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ABSTRACT 

 

Self-sustaining neural activity maintained through local recurrent connections is of 

fundamental importance to cortical function. We show that Up-states—an example of self-

sustained, inhibition-stabilized network dynamics—emerge in cortical circuits across 

three weeks of ex vivo development, establishing the presence of unsupervised learning 

rules capable of generating self-sustained dynamics. Previous computational models 

have established that four sets of weights (WE←E, WE←I, WI←E, WI←I) must interact in an 

orchestrated manner to produce Up-states, but have not addressed how a family of 

learning rules can operate in parallel at all four weight classes to generate self-sustained 

inhibition-stabilized dynamics. Using numerical and analytical methods we show that, in 

part due to the paradoxical effect, standard homeostatic rules are only stable in a narrow 

parameter regime. In contrast, we show that a family of biologically plausible learning 

rules based on “cross-homeostatic” plasticity robustly lead to the emergence of self-

sustained, inhibition-stabilized dynamics.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2020.12.30.424888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424888
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

INTRODUCTION 1 

 2 

Self-sustained patterns of neural activity maintained by local recurrent excitation underlie 3 
many cortical computations and dynamic regimes, including the persistent activity 4 
associated with working memory (Fuster and Jervey, 1981; Goldman-Rakic, 1995; Wang, 5 
2001), asynchronous states (van Vreeswijk and Sompolinsky, 1998; Renart et al., 2010), 6 
and Up-states (Steriade et al., 1993; Timofeev et al., 2000). Recurrent excitation, 7 

however, also has the potential to drive pathological and epileptiform regimes 8 
(McCormick, 1989; Douglas et al., 1995; Steriade and Contreras, 1998). Converging 9 
theoretical and experimental evidence indicate that cortical circuits that generate self-10 
sustained dynamics operate in an inhibition-stabilized regime, in which positive feedback 11 
is held in check by recurrent inhibition (Tsodyks et al., 1997; Brunel, 2000; Ozeki et al., 12 

2009; Rubin et al., 2015; Rutishauser et al., 2015; Jercog et al., 2017; Sanzeni et al., 13 
2020).  14 

 15 

 At the computational level self-sustained activity and inhibition-stabilized networks are 16 
often modeled as a simplified circuit composed of excitatory (E) and inhibitory (I) 17 
subpopulations of neurons with four classes of synaptic weights: WE←E, WE←I, WI←E, WI←I. 18 

Analytical and numerical analyses have shown that these weights must obey certain 19 
theoretically well-defined relationships in order to generate self-sustained, inhibition-20 

stabilized dynamics (Tsodyks et al., 1997; Brunel, 2000; Ozeki et al., 2009; Rubin et al., 21 
2015; Jercog et al., 2017). Yet, it is not known how the appropriate relationships between 22 
these four classes of weights could emerge in a self-organizing manner (Sadeh and 23 

Clopath, 2021). One possibility is that standard homeostatic forms of plasticity underlie 24 
the emergence of inhibition-stabilized networks. Homeostatic learning rules generally 25 

assume that excitatory weights are regulated in a manner proportional to the difference 26 
between some ontogenetically determined set-point and average neural activity (for both 27 
excitatory and inhibitory neurons)—and conversely that inhibitory weights onto excitatory 28 
neurons are regulated in the opposite direction (Turrigiano et al., 1998; van Rossum et 29 
al., 2000; Kilman et al., 2002; Turrigiano and Nelson, 2004; Peng et al., 2010). However, 30 

it remains an open question whether homeostatic rules can lead to the self-organized 31 

emergence of self-sustained, inhibition-stabilized networks. 32 
 33 
 At both the experimental and computational level one of the simplest and best-studied 34 
examples of self-sustained activity are Up-states (Steriade et al., 1993; Timofeev et al., 35 
2000). Up-states are characterized by network-wide regimes in which excitatory and 36 

inhibitory neurons transiently shift from a quiescent Down-state to a depolarized state 37 

with low to moderate firing rates (Sanchez-Vives and McCormick, 2000; Neske et al., 38 

2015; Bartram et al., 2017). Up-states occur spontaneously in vivo during anesthesia, 39 
slow-wave sleep, and quiet wakefulness (Steriade et al., 1993; Timofeev et al., 2000; 40 
Beltramo et al., 2013; Hromádka et al., 2013), in acute slices (Sanchez-Vives and 41 
McCormick, 2000; Shu et al., 2003; Fanselow and Connors, 2010; Sippy and Yuste, 2013; 42 
Xu et al., 2013; Sadovsky and MacLean, 2014; Neske et al., 2015; Bartram et al., 2017), 43 

and in organotypic cultures over the course of ex vivo development (Plenz and Kitai, 1998; 44 
Seamans et al., 2003; Johnson and Buonomano, 2007; Kroener et al., 2009; Motanis and 45 
Buonomano, 2015; Motanis and Buonomano, 2020). Furthermore, Up-state frequency 46 
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appears to be homeostatically regulated—e.g., optogenetically stimulating cortical circuits 47 
over the course of days decreases Up-state frequency (Motanis and Buonomano, 2015; 48 

Motanis and Buonomano, 2020). 49 
 50 
Consistent with previous results we first demonstrate that Up-states emerge in both 51 
excitatory and inhibitory neurons over the course of the first few weeks of ex vivo 52 
development, suggesting that local cortical circuits are programmed to homeostatically 53 

generate Up-states. We next used computational models and analytical methods to 54 
explore families of homeostatic learning rules that operate in parallel at all four synapse 55 
classes and lead to self-sustained, inhibition-stabilized dynamics. We show that when 56 
driving the network towards a self-sustained, inhibition-stabilized regime, standard forms 57 
of homeostatic plasticity are only stable in a narrow region of parameter space. This is in 58 

part a consequence of the paradoxical effect—in which an increase in excitatory drive to 59 

inhibitory neurons produces a net decrease in the firing rate of those same inhibitory 60 

neurons (Tsodyks et al., 1997; Ozeki et al., 2009; Rubin et al., 2015). We next developed 61 
a family of homeostatic learning rules that include “cross-homeostatic” influences, and 62 

lead to the unsupervised emergence of Up-states in the inhibition-stabilized regime in a 63 
robust manner. These rules are consistent with experimental data and generate explicit 64 

predictions regarding the effects of manipulations of excitatory and inhibitory neurons on 65 
synaptic plasticity.  66 
 67 

 68 
RESULTS 69 

 70 
Up-states emerge autonomously during ex vivo development 71 

 72 
Up-states represent a transition from a quiescent state to a self-sustained network-wide 73 

dynamic regime in which both excitatory and inhibitory neurons are active (Fig. 1A). 74 
During Up-states the firing rate of excitatory neurons is relatively low (1-5 Hz) indicating 75 
that recurrent excitation is held in check by appropriately tuned inhibition (Neske et al., 76 

2015; Jercog et al., 2017; Romero-Sosa et al., 2021). Computational studies have 77 
demonstrated that Up and Down states can be simulated as a bistable dynamical system 78 

composed of interconnected populations of excitatory (E) and inhibitory (I) neurons (Fig. 79 
1B), in which Down-states represent a quiescent fixed point, and Up- or asynchronous 80 
states represent a second, non-trivial fixed-point attractor. In the Up regime recurrent 81 
excitation produces amplification, but the activity is held in check by rapid inhibition. The 82 

dynamics settles into a stable fixed-point attractor, and instantiates an example of an 83 
inhibition-stabilized network. The neural dynamics within two-population models is 84 

governed by four classes of synaptic weights WEE, WEI, WIE, WII (Fig. 1B, inset). 85 
Analytical and numerical studies have demonstrated that these four weights must obey 86 
certain “balanced” relationships in order to support the stable self-sustaining dynamics—87 
e.g., if excitation is too strong, runaway (or saturated) excitation occurs, whereas if 88 
inhibition is too strong only the trivial quiescent fixed point will be stable (Tsodyks et al., 89 

1997; van Vreeswijk and Sompolinsky, 1998; Brunel, 2000; Ozeki et al., 2009; Rubin et 90 
al., 2015; Jercog et al., 2017) (see Section 2.2 in the Supplementary Material).  91 
 92 
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In most computational models the set of four weights is determined analytically or through 93 
numerical searches. In contrast, recordings in cortical organotypic cultures show that Up-94 

states autonomously develop over the course of ex vivo development (Plenz and Kitai, 95 
1998; Seamans et al., 2003; Johnson and Buonomano, 2007; Kroener et al., 2009; 96 
Motanis and Buonomano, 2015; Motanis and Buonomano, 2020). Early in development, 97 
at 8 days-in-vitro (DIV-8) most of the neurons are silent, while at later stages (DIV-23) 98 
spontaneous Up-states are observed (Fig. 1C). Here we further characterized the 99 

emergence of Up-states and asked whether the development of activity is in sync for both 100 
excitatory and inhibitory neurons. Using two-photon calcium imaging, we recorded the 101 
spontaneous activity in excitatory neurons and PV+-inhibitory neurons by expressing 102 
GCamp6f under the CaMKII and Flex promoters in organotypic cultures of PV-Cre mice. 103 
Calcium imaging at DIV 12-13 revealed infrequent and short bouts of synchronous 104 

activity. By DIV 14-16 Up-states were observed, and over the entire four-weeks of ex vivo 105 

development there was an increase and stabilization of Up-state frequency and duration 106 

in both excitatory and inhibitory neurons (Fig. 1D-F)—suggesting the Up-states emerge 107 
in a co-dependent manner in both populations.   108 

