, 22). Researchers have also applied recent advances in deep 
learning to further boost docking performance (23-25).  

Although substantial improvements have been made in ab initio protein docking, 
selecting near-native (i.e. correct) models out of a large number of produced models, which are 
often called decoys, is still challenging. The difficulty is partly due to a substantial imbalance of 
the number of near-native models and incorrect decoys in a generated decoy pool. The accuracy 
of scoring decoys certainly determines the overall performance of protein docking, and thus there 
are active developments of scoring functions (26) for docking models. Recognizing the 
importance of scoring, the Critical Assessment of PRediction of Interactions (CAPRI) (27), 
which is the community-based protein docking prediction experiments, has arranged a specific 
category of evaluating scoring methods, where participants are asked to select 10 plausible 
decoys from over thousands of decoys provided by the organizers. Over the last two decades, 
various approaches have been developed for scoring decoys. The main categories include 
physics-based potentials (11), scoring based on interface shape (4, 28), knowledge-based 
statistical potentials (29, 30), machine learning methods (31), evolutionary profiles of interface 
residues (32), and deep learning methods using interface structures (33).  

In our previous work, we developed a model selection method for protein docking, DOVE 
(33), which uses Convolutional deep Neural Network (CNN) as the core of its architecture. 
DOVE captures atoms and interaction energies of atoms located at the interface of a docking 
model using a cube of 203 or 403 Å3 and judges if the model is correct or incorrect according to 
the CAPRI criteria (34). We showed that DOVE performed better than existing methods. 
However, DOVE has a critical limitation - since it captures an interface with a fixed-size cube, 
only a part of the interface is captured when the interface region is too large. This often caused 
an erroneous prediction. In addition, a 3D grid representation of an interface often includes 
voxels of void space where no atoms exist inside, which is not efficient in memory usage and 
may even be detrimental for accurate prediction. In this work, we address this limitation of 
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DOVE by applying a graph neural network (GNN)(35, 36), which has previously been 
successful in representing molecular properties (37-40). Using GNN allows the capturing of all 
interface atoms in a more flexible and natural fashion. To the best of our knowledge, this is the 
first method that applies GNNs to the protein docking problem. Compared to DOVE and other 
existing methods, GNN-DOVE demonstrated substantial improvement in a benchmark study. 
 

2 Materials and methods 

We first introduce the datasets used for training and testing GNN-DOVE. Subsequently, we 
introduce the graph neural network architecture and the training process of GNN-DOVE. 

2.1 Dataset 

To train and test GNN-DOVE, we used the Dockground dataset (41). The dataset includes 58 
target complexes, each with on average 9.83 correct and 98.5 incorrect decoys.  Correct decoys 
were identified by applying the CAPRI criteria (27), which considers interface root mean square 
deviation (iRMSD), ligand RMSD (lRMSD), and the fraction of native contacts (fnat). The 
iRMSD is the Cα RMSD of interface residues with respect to the native structure. Interface 
residues in a complex are defined as all the residues within 10.0 Å from any residues of the other 
subunit. lRMSD is the Cα RMSD of ligands when receptors are superimposed, and fnat is the 
fraction of contacting residue pairs, i.e. residue pairs with any heavy atom pairs within 5.0 Å, 
that exist in the native structure. 

To remove redundancy, we grouped the 58 complexes using the TM-Score (42) . Two 
complexes were assigned to the same group if at least one pair of proteins from the two 
complexes had a TM-score of over 0.5 and sequence identity of 30% or higher. This resulted in 
29 groups (Table 1). In Table 1, complexes (PDB IDs) of the same group are shown in lower 
case in a parenthesis followed by the PDB ID of the representative. These groups were split into 
four subgroups to perform four-fold cross-testing, where three subsets were used for the training 
while one subset was used for testing. Thus, by cross-testing, we have four models tested on four 
fully independent testing sets. Among the training set, we used 80% of decoys for training a 
model and the remaining 20% as a validation set, which was used to determine the best hyper-
parameter set for training. In the results, the accuracy of targets when treated in the testing set 
was reported. To have a fair comparison with DOVE (33), DOVE was also trained and tested 
using this protocol.  
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Table 1. Dataset splits for training and testing GNN. 

Fold   PDB ID 

  1 1A2K, 1E96 (1he1, 1he8, 1wq1), 1F6M, 1MA9(2btf), 1G20, 1KU6, 1T6G, 1UGH, 

1YVB, 2CKH, 3PRO 

  2 1AKJ (1p7q, 2bnq), 1DFJ, 1NBF (1r4m, 1xd3, 2bkr), 1GPW, 1HXY, 1U7F, 1UEX, 

1ZY8, 2GOO, 1EWY 

  3 1AVW (1bth, 1bui, 1cho, 1ezu, 1ook, 1oph, 1ppf, 1tx6, 1xx9, 2fi4, 2kai, 1r0r, 

2sni, 3sic) 

  4 1BVN (1tmq), 1F51, 1FM9, 1A2Y (1g6v, 1gpq, 1jps, 1wej, 1l9b, 1s6v), 1W1I, 2A5T, 

3FAP 

There are in total 29 representative targets shown in the upper case, targets in the lower case in a 
parenthesis indicate that they belong to the same group.  
 

2.2 The GNN-DOVE algorithm 

In this section, we describe GNN-DOVE, which uses the graph neural network. The GNN-
DOVE algorithm is inspired by a recent work in drug-target interactions (38), which designed 
two graph-representation for capturing intermolecular interactions for protein-ligand interactions. 
We will first explain how the 3D structural information of a protein-complex interface is 
embedded as a graph. Then, we describe how we used a graph attention mechanism to focus on 
the intermolecular interaction between a receptor and a ligand protein. The overall protocol is 
illustrated in Figure 1. For an input protein docking decoy, the interface region is identified as a 
set of residues located within 10.0 Å of any residues of the other protein. A residue-residue 
distance is defined as the shortest distance among any heavy atom pairs across the two residues. 
Using the extracted interface region, two graphs are built representing two types of interactions: 
the graph 𝐺  describes heavy atoms at the interface region, which only considers the covalent 
bonds between atoms of interface residues within each subunit as edges. Another graph 𝐺  
connects both covalent (thus includes 𝐺  and non-covalent residue interaction as edges, where a 
non-covalent atom pair is defined as those which are closer than 10.0 Å from each other.  Both 
graphs will be processed by graph neural network (GNN) to output a score, which is a 
probability that the docking decoy has a CAPRI acceptable quality (thus making higher scores 
better). 
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Figure 1. The framework of GNN-DOVE. GNN-DOVE extracts the interface region of protein 
complex and further reconstructs graph with/without intermolecular interactions as input, then 
outputs the probability that indicates if the input structure is acceptable or not. A, the overall 
logical steps of the pipeline. B, the architecture of the GNN network with the GAT mechanism. 
 
 
Building Graphs 
A key feature of this work is the graph representation of an interface region of a complex model. 
Graph G is defined by G = (V, E, A), where V denotes the node set, E is a set of edges, and A is 
the adjacency matrix, which numerically represents the connectivity of the graph. For a graph G 
with N nodes, the adjacency matrix A has a dimension of N*N, where 𝐴 0 if the i-th node 
and the j-th node are connected and  𝐴 0 otherwise. The adjacency matrix 𝐴  for graph 𝐺  
describes covalent bonds at the interface, and thus defined as follows:  
 

𝐴 1 𝑖𝑓 𝑎𝑡𝑜𝑚 𝑖 𝑎𝑛𝑑 𝑎𝑡𝑜𝑚 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎 𝑐𝑜𝑣𝑎𝑙𝑒𝑛𝑡 𝑏𝑜𝑛𝑑 𝑜𝑟 𝑖𝑓 𝑖 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    

(1) 
 

The matrix 𝐴  for 𝐺  describes both covalent bonds and non-covalent interactions 
between atoms within 10.0 Å to each other. It is defined as follows:  
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⎪
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𝐴 , 𝑖𝑓 𝑖, 𝑗 ∈ 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 𝑜𝑟 𝑖, 𝑗 ∈ 𝑙𝑖𝑔𝑎𝑛𝑑 

𝑒 , 𝑖𝑓 𝑑 10 Å and 𝑖 ∈ 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟  𝑎𝑛𝑑 𝑗 ∈ 𝑙𝑖𝑔𝑎𝑛𝑑;

𝑜𝑟 𝑖𝑓 𝑑 10 Å and 𝑗 ∈ 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟  𝑎𝑛𝑑 𝑖 ∈ 𝑙𝑖𝑔𝑎𝑛𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                 (2) 

 
where 𝑑  denotes the distance between the i-th and the j-th atoms. 𝜇 and 𝜎 are learnable 

parameters, whose initial value is 0.0 and 1.0. The formula 𝑒  decays as the distance 
increases between atoms. 

Compared to the previous voxel representation used in DOVE, the graph representation 
encodes the distance information more flexibly and naturally. Note that the representation is 
rotationally invariant. Also, memory usage is more efficient as void spaces are not represented as 
is needed for the voxel representation. 

As for the node features in the graph, we considered the physicochemical properties of 
atoms.  We used the same features as used in previous works (38, 43) as shown in Table 2. 
 