 109 
 110 

 111 
Figure 1. Up-states emerge autonomously over the course of ex vivo development. 112 

(A) Example of Up-states in simultaneously whole-cell recordings of a pyramidal (green) and parvalbumin (PV) 113 
positive inhibitory neuron (red).  114 

(B) Two-population firing rate model of Up-states. The schematic of the model is shown in the inset. The dynamics 115 
of the excitatory (green) and inhibitory (red) populations are governed by four synaptic weights, WE←E, WE←I, 116 
WI←E, and WI←I.  Traces correspond to the firing rate of each of the populations in the presence of external 117 
noise.  118 

(C) Spontaneous activity recording of a pyramidal neuron at 8 and 23 days in vitro development (DIV). Up-states 119 
are present only at later developmental stages.  120 

(D) Two-photon calcium imaging recording of excitatory and PV+ neurons at different stages of development. 121 
Organotypic slices of Cre-PV mice were transfected with pAAV-CAG-Flex-GCamp6f-mRuby2 and pAAV-122 
CaMKII-GCamp6f. Image shows an example slice with a PV+ neuron expressing both, GCamp6f and the 123 
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mRuby2 red marker. Traces show the spontaneous calcium activity of 2 example PV+ and excitatory cells at 124 
14 and 25 DIV. Up-states can be observed more prominently at later stages (see Methods for the definition 125 
and quantification of Up-states).  126 

(E) Spontaneous calcium activity of 100 example cells at 14 and 25 DIV. Synchronous activity events correspond 127 
to Up-states.  128 

(F) Evolution of the mean Up-state duration and frequency over the course of ex vivo development for excitatory 129 
(green) and PV+ neurons (red). A significant increase in mean Up duration (Two-way ANOVA: F4,64 = 3.54, p 130 
= 0.011) and frequency (Two-way ANOVA: F4,64 = 4.75, p = 0.002) was observed over developmental time, 131 
with no statistical effect of neuron type (F4,64 = 0.13, p = 0.97) or interaction effect (F4,64 = 0.09, p = 0.98).   132 

 133 
The observation that Up-states emerge autonomously during ex vivo development 134 

indicates that synaptic learning rules are in place to orchestrate the unsupervised 135 
emergence of Up-states. Since Up-states emerge autonomously over the course of 136 
development in ex vivo cortical networks, and because all four weight classes have been 137 
observed to undergo synaptic plasticity in experimental studies, we next asked how the 138 

stable self-sustained dynamics characteristic of Up-states might emerge in a self-139 
organizing manner.  140 

 141 
Standard homeostatic learning can only account for stable self-sustained activity 142 

in a narrow parameter regime 143 
 144 

One attractive possibility is that cortical neurons are homeostatically programmed to 145 
generate Up-states. Specifically, that both excitatory and inhibitory neurons exhibit 146 

ontogenetically programmed firing rate setpoints during Up-states, and they 147 
homeostatically adjust their excitatory and inhibitory weights to reach these target 148 

setpoints. Homeostatic learning rules are traditionally defined by changes in synaptic 149 
weights that are proportional to an “error term” defined by the difference between the 150 
setpoint and the neurons average activity levels (Turrigiano et al., 1998; van Rossum et 151 

al., 2000; Kilman et al., 2002; Turrigiano and Nelson, 2004; Liu and Buonomano, 2009; 152 

Peng et al., 2010; Vogels et al., 2011), e.g., ∆WEE  Eset – Eavg where any departure of 153 

the excitatory activity Eavg from the setpoint Eset would lead to a compensatory correction  154 
in the value of the weight WEE. 155 

 156 
We first asked is stable self-sustained dynamics can emerge in a standard two-157 

population model (Jercog et al., 2017; see Methods) through homeostatic mechanisms. 158 
We initialized the four weights (WEE, WEI, WIE, WII) of the model at random values 159 
and applied a standard family of homeostatic learning rules to all four weights classes 160 
(Fig. 2A). It is well established that PV+-inhibitory neurons have higher firing rates than 161 

pyramidal neurons during Up-states (Neske et al., 2015; Romero-Sosa et al., 2021), thus 162 
based on experimental data we set the setpoints for the E and I populations during Up-163 

states to 5 and 14 Hz, respectively (Romero-Sosa et al., 2021). We first asked whether 164 
the set of four standard homeostatic learning rules can lead to stable self-sustained 165 
dynamic regime (representing a permanent Up-state) in response to a brief external input 166 
(low levels of noise were used to avoid spontaneous Up↔Down transitions). 167 

 168 
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 169 
Figure 2. Standard homeostatic rules are only stable in a narrow parameter regime.  170 
(A) Schematic (top) of the population rate model in which the four weights are governed by a family of 171 

homeostatic learning rules (bottom). 172 
(B) Example simulation of the network over the course of simulated development. Each plot shows the 173 

firing rate of the excitatory and inhibitory population over the course of a trial in response to a brief 174 
external input. Eset=5 and Iset=14 represent the target homeostatic setpoints. Weights were initialized to 175 
WEE=2.1, WEI=3, WIE=4, and WII=2. Note that while an evoked Up-state emerges by Trial 200 the firing 176 
rates do not converge to their setpoints, and by Trial 500 the Up-state is no longer observed.  177 

(C) Average rate across trials (upper plot) for the excitatory and inhibitory populations for the data shown 178 
in (B). Weight dynamics (bottom plot) produced by the homeostatic rules across trials for the data 179 
shown in (B). 180 

(D) Average final rate for 100 independent simulations with different weight initializations. Data represents 181 
mean ± SEM.  182 

(E) Simulation of a network starting with weights that generate Up-states that match the Eset=5 and Iset=14 183 
Hz setpoints (Trial 1, top). After 500 trials the network has diverged from its setpoints, indicating the 184 
synaptic learning rules are unstable. Weights were initialized to WEE=5 WEI=1.09 WIE=10 WII=1.54.  185 

(F) Analytical stability regions of the neural and learning rule subsystems as a function of the free weights 186 
WEE and WIE. (note that once a WEE and WIE are set to generate an Up-state with specific Eset and Iset 187 
values, WEI and WII are fully determined by WEE and WIE, respectively). Here the stability plot is obtained 188 
by considering equal learning rates for all four learning rules (as used for panels B-E). Blue asterisk 189 
corresponds to the initial conditions shown in Panel D (top).  190 

(G) Similar to F but with E >> I.  191 
(H) Similar to F but with but with E << I. To the right of the blue line, the network is in a paradoxical regime 192 

(defined by the condition WEE*gE – 1 > 0)  193 
(I) Condition of stability of the neural system and learning rule system when the learning rate on the 194 

inhibitory neuron dominates and an external excitatory current is applied to the excitatory neuron. The 195 
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current produces an enlargement of the stability region of the neural subsystem. Right of blue line 196 
shows the area where the network is in a paradoxical regime.  197 

 198 
Although the rules are homeostatic in nature (e.g., if I is below Iset, an increase of WIE 199 

and a decrease in WII would be induced), in the example shown in Fig. 2B-C the 200 
network failed to converge to a stable Up-state (Fig. 2B-C). Initially (Trial 1) an external 201 
input to the excitatory population does not engage recurrent activity because WEE is too 202 
weak. By Trial 200 the weights have evolved and the brief external input triggers an Up-203 
state, but the activities E and I do not match the corresponding setpoints—the network is 204 

in a nonbiologically observed regime in which E > I—so the weights keep evolving. By 205 
Trial 600 E = Eset but I < Iset, and rather than converging to Iset, the network returns to a 206 
regime without an Up-state by Trial 1000. At that point both setpoint error terms have 207 
increased, leading to continued weight changes (Fig. 2C). Results across 100 simulations 208 

with different weight initializations (see Methods) further indicate that the standard 209 
homeostatic rules are ineffective at driving E and I towards their respective setpoints and 210 

generating stable self-sustained dynamics (Fig. 2D).  211 
 212 

To gain insights into why a family of homeostatic learning rules that might intuitively 213 
converge fails to do so, we can consider the case in which a network is initialized to a set 214 
of weights that already match Eset and Iset (Fig. 2E). Although the neural subsystem alone 215 

is stable at this condition (Trial 1), small fluctuations in E and I cause the homeostatic 216 
rules to drive the weight values and the average activity of the network away from the 217 

setpoints (Trial 500). It is possible to understand this instability by performing an analytical 218 
stability analysis. Specifically, a two-population network in which the weights undergo 219 
plasticity can be characterized as a dynamical system composed of two subsystems: the 220 

neural subsystem composed of the two differential equations that define E and I 221 

dynamics, and the synaptic learning rule subsystem defined by the four learning rules 222 

(see Section 2.1 in the Supplementary Material). We make use of the two very different 223 
time scales of the neural (fast) and learning rule (slow) subsystems to perform a quasi-224 

steady state approximation of the neural subsystem; then we compute the eigenvalues 225 
of the four-dimensional learning rule subsystem, and finally get an analytical expression 226 
for the stability condition of the learning rules (see Section 2.3 in the Supplementary 227 

Material). For the entire system to be stable, both the neural and learning rules 228 
subsystems have to be stable. For the results presented in Fig. 2B-E we assumed the 229 

learning rates driving plasticity onto the excitatory (E) and inhibitory neurons (I) to be 230 

equal. Under these conditions, the standard homeostatic rules are mostly unstable for 231 
biologically meaningful parameter values in which the neural system is stable. An 232 
example of this result is shown in Fig. 2F for a particular set of parameter values. 233 

Critically, Fig. 2F shows that the stability region of the neural subsystem, i.e., an inhibition-234 
stabilized network (Ozeki et al., 2009; Jercog et al., 2017), is almost entirely within the 235 
region where the homeostatic learning rule system is unstable. Only when plasticity onto 236 

the excitatory neuron is significantly faster (E >>I) is there a substantial region of overlap 237 

between the stability of the neural and learning rules subsystems (Fig. 2G, see 238 
Supplementary Material, Section 1.1).  239 
 240 
Because inhibitory neurons seem to undergo homeostatic plasticity as quickly or more 241 
quickly than excitatory neurons (Keck et al., 2011; Kuhlman et al., 2013; Gainey et al., 242 
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2018; Ma et al., 2019) we conclude that standard homeostatic rules by themselves do not 243 
account for the emergence of stable self-sustained and inhibition-stabilized dynamics. 244 

Similarly, a combination of analytical and numerical methods also indicates that variants 245 
of these homeostatic rules, such as synaptic scaling (Turrigiano et al., 1998; van Rossum 246 
et al., 2000; Sullivan and de Sa, 2006) are also only stable in a narrow region of parameter 247 
space (see Supplementary Material, Section 1.5). We next show that the inherent 248 
instability of standard homeostatic learning rules is related to the paradoxical effect. 249 

 250 
The paradoxical effect hampers the ability of homeostatic rules to lead to self-251 
sustained activity  252 
 253 
The inability of the homeostatic learning rules to generate stable Up-states is in part a 254 

consequence of the paradoxical effect, a counterintuitive, yet well described, property of 255 

two-population models of Up-states and inhibition-stabilized networks (Tsodyks et al., 256 

1997; Ozeki et al., 2009). Specifically, if during an Up-state one increases the excitatory 257 
drive to the inhibitory population, the net result is a decrease in the firing rate of the 258 

inhibitory units. This paradoxical effect can be understood in terms of the I→E→I loop: 259 
the increased inhibitory drive leads to a lower steady-state rate for E, but this new steady-260 

state value requires a decrease in the I firing rate to maintain an appropriate E/I balance 261 

(in effect, the decrease in E decreases the drive to I by more than the external increase 262 
to I). This paradoxical effect has profound consequences for learning rules that attempt 263 
to drive excitatory and inhibitory weights to their setpoints.  264 

 265 
The relationship of the paradoxical effect and the homeostatic rules performance is 266 

presented in Fig. 2H. The region of stability for the homeostatic learning rules is shown 267 

in a parameter regime where inhibitory plasticity is much faster (αE << αI). Contrary to 268 

when excitatory plasticity dominates, the region of stability is small, and there is no 269 
overlap with the region of stability of the neural subsystem. Crucially, the boundary of the 270 
stability region of the learning rule coincides with the condition for the paradoxical effect 271 

to be present (right of the blue line in Fig.2H, see Supplementary Material, Sections 2.2 272 
and 2.3). Under these conditions, the rules can only be stable when the network is not in 273 

an inhibition-stabilized regime. If a network regime with non-zero E would be forced to 274 
exist in that region (for example, via tonic external current, Fig. 2I), it would only be stable 275 
in the non-paradoxical region with the learning rules in place (see Section 2.5 in the 276 

Supplementary Material).  277 
 278 

To understand the impact of the paradoxical effect on homeostatic learning rules 279 
consider a network state in which the I rate falls significantly below its setpoint, and the E 280 

rate is close to its setpoint (Fig. 3A). In order to reach the I setpoint, homeostatic plasticity 281 
in the inhibitory neuron would intuitively result in an increase of WIE. However, because 282 
of the paradoxical effect an increase in WIE actually makes I decrease (Fig. 3B)—thus 283 
increasing the error term Iset – I. To increase the steady-state inhibitory rate we can “anti-284 
homeostatically” decrease the excitatory weight onto the inhibitory neurons (Fig. 3C). 285 

This simple example shows the complexity of designing a coherent set of rules in such a 286 
coupled system (see an analysis of the paradoxical effect in Section 2.2 of the 287 
Supplementary Material). This analysis also explains why homeostatic learning rules can 288 
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lead to self-sustained activity at the appropriated setpoints when E >>I. Essentially by 289 

allowing plasticity onto the E population to be faster one overcomes the counterproductive 290 
homeostatic plasticity associated with the paradoxical effect.  291 
 292 

 The interaction between the paradoxical effect and homeostatic plasticity in inhibitory 293 
neurons leads to the question of whether anti-homeostatic plasticity rules may be more 294 

effective that standard homeostatic rules—e.g., ∆WIE  -(Iset - Iavg). Thus, we also 295 

examined a number of hybrid families of learning rules with different combinations of 296 
homeostatic and anti-homeostatic rules. Indeed, some hybrid families exhibited large 297 
degrees of overlap between the stable regions of the network and learning rules 298 
subsystems. However, numerical simulations revealed that these rules were mostly 299 

ineffective in driving networks to self-sustained activity at the target setpoints 300 
(Supplemental Material, Section 1.2, and Supplementary Fig.S1). These two results are 301 

not inconsistent because the stability analysis speaks to cases when the network is 302 
initialized to weights that satisfy Eset and Iset, not whether the rules will drive network 303 
activity into these stable areas from any initial state including a pre-developmental state. 304 
Thus, we interpret these results as meaning that while anti-homeostatic plasticity can 305 

contribute to stability of this dual dynamical system, anti-homeostatic plasticity is 306 
ineffective at driving the dynamics towards setpoints (in other words, that anti-307 
homeostatic plasticity might allow for stable Up-state but does not necessarily generate 308 

sizable basins of attraction around Up-states). 309 
 310 

 311 

 312 
 313 
Figure 3. The paradoxical effect constrains the learning rules that can lead to Up-states.  314 
(A) Example of the self-sustained dynamics of a two-population model with weight values shown in the 315 

diagram. Both the E and I firing rates fall below their respective setpoints. The objective is to adjust the 316 
weights so that the E and I activity match their setpoints.   317 

(B) An increase of WIE from 10 to 12 results in a paradoxical decrease of the I rate.  318 
(C) Because of the paradoxical effect an effective way to increase the steady-state I firing rate is to 319 

decrease its excitatory drive (i.e., WIE). 320 
 321 
 322 
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A novel cross-homeostatic rule robustly leads to the emergence of self-sustained 323 
Up-states  324 

 325 
Given that a standard set of homeostatic learning rules did not robustly lead to self-326 
sustained dynamics we explored alternative learning rules. By defining a loss function 327 
based on the sum of the excitatory and inhibitory errors we analytically derived a set of 328 
learning rules using gradient descent (see Section 3 in the Supplementary Material). This 329 

approach led to mathematically complex and biologically implausible rules; however, 330 
approximations and simulations inspired a simple class of learning rules that we will refer 331 
to as cross-homeostatic (see Methods). The main characteristic of this set of rules is that 332 
the homeostatic setpoints are “crossed” (Fig. 4A). Specifically, the weights onto the 333 
excitatory neuron (WEE and WEI) are updated to minimize the inhibitory error while 334 

weights into the inhibitory neuron (WIE and WII) change to minimize the excitatory 335 

error. Although apparently non-local, from the perspective of an excitatory neuron these 336 

rules can be interpreted as cells having a setpoints for the inhibitory input current onto the 337 
cell. Such input could be read by a cell as the activation of metabotropic receptors (e.g, 338 

GABAb and mGlu; see Discussion). Indeed, a similar cross-homeostatic rule has been 339 
derived for WIE weights (Mackwood et al., 2021).  340 

 341 
An example of the performance of the cross-homeostatic rules is shown in Fig. 4B-C. 342 
After an initial phase with no self-sustained firing (Trial 1), recurrent activity reaches a 343 

stable Up-state (Trial 20), whose average rate continues to converge towards its defined 344 
setpoints (Trial 100) until the learning rule system reaches steady state (Trial 500). The 345 

average E and I rates of the network evolve asymptotically towards the defined setpoints, 346 
as the weights evolve and converge (Fig. 4C). Across different weight initializations the 347 

rules proved effective in driving the mean Up-state activity of the network to the target E 348 
and I setpoints, and led to balanced dynamics (Fig. 4D-E). The weight trajectory from its 349 

initial value to its final one is shown for 100 different simulations (Fig. 4D). Each line 350 
corresponds to individual experiments with different initializations. Circles indicate the 351 
final values of the weights. Independently of the initial conditions, the weights converge 352 

to a line attractor (actually a 2D plane attractor in 4D weight space; see Section 2.1 in 353 
the Supplementary Material). Note that this attractor refers to the sets of weights that 354 

generate Up-states where E and I activity matches Eset and Iset respectively. That is, for a 355 
given pair of setpoints (Eset, Iset) the final values of the weights WEI and WII are linear 356 
functions of the “free” weights WEE and WIE, respectively. This is a direct consequence 357 
of the steady state conditions for the nontrivial fixed-point of the two-population model 358 