Table 2. Atom Features 
Features Representation 
Atom type C, N, O, S, H (one hot) 
The degree (connections) of atom 0, 1, 2, 3, 4, 5 (one hot) 
The number of connected hydrogen atoms  0, 1, 2, 3, 4 (one hot) 
The number of implicit valence electrons 0, 1, 2, 3, 4, 5 (one hot) 
Aromatic 0 or 1 

 
 
Attention and Gate-Augmented Mechanism 
The constructed graphs are used as the input to the GNN. More formally, graphs are the 
adjacency matrix 𝐴  and 𝐴 , and the node features, 𝑥 𝑥 , 𝑥 ,⋯ , 𝑥  with 𝑥 ∈ ℝ , where 
𝐹 is the dimension of the node feature. 

We first explain the attention mechanism of GNN. With the input graph of 𝑥 , the pure 
graph attention coefficient is defined in Eq. (3), which denotes the relative importance between 
the i-th and the j-th node:  

𝑒 𝑥 𝐸𝑥 𝑥 𝐸𝑥                                                           (3) 

where 𝑥  and 𝑥  is the transformed feature representation defined by 𝑥 𝑊𝑥  and 𝑥 𝑊𝑥 . 
𝑊,𝐸 ∈ ℝ  are learnable matrices in GNN. 𝑒  and 𝑒  become identical to satisfy the 

symmetrical property of the graph by adding  𝑥 𝐸𝑥  and 𝑥 𝐸𝑥 . The coefficient will only be 
computed for i and j where 𝐴 0.  

Attention coefficients will be also computed for elements in the adjacency matrices. They 
are formulated in the following form for the element (i, j): 
 

𝑎
 

∑  ∈
𝐴                                                              (4) 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.12.30.424859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424859
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

where 𝑎  is the normalized attention coefficient for the i-th and the j-th node pair, 𝑒  is the 
symmetrical graph attention coefficient computed in Eq. (3), 𝑁  is the set of neighbors of the i-th 
node that includes interacting nodes j where 𝐴 0. 

Based on the attention mechanism, the new node feature of each node is updated by 
considering its neighboring nodes, which is a linear combination of the neighboring node 
features with the final attention coefficient 𝑎 : 
 

𝑥 ∑ 𝑎∈ 𝑥                                                              (5) 
 

Furthermore, the gate mechanism is further applied to update the node feature since it is 
known to significantly boost the performance of GNN. The basic idea is similar to that of ResNet 
(44), where the residual connection from the input helps to avoid information loss, alleviating the 
gradient collapse problem of the conventional backpropagation. The gated graph attention can be 
viewed as a linear combination of 𝑥  and  𝑥 , as defined in Eq. (6):    
                             

𝑥 𝑐 𝑥 1 𝑐 𝑥                                                     (6) 
 
where 𝑐 𝜎 𝐷 𝑥 ||𝑥 𝑏 , where 𝐷 ∈ ℝ  is a weight vector that is multiplied (dot product) 
with the vector 𝑥 ||𝑥  and 𝑏 is a constant value. Both D and b are learnable parameters and share 
among different nodes.  𝑥 ||𝑥  denote the concatenation vector of 𝑥  𝑎𝑛𝑑 𝑥 .  

We refer the Attention and Gate-Augmented Mechanism as a layer, the gate augmented 
graph attention layer (GAT). Then, we can simply denote 𝑥 𝐺𝐴𝑇 𝑥 ,𝐴 . The node 
embedding can be iteratively updated by 𝐺𝐴𝑇, which aggregates information from neighboring 
nodes.  
 
Graph Neural Network Architecture of GNN-DOVE 
Using the 𝐺𝐴𝑇 mechanism described before, we adopted four layers of  𝐺𝐴𝑇 in GNN-DOVE to 
process the node embedding information from neighbors and to output the updated node 
embedding (Figure 1B).  For the two adjacency matrices 𝐴  and 𝐴 , we used the shared (i.e. the 
same) GAT. The initial input of the network is atom features. With two matrices, 𝐴  and 𝐴 , we 
have 𝑥 𝐺𝐴𝑇 𝑥 ,𝐴  and 𝑥 𝐺𝐴𝑇 𝑥 ,𝐴 . To focus only on the intermolecular 
interactions within an input protein complex model, we subtracted the embedding of the two 
graphs as the final node embedding. By subtracting the updated embedding 𝑥  from 𝑥 , we can 
capture the aggregation information that only comes from the intermolecular interactions with 
other nodes in the protein complex model. Thus, the output node feature is defined as: 

                                                   𝑥 𝑥 𝑥                                                         (7) 
Then, the updated 𝑥  will become 𝑥  to iteratively augmented the information through 

three following 𝐺𝐴𝑇 layers. After the node embeddings were updated by the four 𝐺𝐴𝑇 layers, the 
node embedding of the whole graph was summed up as the entire graph representation, which is 
considered as the overall intermolecular interaction representation of the protein complex model: 

        
𝑥 ∑ 𝑥∈                                                            (8) 

 
Finally, fully connected (FC) layers were applied to 𝑥  to classify whether the protein-

complex model is correct or incorrect. In total, four FC layers were applied. RELU activation 
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functions were used between the FC layers, and a sigmoid function was applied for the last layer 
to output a probability value.  