(Tsodyks et al., 1997; Ozeki et al., 2009; Jercog et al., 2017), where the slope of the line 359 

is defined by the setpoints Eset/Iset (see Methods). For example, to satisfy 
𝑑𝐸

𝑑𝑡
= 0 in the Up-360 

state fixed point, the net excitation and inhibition must obey a specific “balance”, meaning 361 
that once WEE or WEI is determined, the other is analytically constrained for a given 362 
set of setpoints and parameters. Once the weights reach this specific relationship, the E 363 
and I rates reach their corresponding Eset and Iset values (Fig. 4E). Numerical simulations 364 

confirm that the cross-homeostatic rule robustly guides Up-states to different Eset and Iset 365 
setpoints (Fig. 4F), whose ratios define the slopes of the final relationship between the 366 
weights (Fig. 4G). 367 
 368 
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 369 
Figure 4. A family of cross-homeostatic learning rules robustly lead to self-sustained dynamics at 370 
Eset and Iset. 371 

(A) Schematic of the network model and the family of cross-homeostatic learning rules. 372 
(B) Example network dynamics across simulated development. The network is initialized with weights 373 

that do not lead to self-sustained dynamics in response to an external input (Trial 1, weights are 374 
initialized to WEE=2.1 WEI=3 WIE=4 WII=2). By Trial 20 a stable Up-state is observed, but at firing rates 375 
far from the target setpoints (dashed lines). By Trial 500 the network has converged to an Up-state in 376 
which E and I firing rate match their respective setpoints 377 

(C) Average rate across trials (upper plot) for the excitatory and inhibitory populations for the data shown 378 
in (B). Weight dynamics (bottom plot) induced by the cross-homeostatic rules across trials for the data 379 
shown in (B) 380 

(D) Weight changes for 100 different simulations with random weight initializations (see Methods). Lines 381 
show change from initial to final (circles) weight values. 382 

(E) Average final rates for 100 independent simulations with different weight initializations shown in (D). 383 
Data represents mean ± SEM. 384 

(F) Final rates for the excitatory and inhibitory subpopulations after learning with same starting conditions 385 
as in (D) and (E) but for different setpoints. 1: Eset=5, Iset=14; 2: Eset=5, Iset=28; 3: Eset=10, Iset=14.  386 
Data shown in (D) and (E) corresponds to 1. Data represents mean ± SEM. 387 

(G) Final weight values for homeostatic plasticity simulations for the three different pairs of setpoints 388 
shown in (F). Blue lines correspond to the theoretical linear relationship between the excitatory and 389 
inhibitory weights at a fixed-point obeying Eset and Iset. The slope of the line is defined by the ratio of 390 
the setpoints (see Methods).    391 

(H) Analytical stability regions of the neural subsystem and learning rule subsystem as a function of WEE 392 
and WIE. The stability condition holds for any possible combination of learning rates (see Section 2.4 393 
in the Supplementary Material) 394 

 395 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2020.12.30.424888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424888
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

To further validate the effectiveness and stability of the cross-homeostatic rule we again 396 
used analytic methods to determine the eigenvalues of the 4-dimensional learning-rule 397 

dynamical system governed by the family of four cross-homeostatic rules. As above, 398 
stability is determined by the sign of the real part of the eigenvalues of the system. It can 399 
be shown (see Section 1.3 in the Supplementary Material) that this learning rule is stable 400 
for any set of parameter values, provided that the stability conditions of the neural 401 
subsystem are satisfied (Fig. 4H). Therefore, it is possible to formally establish that the 402 

cross-homeostatic learning rules are inherently stable, and can robustly account for the 403 
emergence and maintenance of self-sustained inhibition-stabilized dynamics in the two-404 
population model. 405 
 406 
Cross-homeostatic rules drive average activity in a multi-unit model to setpoints 407 

 408 

The previous results demonstrate the robustness of the cross-homeostatic family of rules 409 

in driving a two-subpopulation rate model to a stable Up-state. We next examined if these 410 

rules are also effective when considering a multi-unit model in which there are many 411 

excitatory and inhibitory units. The firing-rate model was composed of 80 excitatory and 412 

20 inhibitory recurrently connected neurons (Fig. 5A). In this case, individual neurons 413 

adjust their weights to minimize the average error of their presynaptic partners (see 414 

Methods). Starting with a random weight initialization, the network reaches stable self-415 

sustained dynamics (Fig. 5B-C). However, individual units converge to different final rate 416 

values, satisfying the defined setpoints only as an average (green and red thick lines of 417 

Fig. 5B). This is a result of the nature of the cross-homeostatic rules: neurons adjust their 418 

weights to minimize the error of the mean activity of its presynaptic partners. For this 419 

reason, although the network is globally balanced, single units do not converge to the 420 

same balanced E-I line attractor (Fig. 5D-E), and little structure is observed in the 421 

connectivity matrix after learning (Fig. 5F). Simulations across 400 different initialization 422 

conditions demonstrate that the rules lead the average excitatory and inhibitory 423 

population activity to Eset and Iset, respectively (Fig. 5G-H). The cross-homeostatic rules 424 

are thus capable of driving a multi-unit model to a stable Up-regime, but they do not guide 425 

individual units to local setpoints.  426 
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 427 

Figure 5. Cross-homeostatic rules drive a multi-unit firing rate model to a global network balance. 428 
(A) Schematic (left) of the multi-unit rate model. The network is composed of 80 excitatory and 20 inhibitory units 429 

recurrently connected. The four weight classes are governed by cross-homeostatic learning rules (right). See 430 
Methods for a detailed explanation of the implementation.  431 

(B) Evolution of the average rate across trials of 20 excitatory and inhibitory units in an example simulation. The 432 
network is initialized with random weights (see Methods) and so neurons present diverse initial rates. Eset=5 433 
and Iset=14 represent the target homeostatic setpoints. Red and green lines represent the individual (thin lines) 434 
and average (thick lines) firing rate of inhibitory and excitatory population, respectively.  435 

(C) Example of the firing rate of two excitatory and two inhibitory units at different points in (B). The evolution of 436 
the firing rate of the excitatory and inhibitory population within a trial in response to a brief external input is 437 
shown in every plot. Individual units converge to a stable Up-state but not to the defined setpoint.  438 

(D) E-I weight relationships at the beginning of the simulation. Every dot represents the total presynaptic weight 439 
onto a single unit. Left excitatory neurons. Right inhibitory neurons.  440 

(E) Same plot as in D at the end of the simulation.  441 
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(F) Weight matrix for the multi-unit model at the beginning (left) and end (right) of the simulation. First 20 neurons 442 
are inhibitory.  443 

(G) Average firing rate of the units of the multi-unit model and for different initializations of weights (n=400). The 444 
network converges to the setpoints in average. Data represents mean ± SEM.  445 

(H) Same data as in (G) but showing the average initial rate of the network for the multiple initializations (blue 446 
dots) and the average rate at the end (black). Target rates are shown in dotted lines (green, Eset=5, red Iset=14).  447 

 448 

A learning rule with cross-homeostatic and homeostatic terms leads to local 449 
convergence to setpoints.  450 
 451 
The above results demonstrate a potential limitation of the cross-homeostatic family of 452 

rules: the target setpoints are only reached at the population level. An additional and 453 

potentially more serious limitation is that cross-homeostatic rules predict that artificially 454 

altering the activity of a small number of excitatory neurons within a large network would 455 

not directly produce homeostatic plasticity in these neurons, but directly produce plasticity 456 

in their postsynaptic inhibitory neurons. This prediction seems to conflict with homeostatic 457 

plasticity experiments that have targeted specific cell types rather than globally alter 458 

activity through pharmacological means (Burrone et al., 2002; Xue et al., 2014). We 459 

therefore assessed the scenario in which both cross-homeostatic and homeostatic rules 460 

operate in parallel, resulting in a “two-term cross-homeostatic” family of rules. These rules 461 

can actually be recovered after an approximation of a gradient descent derivation on a 462 

loss function that includes the difference between E and I and their respective setpoints 463 

(see Section 3 in the Supplementary Material). In a two-subpopulation model, we first 464 

confirmed that this two-term cross-homeostatic family is stable—assuming that the 465 

learning rate of the homeostatic term does not dominate (see Supplementary Material, 466 

Section 1.4). Simulations with the same multi-unit model as Fig. 5 show that with the 467 

two-term cross-homeostatic rule all individual units converge to their respective Eset and 468 

Iset (Fig. 6A-C). Importantly, in contrast to the single-term cross-homeostatic rule the total 469 

excitatory and inhibitory weight of each individual unit converged to the E-I balance of the 470 

line attractor predicted by the network equations (Fig. 6D-E), while more structure is also 471 

observed in the weight matrices (Fig. 6F)—i.e., there is less homogeneity between the 472 

four synapse classes. The convergence to the setpoints was stable across a wide range 473 

of initial states (Fig. 6G-H). Thus, a hybrid family of learning rules that includes both cross-474 

homeostatic and homeostatic forces provide global network stability, while also locally 475 

driving each unit to their setpoint and a balanced E-I regime.    476 
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 477 

Figure 6. Adding cross-homeostatic influences to homeostatic rules lead global and local convergence to 478 
setpoints. 479 