The source code of GNN-DOVE is available at https://github.com/kiharalab/GNN_DOVE.  

2.3 Training nets 

Since the dataset was highly imbalanced with more incorrect decoys than acceptable ones, we 
balanced the training data by sampling the same number of acceptable and incorrect decoys in 
each batch for training.  

The dimension of the graph attention layer (GAT) is 140, while the fully connected layer 
(FC) is 128. For training, cross-entropy loss (45) was used as the loss function optimize the 
GNN. The Adam optimizer (46) with a learning rate of 0.002 was used. Each model of different 
folds was trained for 100 epochs with a batch size of 32. To avoid overfitting, a dropout (47) of 
0.3 was applied for every layer except the last FC layer. Weights of every layer were initialized 
using the Glorot-uniform (48) to have a zero-centered Gaussian distribution, and bias was 
initialized to 0 for all layers. For different fold training, we adopted the same hyper-parameters. 
The training process generally converged after approximately 30 epochs.  

2.4 DOVE 

We compared the performance of GNN-DOVE with its predecessor, DOVE. Here we briefly 
describe the DOVE algorithm. DOVE is a CNN-based method for evaluating protein docking 
models. It first extracts the interface region of an input protein complex model, and the region is 
put into a 40*40*40 Å3 cube as input. A seven-layer CNN, which consists of three convolutional 
layers, two pooling layers, and two fully connected layers, was adopted to process the voxel 
input. The output of DOVE is the probability that indicates whether the input model is acceptable 
or not. For input features, DOVE took atom types as well as atom-based interaction energy 
values from GOAP (49) and ITScore (29). Since voxelized structure input is not rotation 
invariant, DOVE needed to augment training data by rotations. 
 

3 Results  

3.1 Performance on the Dockground dataset 

We evaluated the performance of GNN-DOVE on the Dockground dataset. GNN-DOVE was 
compared with DOVE and five other existing structure model scoring methods, GOAP (49), 
ITScore (29), ZRANK (50), ZRANK2 (51), and IRAD (52). The test set results were reported 
for GNN-DOVE and DOVE. Both GOAP and ITScore were run in two different ways. First, as 
originally designed, the entire complex structure model was input. The other way was to input 
only the interface residues that are within 10 Å from the interacting protein (denoted as GOAP-
Interface, ITScore-Interface). Thus, GNN-DOVE was compared with a total of eight methods. 
As for DOVE, we used DOVE with a cube size of 403 Å3 and heavy atom distribution as input 
feature because this setting performed the best among other settings tested on the Dockground 
dataset in the original paper (53) (Figure 4 in the paper, the setting was named as DOVE-
Atom40). For this work, DOVE was newly retrained using the same four-fold cross-testing as 
GNN-DOVE. 
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Figure 2 shows the hit rate of GNN-DOVE in comparison with the other methods. A hit 
rate of a method is the fraction of target complexes where the method ranked at least one 
acceptable model based on the CAPRI criteria within each top rank. In Figure 2, we show two 
panels. Panel A shows the fraction of targets where a method had at least one hit among each 
rank cutoff, while in Panel B, the hit rates for a method were averaged first within each of the 29 
groups then re-averaged over the groups. 

 
 

 
Figure 2. The performance on the Dockground dataset. GNN-DOVE was compared with DOVE 
and seven other scoring methods. A, The panel shows the fraction of target complexes among the 
58 complexes in the benchmark set for which a method selected at least 1 acceptable model 
(within top x scored models). B, Considering the complexes are grouped into 29 groups, we also 
compared the hit rate of different methods based on the group classification. The hit rates for 
complexes in each group were averaged and then re-averaged over the 29 groups. 
 
 

It is clear from Figure 2 that GNN-DOVE (dotted line in light green) performed better 
than the other methods. GNN-DOVE was able to rank correct models within earlier ranks in 
many target complexes. Within the top 10 rank, GNN-DOVE achieved a hit rate of 89.7% while 
the next best method, DOVE, achieved 81.0% and the third best method, GOAP, obtained 70.7% 
(Figure 2A).  When we further compared the hit rates considering the target groups (Figure 2B), 
GNN-DOVE consistently outperformed other methods. The gap between GNN-DOVE and 
DOVE against the other existing methods also increased. Among the other seven existing 
methods, GOAP showed the highest hit rate at 5th ranks followed by Zrank2 in both panels while 
ITScore-Interface had the lowest hit rates on this dataset. 

In Figure 3, we compared iRMSD, lRMSD, and fnat values of the methods. These metrics 
are used for defining the quality levels in CAPRI. The best value among the top 10 ranked 
decoys was plotted. For the majority of the cases (49 out of the 58 targets) GNN-DOVE selected 
a decoy within an iRMSD of 4 Å (one of the criteria for the acceptable quality level in CAPRI). 
This is in sharp contrast with the other methods (Figure 3A), where the iRMSD of many targets 
they selected was larger (worse) than GNN-DOVE. In terms of iRMSD, the second best method 
was DOVE, where 44 targets were within an iRMSD of 4 Å. A similar situation was observed 
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for lRMSD. GNN-DOVE selected a decoy within a lRMSD of 10 Å (one of the criteria for the 
acceptable quality level in CAPRI) for 50 targets, while the second-best method, DOVE, selected 
45 targets within 10 Å lRMSD. In terms of fnat (larger being more accurate), GNN-DOVE only 
missed 5 targets in selecting at least one model with an fnat over 0.1 (one of the criteria for 
acceptable quality level in CAPRI). The plot shows that GNN-DOVE had a larger fnat value 
than the other existing methods for most of the targets, as indicated by many data points below 
the diagonal line. 

Figure 3B compares GNN-DOVE against DOVE. In terms of iRMSD, lRMSD, and fnat, 
GNN-DOVE outperformed DOVE for 26 (22 ties), 27 (20 ties), and 27 (17 ties), respectively. 
Overall, GNN-DOVE outperforms the eight existing methods for all the three metrics.  

 
 

 
 
Figure 3. Comparison of iRMSD, lRMSD, and fnat. For each method, the best value among the 
top 10 scored decoys was plotted. A, Comparison against all eight methods. B, Comparison 
against DOVE. 
 

3.2 T-SNE analysis 

To illustrate how GNN-DOVE classified decoys, we used t-SNE (54) to visualize GNN-DOVE’s 
encoding of decoys in Figure 4. t-SNE is a dimension reduction method to visualize similarities 
of high-dimensional data points. Since we employed a four-fold cross-testing, a plot was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.12.30.424859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424859
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

provided for each of the four testing sets. In all the plots, particularly in Fold 3 and Fold 4, most 
of the acceptable decoys (black circles) were distinguished from incorrect ones (gray crosses), 
which indicates a good representation and generalization ability of the graph neural networks for 
this problem. 
 

 
 
Figure 4. t-SNE plots of decoy selection. Decoys from all the testing target complexes in the 
four different folds in the cross-testing are plotted, which in total include 580 correct decoys 
(black circles) and 5591 incorrect decoys (gray stars). Encoded features of those decoys are 
taken from the output of the last fully connected layer of GNN, which is a vector of 128 
elements. To visualize the different embedding, we use t-SNE to project them into a 2D space. 
The four panels correspond to the embedding of models on the four-fold testing sets.  
 

3.3 Examples of decoys for comparison with DOVE  

We mentioned above that a limitation of DOVE is that its usage of a fix-sized cube of 403 Å3, 
which cannot capture the entire interface region if the interface is too large to fit in the cube. 
Here we show two examples of such cases, which led to a misclassification by DOVE but 
correctly classification by GNN-DOVE. In Figure 5, the interface region of a decoy is shown in 
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blue and green, and the atoms that did not fit in the cube are shown in a sphere representation in 
red. 

The first example (Fig. 5A) shows a decoy of a protein complex of plasminogen and 
staphylokinase (PDB ID: 1bui), which has an acceptable quality by the CAPRI criteria. For this 
decoy, 59 atoms (in red) out of 1022 atoms at the interface were not included in the cube. 
Because of this, it was ranked the 65th out of 110 decoys by DOVE, while it was ranked 15th by 
GNN-DOVE. For this target, GNN-DOVE ranked five hits within the top 10 scoring decoys and 
eight hits within the top 20. In contrast, DOVE could not rank any hit within the top 20. The first 
hit by DOVE was found at the 35th rank. 

The second example (Fig. 5B) is an acceptable model for the nitrogenase complex (PDB 
ID: 1g20). As shown, many interface atoms, 497 out of 1843, were outside the cube. DOVE 
ranked this decoy 28th, while GNN-DOVE ranked this decoy 10th. DOVE had 0 hits within the 
top 10 and had only one hit within top 20. On the other hand, GNN-DOVE was very successful 
for this target, where all the top 10 selections were correct models. 
 