(A) Schematic (left) of the multi-unit rate model. The network is composed of 80 excitatory and 20 inhibitory units 480 
recurrently connected. The four weight classes are governed by homeostatic rules with cross-homeostatic 481 
influences (right). See Methods for a detailed explanation of the implementation. 482 

(B) Evolution of the average rate across trials in an example simulation (20 excitatory and inhibitory units). The 483 
network is initialized with random weights (same as in Fig. 5, see Methods) and so neurons present diverse 484 
initial rates. Eset=5 and Iset=14 Hz represent the target homeostatic setpoints. 485 

(C) Example of the firing rate of two excitatory and two inhibitory units at different points in (B). The evolution of 486 
the firing rate of the excitatory and inhibitory population within a trial in response to a brief external input is 487 
shown in every plot. Units converge to a stable Up-state and at an individual setpoint.  488 

(D) E-I weight relationships at the beginning of the simulation. Every dot represents the total presynaptic weight 489 
onto a single unit. Left excitatory neurons. Right inhibitory neurons. 490 
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(E) Same plot as in D at the end of the simulation. The network has reached a stable state and weights converge 491 
to single E-I balance defined by a line attractor.  492 

(F) Weight matrix for the multi-unit model at the beginning (left) and end (right) of the simulation. First 20 neurons 493 
are inhibitory. 494 

(G) Average firing rate of the units of the multi-unit model and for different initializations of weights (n=400). Data 495 
represents mean ± SEM.  496 

(H) Same data as in (G) but showing the average initial rate of the network for the multiple initializations (blue 497 
dots) and the average rate at the end (overlapping black circles). Target rates are shown in dotted lines (green, 498 
Eset; red, Iset).  499 

 500 

DISCUSSION  501 

 Elucidating the learning rules that govern the connectivity within neural circuits 502 
represents a fundamental goal in neuroscience, in part, because learning rules establish 503 

unifying principles that span molecular, cellular, systems, and computational levels of 504 

analyses. Elucidation of Hebbian associative synaptic plasticity, for example, linked 505 
simple computations at the level of single proteins (the NMDA receptor) with higher-order 506 

computations at the systems and computational levels (Hebb, 1949; Miller et al., 1989; 507 

Buonomano and Merzenich, 1998; Martin et al., 2000; Song et al., 2000). However, it 508 
remains the case that relatively little is known about the learning rules that give rise to 509 

complex neural dynamic regimes. Here we have taken steps towards exploring families 510 
of learning rules that operate in parallel at four different synapse classes and capture the 511 
experimentally observed emergence of Up-states in cortical networks. 512 

 513 
Towards this goal we first confirmed that, in agreement with previous studies (Johnson 514 

and Buonomano, 2007; Motanis and Buonomano, 2020), Up-states emerge over the 515 
course of weeks of ex-vivo development. Because cortical organotypic cultures maintain 516 

much of their local and laminar architecture, and are mostly isolated from other cortical 517 
and subcortical inter-areal connectivity (Bolz, 1994; Echevarria and Albus, 2000; De 518 

Simoni et al., 2003), these results suggest the presence of local learning rules that lead 519 
to self-sustained, inhibition-stabilized activity in the absence of any supervisory, 520 
modulatory, or structured input signals from other brain areas.  521 

 522 
We first explored whether standard formulations of homeostatic plasticity can account 523 

for the unsupervised emergence of Up-states—or more generally of self-sustained, 524 
inhibition-stabilized regimes. Based on experimental data we assumed that both 525 
excitatory and inhibitory neurons have an ontogenetically programmed activity setpoint 526 
during Up-states and that plasticity at the four weight classes is driven by homeostatic 527 
plasticity. Numerical simulations and analytical stability analyses revealed that while 528 

some initial conditions and parameter regimes led to self-sustained dynamics, they 529 

occupied a relatively narrow region of parameter space: when the rate of synaptic 530 

plasticity onto inhibitory neurons is much lower than that onto excitatory neurons (Fig. 2, 531 
and Supplementary Materials). When the rate of inhibitory and excitatory plasticity are 532 
comparable, analytical stability analyses confirmed that the region of stability of the 533 
network dynamics only overlapped in a narrow region. Such a narrow stability area seems 534 
incompatible with the robustness necessary in biological systems, and with experimental 535 
data showing that inhibitory neurons exhibit as much or more homeostatic plasticity than 536 
excitatory neurons (Keck et al., 2011; Kuhlman et al., 2013; Gainey et al., 2018; Ma et 537 
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al., 2019). We thus conclude that a family of standard homeostatic learning rules 538 
operating at all four synapse classes is not sufficient to account for the experimentally 539 

observed emergence of self-sustained dynamics in cortical circuits.  540 
 541 
Cross-homeostatic plasticity 542 
 543 

Analyses of approximations of a gradient-descent-derived learning rule suggested, 544 

somewhat counterintuitively, that adjusting the E population based on the error of the I 545 
population (and vice-versa) may prove to be an effective family of learning rules. Indeed, 546 
numerical simulations and analytical stability analyses revealed that this cross-547 
homeostatic rule was robustly stable (Fig. 4). The convergence to the excitatory and 548 
inhibitory setpoints, however, only occurred at the population level, not at the level of 549 

individual units. This observation, however, is not inconsistent with experimental data, 550 

which shows that in vivo neurons do exhibit a wide range of variability in their apparent 551 

setpoints (Hengen et al., 2016; Trojanowski et al., 2020). However, a significant concern 552 
with this single-term cross-homeostatic rule is that it predicts that selectively increasing 553 

activity in a subpopulation of excitatory neurons would first induce plasticity in inhibitory 554 
neurons (WIE and WII)—which could in turn lead to plasticity in the manipulated 555 

excitatory neurons (WEE and WEI). Most homeostatic plasticity studies do not speak 556 
to this prediction because they have used pharmacological manipulations of both 557 
excitatory and inhibitory neurons. However, some studies have used cell-specific 558 

manipulations—e.g., cell-specific overexpression of potassium channels (Burrone et al., 559 
2002; Xue et al., 2014)—that strongly support the notion that synaptic plasticity is guided 560 

at least in part on their own deviation from setpoint.  561 
 562 

 In our opinion, and although we have explored alternative rules (see Supplementary 563 
Material, Section 1.6), the most biologically plausible set of learning rules that lead to 564 

stable Up-states comprises a hybrid rule that includes both standard homeostatic and 565 
cross-homeostatic terms. Such a two-term cross-homeostatic rule robustly led to a self-566 
sustained, inhibition-stabilized network, led to all units converging to their setpoints, and 567 

is directly consistent with current experimental data.  568 
 569 

Biological plausibility of cross-homeostatic plasticity 570 
 571 

While the neural mechanisms underlying homeostatic plasticity remain to be 572 
elucidated, it is generally assumed that an individual neuron can maintain a running 573 

average of their firing rate over the course of hours as a result of Ca2+-activated sensors. 574 
Based on the deviation of this value from an ontogenetically determined setpoint, neurons 575 

up- or down-regulate the density of postsynaptic receptors accordingly (Liu et al., 1998; 576 
Joseph and Turrigiano, 2017; Trojanowski et al., 2020). Two-term cross-homeostatic 577 
plasticity would require an additional, and apparently non-local information about the error 578 
in a given neuron’s presynaptic partners. It is important to stress, however, that this rule 579 
is not necessarily a non-local rule, because any postsynaptic neuron has access to the 580 

mean activity of its presynaptic partners simply as a result of its postsynaptic receptor 581 

activation. Indeed, a plasticity rule for WIE weights with a similar cross-homeostatic error 582 

term has also been recently proposed and implemented based on the mean activation of 583 
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postsynaptic receptors—more specifically the net postsynaptic currents which provide a 584 
coupled measure of average presynaptic firing and synaptic weights (Mackwood et al., 585 

2021).  586 
 587 
Here we propose that cross-homeostatic plasticity could be implemented through 588 

metabotropic postsynaptic metabotropic receptors—e.g., mGlu and GABAb. Such 589 
receptors would provide a mechanism for postsynaptic neurons to maintain a running 590 

average of the activity of its presynaptic partners that is decoupled from the synaptic 591 
weights. Metabotropic receptors are G-protein coupled receptors (GPRC) that provide a 592 
low-pass filtered measure of presynaptic activity and are involved in a large number of 593 
incompletely understood neuromodulatory roles (Blein et al., 2000; Niswender and Conn, 594 
2010). Since metabotropic receptors appear to undergo less homeostatic and associative 595 

plasticity, they provide a measure of presynaptic activity that is naturally decoupled from 596 

the ionotropic receptors (e.g., AMPA and GABAa) that are being up- and down-regulated.  597 

 598 
Further support for the notion that individual neurons have access to global network 599 

activity emerges from studies suggesting that neurons might not homeostatically regulate 600 
activity at the individual neuron level, but rather at the global population level (Slomowitz 601 

et al., 2015). Such a global-level homeostasis could be achieved by non-synaptic 602 
paracrine transmission. Indeed, retrograde messenger systems are ideally suited for this 603 
role, as they have already been implicated in signaling mean activity levels to local 604 

capillaries, driving the activity-dependent vasodilation that underlies fMRI (Drew, 2019). 605 
 606 