 
 

 
 
 
Figure 5. Examples of decoys with an acceptable quality but not selected within the top 10 by 
DOVE. Two subunits docked are shown in cyan and light brown and the interface regions of the 
two subunits are presented in the stick representation and in blue and green, respectively.  To 
highlight the missed atoms from the input cube of DOVE, they are shown in red spheres. A, a 
medium quality decoy for 1bui. iRMSD: 2.54 Å; lRMSD: 2.93 Å; fnat: 0.551. B, a medium 
quality decoy for 1g20. iRMSD: 2.14 Å; lRMSD: 3.86 Å; fnat: 0.453.   
 

4 Discussion 

In this work, we developed GNN-DOVE for protein docking decoy selection, which used a 
Graph Neural Network (GNN). We used the gated augmented attention mechanism to capture 
the atom interaction pattern at the interface region of protein docking models. The benchmark on 
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the Dockground dataset demonstrated that GNN-DOVE outperformed DOVE, along with other 
existing scoring functions compared. 

To assess the quality of structure models, considering multi-body (atom or residue) 
interactions (55-58) have been proven to be an effective approach. GNNs consider patterns of 
multi-atom interactions by representing the interactions as a graph structure. Since a graph is a 
natural representation of molecular structures, GNNs may be applied in various problems in 
structural bioinformatics and cheminformatics. 

The performance of GNN-DOVE likely would be improved by considering other 
physicochemical properties of atoms such as atom-wise binding energies, as well as sequence 
conservation of residues that can be computed from a multiple sequence alignment of 
homologous proteins. Application to multi-chain complexes remains a potential path for future 
work. 
 
Acknowledgements 
The authors are grateful to Jacob Verburgt for proofreading the manuscript and Sai Raghavendra 
Maddhuri Venkata Subramaniya and Aashish Jain for testing the GNN-DOVE code on GitHub. 
This work was partly supported by the National Institutes of Health (R01GM133840, 
R01GM123055), and the National Science Foundation (DMS1614777, CMMI1825941, 
MCB1925643, DBI2003635). 
 
Authors Contributions 
XW and STF conceived the initial version of the study. XW and DK designed this work in the 
current form. XW developed the codes in communication with STF. XW performed the 
computation and XW and DK analyzed the results. XW wrote the initial draft of the manuscript 
and DK critically edited it. All authors have read and approved the manuscript. 
 
Reference 

1. T. Aderinwale, C. W. Christoffer, D. Sarkar, E. Alnabati, D. Kihara, Computational 
structure modeling for diverse categories of macromolecular interactions. Current 
Opinion in Structural Biology 64, 1-8 (2020). 

2. I. Anishchenko, P. J. Kundrotas, A. V. Tuzikov, I. A. Vakser, Structural templates for 
comparative protein docking. Proteins: Structure, Function, and Bioinformatics 83, 
1563-1570 (2015). 

3. N. Tuncbag, A. Gursoy, R. Nussinov, O. Keskin, Predicting protein-protein interactions 
on a proteome scale by matching evolutionary and structural similarities at interfaces 
using PRISM. Nature Protocols 6, 1341 (2011). 

4. V. Venkatraman, Y. D. Yang, L. Sael, D. Kihara, Protein-protein docking using region-
based 3D Zernike descriptors. BMC Bioinformatics 10, 407 (2009). 

5. B. G. Pierce, Y. Hourai, Z. Weng, Accelerating protein docking in ZDOCK using an 
advanced 3D convolution library. PloS One 6, e24657 (2011). 

6. E. Katchalski-Katzir et al., Molecular surface recognition: determination of geometric fit 
between proteins and their ligands by correlation techniques. Proceedings of the National 
Academy of Sciences 89, 2195-2199 (1992). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.12.30.424859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424859
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

7. D. Padhorny et al., Protein–protein docking by fast generalized Fourier transforms on 5D 
rotational manifolds. Proceedings of the National Academy of Sciences 113, E4286-
E4293 (2016). 

8. D. Fischer, S. L. Lin, H. L. Wolfson, R. Nussinov, A geometry-based suite of 
moleculardocking processes. Journal of Molecular Biology 248, 459-477 (1995). 

9. I. H. Moal, P. A. Bates, SwarmDock and the use of normal modes in protein-protein 
docking. International Journal of Molecular Sciences 11, 3623-3648 (2010). 

10. T. Oliwa, Y. Shen, cNMA: a framework of encounter complex-based normal mode 
analysis to model conformational changes in protein interactions. Bioinformatics 31, 
i151-i160 (2015). 

11. J. J. Gray et al., Protein–protein docking with simultaneous optimization of rigid-body 
displacement and side-chain conformations. Journal of Molecular Biology 331, 281-299 
(2003). 

12. J. Esquivel-Rodríguez, Y. D. Yang, D. Kihara, Multi-LZerD: Multiple protein docking 
for asymmetric complexes. Proteins: Structure, Function, and Bioinformatics 80, 1818-
1833 (2012). 

13. D. W. Ritchie, S. Grudinin, Spherical polar Fourier assembly of protein complexes with 
arbitrary point group symmetry. Journal of Applied Crystallography 49, 158-167 (2016). 

14. D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, H. J. Wolfson, Geometry-based flexible 
and symmetric protein docking. Proteins: Structure, Function, and Bioinformatics 60, 
224-231 (2005). 

15. N. Alam et al., High-resolution global peptide-protein docking using fragments-based 
PIPER-FlexPepDock. PLoS Computational Biology 13, e1005905 (2017). 

16. M. Kurcinski, M. Jamroz, M. Blaszczyk, A. Kolinski, S. Kmiecik, CABS-dock web 
server for the flexible docking of peptides to proteins without prior knowledge of the 
binding site. Nucleic Acids Research 43, W419-W424 (2015). 

17. M. Kurcinski, A. Badaczewska-Dawid, M. Kolinski, A. Kolinski, S. Kmiecik, Flexible 
docking of peptides to proteins using CABS-dock. Protein Science 29, 211-222 (2020). 

18. L. X. Peterson, A. Roy, C. Christoffer, G. Terashi, D. Kihara, Modeling disordered 
protein interactions from biophysical principles. PLoS Computational Biology 13, 
e1005485 (2017). 

19. L. X. Peterson, W. H. Shin, H. Kim, D. Kihara, Improved performance in CAPRI round 
37 using LZerD docking and template-based modeling with combined scoring functions. 
Proteins: Structure, Function, and Bioinformatics 86, 311-320 (2018). 

20. L. X. Peterson et al., Modeling the assembly order of multimeric heteroprotein 
complexes. PLoS Computational Biology 14, e1005937 (2018). 

21. J. Esquivel-Rodríguez, D. Kihara, Fitting multimeric protein complexes into electron 
microscopy maps using 3D Zernike descriptors. The Journal of Physical Chemistry B 
116, 6854-6861 (2012). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.12.30.424859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424859
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

22. G. C. van Zundert, A. S. Melquiond, A. M. Bonvin, Integrative modeling of biomolecular 
complexes: HADDOCKing with cryo-electron microscopy data. Structure 23, 949-960 
(2015). 

23. P. Gainza et al., Deciphering interaction fingerprints from protein molecular surfaces 
using geometric deep learning. Nature Methods 17, 184-192 (2020). 

24. B. Akbal-Delibas, R. Farhoodi, M. Pomplun, N. Haspel, Accurate refinement of docked 
protein complexes using evolutionary information and deep learning. Journal of 
Bioinformatics and Computational Biology 14, 1642002 (2016). 

25. M. T. Degiacomi, Coupling molecular dynamics and deep learning to mine protein 
conformational space. Structure 27, 1034-1040. e1033 (2019). 

26. I. H. Moal, M. Torchala, P. A. Bates, J. Fernández-Recio, The scoring of poses in 
protein-protein docking: current capabilities and future directions. BMC Bioinformatics 
14, 286 (2013). 

27. M. F. Lensink et al., The challenge of modeling protein assemblies: the CASP12-CAPRI 
experiment. Proteins: Structure, Function, and Bioinformatics 86, 257-273 (2018). 

28. L. J. Kingsley, J. Esquivel-Rodríguez, Y. Yang, D. Kihara, M. A. Lill, Ranking protein-
protein docking results using steered molecular dynamics and potential of mean force 
calculations. Journal of computational chemistry 37, 1861-1865 (2016). 

29. S. Y. Huang, X. Zou, An iterative knowledge-based scoring function for protein–protein 
recognition. Proteins: Structure, Function, and Bioinformatics 72, 557-579 (2008). 

30. H. Lu, L. Lu, J. Skolnick, Development of unified statistical potentials describing 
protein-protein interactions. Biophysical Journal 84, 1895-1901 (2003). 

31. F. Fink, J. Hochrein, V. Wolowski, R. Merkl, W. Gronwald, PROCOS: computational 
analysis of protein-protein complexes. Journal of computational chemistry 32, 2575-2586 
(2011). 

32. A. A. Nadaradjane, R. Guerois, J. Andreani, in Protein Complex Assembly. (Springer, 
2018), pp. 429-447. 

33. X. Wang, G. Terashi, C. W. Christoffer, M. Zhu, D. Kihara, Protein docking model 
evaluation by 3D deep convolutional neural networks. Bioinformatics 36, 2113-2118 
(2019). 