The paradoxical effect and standard homeostatic rules 607 
 608 

 The paradoxical effect is one of the defining features of inhibition-stabilized networks, 609 
and a growing body of evidence suggests that Up-states and other self-sustained 610 

dynamic regimes are instantiations of inhibition-stabilized networks (Zucca et al., 2017; 611 
Mahrach et al., 2020; Sanzeni et al., 2020; Sadeh and Clopath, 2021). Here we show that 612 
the paradoxical effect applies important constraints to the potential learning rules that lead 613 

to the emergence of inhibition-stabilized networks. In the simplified case in which there is 614 
only homeostatic plasticity onto the inhibitory neurons, we can immediately see why the 615 

paradoxical effect renders standard homeostatic rules ineffective. If the I population is 616 

below its setpoint, the standard homeostatic rules would increase WIE, which 617 

paradoxically would further decrease I (Fig. 3), thus further increasing the error instead 618 
of decreasing it (Fig. 3). This reasoning is related to why, when using the standard family 619 
of homeostatic rules, the rate of plasticity onto the inhibitory neurons has to be much 620 
smaller—in effect dampening the “paradoxical homeostatic plasticity effect”. Furthermore, 621 

our analytical stability analyses show that in the limit of vanishingly small excitatory 622 

learning rates (αEE,EI << αIE,II) the stability region of the weight subsystem is bounded by 623 

the paradoxical condition. This means that the only allowed stable states with non-zero E 624 
activity will occur in the non-paradoxical regime, if any, and they will not be proper 625 

inhibition-stabilized Up-states.  626 
 627 
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Future directions and experimental predictions 628 
 629 

While we implemented homeostatic learning rules at all four synapses classes in our 630 
model, it is important to stress that we have omitted other well-characterized forms of 631 
synaptic plasticity. Of particular relevance, we did not include associative LTP or STDP. 632 
These forms of plasticity are generally considered to capture the correlation structure in 633 
networks which are driven by structured inputs. Arguably, because our circuits develop in 634 

the absence of any structured external input and because all excitatory and inhibitory 635 

neurons synchronously shift between DownUp states, it is possible that associative 636 

forms of plasticity do not contribute significantly to Up-state development. Nevertheless, 637 
future experimental and theoretical studies have to address the potential role for 638 
associative forms of synaptic plasticity in Up-state development.  639 
 640 

 An important implication of our results is that neuronal and network properties can 641 

operate in fundamentally different ways. That is, while homeostatic plasticity can lead to 642 

single neurons to reach their target setpoints in simple feedforward circuits, those same 643 

rules can be highly unstable when the neurons are placed even in the simplest of 644 

recurrent excitatory/inhibitory circuits with emergent dynamics. Furthermore, because 645 

emergent neural dynamic regimes are highly nonlinear, and in particular, that stable self-646 

sustained dynamic regimes exhibit a paradoxical effect, it is likely that the brain exhibits 647 

“paradoxical” or counterintuitive learning rules to generate self-sustained dynamic 648 

regimes.   649 
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METHODS 650 

 651 

Ex vivo slice preparation  652 

Organotypic slices were prepared using the interface method (Stoppini et al., 1991; Goel 653 

and Buonomano, 2016). Briefly, five to seven day-old WT and PV-Cre mice were 654 

anesthetized with isoflurane and decapitated. The brain was removed and placed in 655 

chilled cutting media. Coronal slices (400 µm thickness) containing auditory cortex were 656 

sliced using a vibratome (Leica VT1200) and placed on filters (MillicellCM, Millipore, 657 

Billerica, MA, USA) with 1 mL of culture media. Culture media was changed at 1 and 24 658 

hours after cutting and every 2-3 days thereafter. Cutting media consisted of EMEM 659 

(MediaTech cat. #15-010) plus (final concentration in mM): MgCl2, 3; glucose, 10; 660 

HEPES, 25; and Tris-base, 10. Culture media consisted of EMEM plus (final 661 

concentration in mM): glutamine, 1; CaCl2, 2.6; MgSO4, 2.6; glucose, 30; HEPES, 30; 662 

ascorbic acid, 0.5; 20% horse serum, 10 units/L penicillin, and 10 μg/L streptomycin. 663 

Slices were incubated in 5% CO2 at 35°C. 664 

 665 

Two-photon Calcium Imaging 666 

Organotypic slices from PV-Cre mice (Jackson Laboratory #017320) were transfected at 667 

1-3 DIV with pENN-AAV-CaMKII-GCaMP6f-WPRE-SV40 to selectively express 668 

GCaMP6f in excitatory neurons, and pAAV-CAG-Flex-mRuby2-GSG-P2A-GCaMP6f-669 

WPRE-pA to visualize and selectively express GCaMP6f in PV+ inhibitory neurons. 670 

Transfection was achieved by gently delivering 1µL of each virus onto the slice using a 671 

micropipette. Experiments were performed at least 12 days after transfection to allow for 672 

robust expression. 673 

 674 

Calcium imaging was performed with a galvo-resonant-scanning two-photon 675 

microscope (Neurolabware) controlled by Scanbox acquisition software 676 

(https://scanbox.org). A Coherent Chameleon Ultra II Ti:sapphire laser (Cambridge 677 

Technologies) was used for GCaMP6f (920 nm) and mRuby excitation (1040 nm). A 678 

16x water-immersion lens (Nikon, 0.8 NA, 3 mm working distance) was used. Image 679 

sequences were captured using unidirectional scanning at a frame rate of ~ 15 Hz. The 680 

size of the recorded imaging field was ~ 520 × 800 µm (512 × 796 pixels). Five min of 681 

spontaneous activity was recorded at 920 nm at every developmental time point. Before 682 

the recording a snapshot at 1040 nm was recorded in order to identify PV+ neurons. 683 

Regions of interests (ROI) for both excitatory and PV+ neurons were established using 684 

the imaging processing pipeline Suite2p (https://github.com/MouseLand/suite2p) 685 

(Pachitariu et al., 2017). ∆F/F was calculated as (F(t) − F0))/F0, where F(t) was the raw 686 

fluorescence filtered with a median filter with a window of 1 s. F0 was the running median 687 

F(t) over the previous 20 s window. For each recorded slice and neural population 688 

(excitatory or PV+), potential Up-states were identified based on a threshold set at 1 above 689 

the mean z-scored raw fluorencence F trace of all neurons. If these events remained 690 

above threshold for at least one second, they were classified as Up-states. Mean Up 691 
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Frequency and Duration were computed over all Up-states detected within the 5 min 692 

spontaneous activity period.   693 

 694 

Computational model 695 

A two-population firing-rate model was implemented based on Jercog et al (2017). The 696 

firing rate of the excitatory (E) and inhibitory (I) population obeyed Wilson and Cowan 697 

dynamics (Wilson and Cowan, 1972): 698 

 699 

(1)          𝜏𝐸

𝑑𝐸

𝑑𝑡
= −𝐸 + 𝑓𝐸(𝑊𝐸𝐸𝐸(𝑡) − 𝑊𝐸𝐼𝐼(𝑡) − 𝑎 + 𝜂𝐸(𝑡)) 700 

(2)          𝜏𝐼

𝑑𝐼

𝑑𝑡
= −𝐼 + 𝑓𝐼(𝑊𝐼𝐸𝐸(𝑡) − 𝑊𝐼𝐼𝐼(𝑡) + 𝜂𝐸(𝑡)) 701 

 702 

where WXY represents the weight between the presynaptic unit Y and postsynaptic unit 703 

X. 𝜏𝑋 and 𝜂𝑋 represent a time constant and an independent noise term, respectively. The 704 

time constants were set to 𝜏𝐸 = 10𝑚𝑠 for the excitatory and 𝜏𝐼 = 2𝑚𝑠 for the inhibitory 705 

subpopulations. The noise term was an Ornstein-Uhlenbeck process with mean 𝜇𝑥 = 0, a 706 

time constant 1 𝜃𝑥⁄ = 1𝑚𝑠, and a sigma parameter of 𝜎𝑥 = 10. To elicit Up-states a step 707 

current was injected at the beginning of each trial on the excitatory population.  708 

 709 

The function 𝑓𝑌(𝑥) represents the intrinsic excitability of the neurons, and it is modeled 710 

as a threshold-linear (ReLU) function with threshold 𝜃𝑌 and gain 𝑔𝑌.  711 

 712 

(3)          𝑓𝑌(𝑥) = {
0   𝑖𝑓   𝑥 < 𝜃𝑌

𝑔𝑌(𝑥 − 𝜃𝑌)  𝑖𝑓𝑥 ≥ 𝜃𝑌
, 𝑌 = {𝐸, 𝐼} 713 

 714 

As in Jercog et al (2017) the thresholds were set to 𝜃𝐸 = 4.8 and 𝜃𝐼 = 25, and the gains to 715 

𝑔𝐸 = 1 and 𝑔𝐼 = 4. The higher thresholds in PV neurons are consistent with experimental 716 

findings (Romero-Sosa et al., 2021).  717 

 718 

The linear relationship between excitatory and inhibitory weights (Fig. 4) correspond 719 

to the steady-state solution of the neural subsystem when the inhibitory and excitatory 720 

rates are at its target setpoints. The solution can be obtained by setting the left side of 721 

equations (1) and (2) to zero, and substituting the steady state 𝐸 and 𝐼 values by 𝐸𝑆𝑒𝑡 and 722 

𝐼𝑆𝑒𝑡.  723 

 724 

(4)          𝑊𝐸𝐼 =  
𝑊𝐸𝐸𝐸𝑆𝑒𝑡

𝐼𝑆𝑒𝑡
−

𝜃𝐸𝑔𝐸 + 𝐸𝑆𝑒𝑡

𝐼𝑆𝑒𝑡𝑔𝐸
 725 

 726 

(5)          𝑊𝐼𝐼 =
𝑊𝐼𝐸𝐸𝑆𝑒𝑡

𝐼𝑆𝑒𝑡
−

𝜃𝐼𝑔𝐼 + 𝐼𝑆𝑒𝑡

𝐼𝑆𝑒𝑡𝑔𝐼
 727 

 728 

Thus, the slope of the E/I balance line in Fig. 4 corresponds to 𝐸𝑆𝑒𝑡/𝐼𝑆𝑒𝑡. See details and 729 

analytical results in Section 2.2 of the Supplementary Material.  730 
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 731 

Synaptic plasticity 732 

Plasticity at all four weight classes (WE←E, WE←I, WI←E, WI←I) was governed by different 733 

families of homeostatic based learning rules, all driven by the deviation of the actual 734 

excitatory and inhibitory rates from their target setpoints (𝐸𝑠𝑒𝑡 and 𝐼𝑠𝑒𝑡). Three different 735 

learning rules are presented in the main text of this paper.  736 

 737 

Standard homeostatic family of rules:  738 

 739 
(6)           𝛥𝑊𝐸𝐸 = +𝛼𝐸𝐸(𝐸𝑠𝑒𝑡 − 𝐸) 740 

                 𝛥𝑊𝐸𝐼 = −𝛼𝐸𝐼(𝐸𝑠𝑒𝑡 − 𝐸) 741 

                 𝛥𝑊𝐼𝐸 = +𝛼𝐼𝐸(𝐼𝑠𝑒𝑡 − 𝐼) 742 

                 𝛥𝑊𝐼𝐼 = −𝛼𝐼𝐼(𝐼𝑠𝑒𝑡 − 𝐼) 743 

 744 

where 𝛼𝐸 and 𝛼𝐼 are the learning rates onto the excitatory and inhibitory units, 745 

respectively. All alphas are set to equal values in the simulation data shown in Fig. 2 (𝛼 =746 

0.0001). The setpoints were based on empirically measured values in ex vivo cortical 747 

circuits (Romero-Sosa et al., 2021): 𝐸𝑠𝑒𝑡 = 5 and 𝐼𝑠𝑒𝑡 = 14 Hz.  748 

 749 

The configuration of setpoints follows a classic homeostatic formulation (Turrigiano et 750 

al., 1998; Rossum et al., 2000; Liu and Buonomano, 2009; Vogels et al., 2011), where 751 

every neural population adapts its input weights homeostatically in order to minimize its 752 

error term. As outlined in Supplementary Material (Section 1.5) we also examined 753 

variants of this formulation, such as standard synaptic scaling (which includes the weight 754 

as factor).  755 

 756 

We prove that these rules are only stable in a narrow parameter regime (when excitatory 757 

plasticity dominates). See details and analytical results in Section 2 of the Supplementary 758 

Material. 759 

 760 

Single-term cross-homeostatic family of rules: 761 

 762 
(7)          𝛥𝑊𝐸𝐸 = +𝛼𝐸𝐸(𝐼𝑠𝑒𝑡 − 𝐼) 763 

                𝛥𝑊𝐸𝐼 = −𝛼𝐸𝐼(𝐼𝑠𝑒𝑡 − 𝐼) 764 

                𝛥𝑊𝐼𝐸 = −𝛼𝐼𝐸(𝐸𝑠𝑒𝑡 − 𝐸) 765 

                𝛥𝑊𝐼𝐼 = +𝛼𝐼𝐼(𝐸𝑠𝑒𝑡 − 𝐸) 766 

 767 

All alphas are set to equal values in the simulation data shown in Fig. 4 (𝛼 = 0.0001), 768 

except on the example shown in Fig. 4B-C, where a rate of 𝛼 = 0.0005 was used. We note 769 

that an equivalent rule for 𝑊𝐼𝐸 has been recently derived (Mackwood et al., 2020). For 770 

Fig. 4 two alternative pairs of setpoints were explored (𝐸𝑠𝑒𝑡 = 5 and 𝐼𝑠𝑒𝑡 = 24) and (𝐸𝑠𝑒𝑡 =771 

10 and 𝐼𝑠𝑒𝑡 = 14).  772 

 773 
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We prove that these rules are stable for any set of parameters. See details and analytical 774 

results in Section 1.3 of the Supplementary Material. 775 

 776 

 777 

Two-term cross-homeostatic family of rules: 778 

 779 
(8)           𝛥𝑊𝐸𝐸 = +𝛼𝐸𝐸(𝐸𝑠𝑒𝑡 − 𝐸) + 𝛼𝐸𝐸(𝐼𝑠𝑒𝑡 − 𝐼) 780 

                 𝛥𝑊𝐸𝐼 = −𝛼𝐸𝐼(𝐸𝑠𝑒𝑡 − 𝐸) − 𝛼𝐸𝐼(𝐼𝑠𝑒𝑡 − 𝐼) 781 

                 𝛥𝑊𝐼𝐸 = +𝛼𝐼𝐸(𝐼𝑠𝑒𝑡 − 𝐼) − 𝛼𝐼𝐸(𝐸𝑠𝑒𝑡 − 𝐸) 782 
                 𝛥𝑊𝐼𝐼 = −𝛼𝐼𝐼(𝐼𝑠𝑒𝑡 − 𝐼) + 𝛼𝐼𝐼(𝐸𝑠𝑒𝑡 − 𝐸) 783 

 784 

A single shared learning rate (𝛼 = 0.00001) was used for Fig. 6 (see section below on the 785 

multi-unit model). We prove that these rules are stable for a biologically meaningful set of 786 
parameter values, as long as the homeostatic part does not dominate (Supplementary 787 
Material, Section 1.4). The two-term rules combine homeostatic and cross-homeostatic 788 
terms. This formulation can be obtained after an approximation of a gradient descent 789 

derivation on the following loss function:  790 
 791 

(9)          𝐿 =
1

2
(𝐸 − 𝐸𝑠𝑒𝑡)2 +

1

2
(𝐼 − 𝐼𝑠𝑒𝑡)2 792 

 793 
The mathematical derivation can be found in the Supplementary Material (Section 3). 794 

 795 

An additional Forced-Balance learning rule, which exploits the steady-state solution of the 796 

neural subsystem at its target setpoints (equations 5 and 6), has also been explored (see 797 

Section 1.6 of the Supplementary Material). 798 

 799 

All rules, numerical simulations:  800 
For all simulations, the weights were updated after the completion of every trial. The trials 801 

lasted 2 seconds. For our numerical simulations, 𝐸 and 𝐼 on every rule are implemented 802 

as average firing rates. The average of 𝐸 and 𝐼 is computed after every trial and then is 803 

low pass filtered by a process with a time constant 𝜏𝑡𝑟𝑖𝑎𝑙 = 2. The numerical integration 804 

time step was 0.1 ms. A minimum weight of 0.1 was set for all weights.  805 

 806 

A saturation to the excitatory and inhibitory firing rate (100 and 250 Hz, respectively) 807 

was added to prevent the nonbiological scenario in which activity could diverge towards 808 

infinity under unstable conditions. Note the saturation is not necessary for the cross-809 

homeostatic rule because it is inherently stable as proved in the Supplementary Material 810 

(Section 1.3).  811 

 812 

In Fig. 2D and 4D-G we initialize the weights uniformly in between the following 813 

ranges: 𝑊𝐸𝐸[4,7], 𝑊𝐸𝐼[0.5,2], 𝑊𝐼𝐸[7,13], 𝑊𝐼𝐼[0.5,2]. Simulations were run for 3000 trials to 814 

assess stability and convergence. 815 

 816 
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All rules, analytical stability analyses:  817 
We analyzed the entire dynamical system (composed of the neural subsystem and 818 

learning rule subsystem) for every synaptic learning rule considered in this work, and 819 

analyzed its stability. In every case, the general prescription is: 820 

a) Take the combined neural and learning rule subsystems and nondimensionalize 821 

all variables, so that the two different time scales are evident (fast neural, slow 822 

synaptic plasticity). For the description of the learning rule subsystem we switch 823 

from discrete-time dynamics to continuous-time dynamics: ∆W → τ0 dW/dt 824 

b) Make a quasi-steady state (QSS) approximation of the neural subsystem. This 825 

means we will consider the neural subsystem is fast enough so that it converges 826 