34. J. Janin et al., CAPRI: a critical assessment of predicted interactions. Proteins: Structure, 
Function, and Bioinformatics 52, 2-9 (2003). 

35. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph neural 
network model. IEEE Transactions on Neural Networks 20, 61-80 (2008). 

36. Z. Wu et al., A comprehensive survey on graph neural networks. IEEE Transactions on 
Neural Networks and Learning Systems,  (2020). 

37. D. K. Duvenaud et al., in Advances in Neural Information Processing Systems. (2015), 
pp. 2224-2232. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.12.30.424859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424859
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

38. J. Lim et al., Predicting drug–target interaction using a novel graph neural network with 
3D structure-embedded graph representation. Journal of Chemical Information and 
Modeling 59, 3981-3988 (2019). 

39. J. S. Smith, O. Isayev, A. E. Roitberg, ANI-1: an extensible neural network potential with 
DFT accuracy at force field computational cost. Chemical Science 8, 3192-3203 (2017). 

40. R. Zubatyuk, J. S. Smith, J. Leszczynski, O. Isayev, Accurate and transferable multitask 
prediction of chemical properties with an atoms-in-molecules neural network. Science 
Advances 5, eaav6490 (2019). 

41. S. Liu, Y. Gao, I. A. Vakser, Dockground protein–protein docking decoy set. 
Bioinformatics 24, 2634-2635 (2008). 

42. Y. Zhang, J. Skolnick, Scoring function for automated assessment of protein structure 
template quality. Proteins: Structure, Function, and Bioinformatics 57, 702-710 (2004). 

43. W. Torng, R. B. Altman, Graph convolutional neural networks for predicting drug-target 
interactions. Journal of Chemical Information and Modeling 59, 4131-4149 (2019). 

44. K. He, X. Zhang, S. Ren, J. Sun, paper presented at the Proceedings of the IEEE 
conference on Computer Vision and Pattern Recognition,  2016. 

45. I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning.  (MIT press 
Cambridge, 2016), vol. 1. 

46. D. P. Kingma, J. Ba, paper presented at the International Conference on Learning 
Representations,  2015. 

47. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a 
simple way to prevent neural networks from overfitting. The Journal of Machine 
Learning Research 15, 1929-1958 (2014). 

48. X. Glorot, Y. Bengio, in Proceedings of the thirteenth international conference on 
artificial intelligence and statistics. (2010), pp. 249-256. 

49. H. Zhou, J. Skolnick, GOAP: a generalized orientation-dependent, all-atom statistical 
potential for protein structure prediction. Biophysical Journal 101, 2043-2052 (2011). 

50. B. Pierce, Z. Weng, ZRANK: reranking protein docking predictions with an optimized 
energy function. Proteins: Structure, Function, and Bioinformatics 67, 1078-1086 
(2007). 

51. B. Pierce, Z. Weng, A combination of rescoring and refinement significantly improves 
protein docking performance. Proteins: Structure, Function, and Bioinformatics 72, 270-
279 (2008). 

52. T. Vreven, H. Hwang, Z. Weng, Integrating atom-based and residue-based scoring 
functions for protein–protein docking. Protein Science 20, 1576-1586 (2011). 

53. X. Wang, G. Terashi, C. W. Christoffer, M. Zhu, D. Kihara, Protein docking model 
evaluation by 3D deep convolutional neural networks. Bioinformatics 36, 2113-2118 
(2020). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.12.30.424859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424859
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

54. L. v. d. Maaten, G. Hinton, Visualizing data using t-SNE. Journal of Machine Learning 
Research 9, 2579-2605 (2008). 

55. H. Kim, D. Kihara, Protein structure prediction using residue- and fragment-environment 
potentials in CASP11. Proteins 84 Suppl 1, 105-117 (2016). 

56. H. Kim, D. Kihara, Detecting local residue environment similarity for recognizing near-
native structure models. Proteins 82, 3255-3272 (2014). 

57. P. Gniewek, S. P. Leelananda, A. Kolinski, R. L. Jernigan, A. Kloczkowski, Multibody 
coarse-grained potentials for native structure recognition and quality assessment of 
protein models. Proteins 79, 1923-1929 (2011). 

58. K. Olechnovic, C. Venclovas, VoroMQA: Assessment of protein structure quality using 
interatomic contact areas. Proteins 85, 1131-1145 (2017). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2020. ; https://doi.org/10.1101/2020.12.30.424859doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424859
http://creativecommons.org/licenses/by-nc-nd/4.0/