“instantaneously” (when compared to the synaptic plasticity subsystem) to its 827 

corresponding fixed point. For this we will require that the stability conditions of the 828 

neural subsystem are satisfied (see below). 829 

c) Find the steady-state solution of the synaptic plasticity subsystem, i.e. the Up-state 830 

fixed point; compute the Jacobian of the synaptic plasticity subsystem at the Up-831 

state; compute the eigenvalues of the Jacobian. Two out of the four eigenvalues 832 

are expected to be zero because the Up-state is not an isolated fixed point of the 833 

system but a continuous 2D plane in 4D weight space. 834 

d) Address (linear) stability. If both nonzero eigenvalues have negative real parts, 835 

then the Up-state is stable under the learning rule; if at least one of the nonzero 836 

eigenvalues has positive real part, then the Up-state is unstable. (A note on abuse 837 

of notation: we might say indistinctly “the Up-state is stable/unstable” and “the 838 

learning rule is stable/unstable”.) 839 

 840 

See Section 2 in the Supplementary Material. 841 

 842 

Multi-unit firing rate model 843 

A rate-based recurrent network model containing Ne = 80 excitatory and Ni = 20 inhibitory 844 

neurons was implemented with all-to-all connectivity (without self-connections). The 845 

activation of the neurons followed equations (1), (2) and (4). The same parameters as for 846 

the population model were used, where WXY represents now a matrix of synaptic weights 847 

from population X to population Y. A minimum weight of 0.1/Nx for WEI and WIE and 848 

0.1/(Nx-1) for WEE and WII was set for all weights.  849 

 850 

The synaptic plasticity rules were implemented as follows. 851 

 852 

Cross-homeostatic family of rules:  853 

 854 

(10)          Δ𝑊𝑖𝑗
𝐸𝐸 = +𝛼𝐸𝑗 ∑(𝐼𝑠𝑒𝑡 − 𝐼𝑘)/𝑁𝐼

𝑁𝐼

𝑘=1

 855 
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      Δ𝑊𝑖𝑗
𝐸𝐼 = −𝛼𝐼𝑗 ∑(𝐼𝑠𝑒𝑡 − 𝐼𝑘)/𝑁𝐼

𝑁𝐼

𝑘=1

 856 

        Δ𝑊𝑖𝑗
𝐼𝐸 = −𝛼𝐸𝑗 ∑(𝐸𝑠𝑒𝑡 − 𝐸𝑘)/𝑁𝐸

𝑁𝐸

𝑘=1

 857 

      Δ𝑊𝑖𝑗
𝐼𝐼 = +𝛼𝐼𝑗 ∑(𝐸𝑠𝑒𝑡 − 𝐸𝑘)/𝑁𝐸

𝑁𝐸

𝑘=1

 858 

 859 

 860 

Where i and j represent the post- and presynaptic neurons, respectively, and k denotes 861 

the presynaptic inhibitory neurons targeting the excitatory neurons (or the presynaptic 862 

excitatory neurons targeting an inhibitory neuron). NE and NI denote the total number of 863 

excitatory and inhibitory neurons, respectively. The weights are therefore updated 864 

following the average presynaptic error of the crossed E/I population classes. Note as 865 

stated above that this formulation can be implemented in a local manner (see Discussion). 866 

A learning rate of 𝛼 = 0.00002 was used for all simulations.  867 

 868 

Two-term cross-homeostatic family of rules:  869 

  (11)          Δ𝑊𝑖𝑗
𝐸𝐸 = +𝛼𝐸𝑗(𝐸𝑠𝑒𝑡 − 𝐸𝑖) + 𝛼𝐸𝑗 ∑(𝐼𝑠𝑒𝑡 − 𝐼𝑘)/𝑁𝐼

𝑁𝐼

𝑘=1

 870 

                     Δ𝑊𝑖𝑗
𝐸𝐼 = −𝛼𝐼𝑗(𝐸𝑠𝑒𝑡 − 𝐸𝑖) − 𝛼𝐼𝑗 ∑(𝐼𝑠𝑒𝑡 − 𝐼𝑘)/𝑁𝐼

𝑁𝐼

𝑘=1

 871 

                     Δ𝑊𝑖𝑗
𝐼𝐸 = +𝛼𝐸𝑗(𝐼𝑠𝑒𝑡 − 𝐼𝑖) − 𝛼𝐸𝑗 ∑(𝐸𝑠𝑒𝑡 − 𝐸𝑘)/𝑁𝐸

𝑁𝐸

𝑘=1

 872 

                     Δ𝑊𝑖𝑗
𝐼𝐼 = −𝛼𝐼𝑗(𝐼𝑠𝑒𝑡 − 𝐼𝑖) + 𝛼𝐼𝑗 ∑(𝐸𝑠𝑒𝑡 − 𝐸𝑘)/𝑁𝐸

𝑁𝐸

𝑘=1

 873 

 874 

Here the first term represents the standard homeostatic rule, and the second term cross-875 

homeostatic plasticity (as implemented above). A learning rate of 𝛼 = 0.00001 was used 876 

for all simulations.  877 

 878 

In Fig. 5G-H and 6G-H we initialize the mean weights of the population uniformly in 879 

between the following ranges: 𝑊𝐸𝐸[1,6], 𝑊𝐸𝐼[0.5,2], 𝑊𝐼𝐸[5,7], 𝑊𝐼𝐼[0.5,2]. The weights  880 
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within each class were normally distributed around that mean (normalized by the 881 

number of neurons) with a variance of 0.1. Note that this initialization led to multiple initial 882 

conditions with exploding network rates (which were held in check by the saturation 883 

cutoff). Those initial rates are not displayed in Fig. 5-6H for visualization purposes, but 884 

the rules successfully brought all those cases to the corresponding setpoints. Simulations 885 

were run for 1000 trials to assess stability of the convergence. In the example shown in 886 

Fig. 5A-F and 6A-F the weights were initialized uniformly in the interval [0 0.16] and the 887 

simulation was run for 200 trials.  888 

 889 

Statistics and Software availability 890 

Data are represented by the mean ± SEM. In Fig. 1 a two-way ANOVA was performed to 891 

assess interaction of time and group (cell-type) on the development of Up-states.  892 

 893 

Experimental and computational analysis were performed in custom-written MATLAB 894 

R2020a software. SageMath was used for the analytical proofs (see Supplementary 895 

Material). The MATLAB source code that reproduces Fig. 2, 4, 5 and 6 is available at 896 

https://github.com/saraysoldado/UpDev2021. The Jupyter notebooks with SageMath 897 

code to reproduce all analytical results are available at:  898 

https://github.com/SMDynamicsLab/UpDev2021. 899 

 900 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2021. ; https://doi.org/10.1101/2020.12.30.424888doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424888
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

SUPPLEMENTARY FIGURES 

 
Figure S1. Homeostatic and anti-homeostatic combinations of learning rules also fail to generate 
the emergence of self-sustained dynamics.   
 
(A) Sixteen variations of the standard homeostatic rules presented in Fig. 2 were assessed for stability. 

The learning governing each four weight types, WEE, WEI, WIE, WII was set to be either homeostatic (H) 
or antihomeostatic (A). The first rule on the table (HHHH) corresponds to the standard homeostatic 
rules presented in Fig. 2, where all weights obey homeostatic learning.  All rules were tested for stability 
analytically and numerically. A red dot implies that the listed condition is not satisfied, while a green dot 
means that it does. The condition on the first column indicates whether a stability region for the learning 
rule is present. The second column indicates whether such region has a large overlap with the region 
of stability of the neural subsystem. The third column indicates whether the rule is successful, using 
numerical simulations, at driving the network to a stable Up-state when starting from regimes with self-
sustained activity already present (meaning the network is initialized in the linear regime). The fourth 
column indicates the same as the former, but with the network initialized in the sub-linear regime, where 
activity is not initially present (e.g., as observed early in developmental conditions).  
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(B) Schematic (top) of the population rate model in which the four weights are governed by the HAAA rule 
in panel (A). 

(C) Example simulation of the HAAA rule over the course of simulated development. The evolution of the 
firing rate of the excitatory and inhibitory population within a trial in response to a brief external input is 
shown in every plot. Eset=5 and Iset=14 represent the target homeostatic setpoints. Weights were 
initialized to WEE=2.1, WEI=3, WIE=4, and WII=2 as in Fig. 2. Note that while an evoked Up-state 
emerges by Trial 200 the firing rates do not converge to their setpoints, and by Trial 500 the Up-state 
is no longer observed.  

(D) Average rate across trials (upper plot) for the excitatory and inhibitory populations for the data shown 
in (C). Weight dynamics (bottom plot) produced by the homeostatic rules across trials for the data 
shown in (C). 

(E) Average final rate for 100 independent HAAA simulations with different weight initializations. Those 
initializations included cases in which the network starts in the sublinear regime (where the initial E 
firing rate was zero or very low). The weights were initialized uniformly between the following ranges: 
𝑊𝐸𝐸[1,3], 𝑊𝐸𝐼[0.5,1.5], 𝑊𝐼𝐸[4,8], 𝑊𝐼𝐼[0.2,0.8]. Data represents mean ± SEM.  

(F) Analytical stability regions of the neural and HAAA learning rule subsystems as a function of the free 
weights WEE and WIE. Here the stability plot is obtained by considering equal learning rates for all four 
learning rules (as used for panels C-E).  

(G) Similar to F but with but with E << I. Right of blue line shows the area where the network is in a 
paradoxical regime (defined by the condition WEE * gE – 1 > 0). Contrary to standard homeostatic rules 
(Fig. 2), the HAAA rule is only stable in the paradoxical region of parameter space (i.e., WEE*gE – 1 > 
0; note white area to the left of the blue line). This may explain why the rule fails at driving the network 
to an Up-state when starting with developmental-like conditions.   
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