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Summary: Myocardial ischemia is spontaneous, usually asymptomatic, and contributes to fatal 18 
cardiovascular consequences. Importantly, biological neural networks cannot reliably detect and 19 
correct myocardial ischemia on their own. In this study, we demonstrate an artificially intelligent 20 
and responsive bioelectronic medicine, where an artificial neural network (ANN) supplements 21 
biological neural networks enabling reliable detection and correction of myocardial ischemia. 22 
ANNs were first trained to decode spontaneous cardiovascular stress and myocardial ischemia 23 
with an overall accuracy of ~92%. ANN-controlled vagus nerve stimulation (VNS) reversed the 24 
major biomarkers of myocardial ischemia with no side effects. In contrast, open-loop VNS or 25 
ANN-controlled VNS following a caudal vagotomy essentially failed to reverse correlates of 26 
myocardial ischemia. Lastly, variants of ANNs were used to meet clinically relevant needs, 27 
including interpretable visualizations and unsupervised detection of emerging cardiovascular 28 
stress states. Overall, these results demonstrate that ANNs can supplement deficient biological 29 
neural networks via an artificially intelligent bioelectronic medicine system.  30 
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Keywords: cardiovascular, myocardial ischemia, decoding, machine learning, artificial 39 
intelligence, closed-loop, bioelectronic medicine, nerve stimulation, clustering, dimensionality 40 
reduction. 41 
 42 
Introduction: 43 
 44 

Cardiovascular disease is responsible for a staggering ~25-30% of mortality worldwide 45 
(World Health Organization, 2018). One prominent attribute of cardiovascular disease is 46 
myocardial ischemia – caused by a decrease in myocardial oxygen supply and / or an increase in 47 
myocardial oxygen demand (Ardehali & Ports, 1990; Deedwania & Carbajal, 1992; Hinderliter et 48 
al., 1991). Treating myocardial ischemia can reduce rates of myocardial injury, myocardial 49 
infarction, and death (Braun et al., 2018; Conti et al., 2012; Gutterman, 2009; Cohn, 1998). 50 
Unfortunately, treating myocardial ischemia is accompanied by several major challenges. 51 

Roughly 75% of ischemic episodes are asymptomatic, where the heart can be irreversibly 52 
damaged without conscious awareness (Gutterman, 2009; Deedwania & Nelson, 1990; Rozanski 53 
& Berman, 1987; Cecchi et al., 1983). This significantly complicates the detection of myocardial 54 
ischemia, and clearly shows that biological neural networks are considerably deficient at detecting 55 
myocardial ischemia. Furthermore, myocardial ischemia can occur at random throughout the day 56 
(Schwartz et al., 2018; Gutterman, 2009; Cecchi et al., 1983), making it difficult to detect and 57 
treat. Supplementing deficient biological neural networks represents a promising approach to more 58 
effectively detect and potentially reverse myocardial ischemia. 59 

In this study, we assessed the hypothesis that artificial neural networks (ANNs) can 60 
supplement deficient biological neural networks to detect, and even help correct, myocardial 61 
ischemia. To this end, we used an ANN that rapidly decodes events of spontaneous myocardial 62 
ischemia, and responsively triggers therapeutic closed-loop vagus nerve stimulation (VNS). 63 
Responsive closed-loop VNS may be an effective bioelectronic medicine for reversing ischemia 64 
mediated elevations in chronotropy, afterload, and myocardial oxygen demand (Capilupi et al., 65 
2020; Levy & Schwartz, 1994; Ardell et al., 2015; Buck et al., 1981).  66 

Although promising, implementing an ANN-controlled bioelectronic medicine for 67 
myocardial ischemia is difficult for several reasons. Events of myocardial ischemia are 68 
physiologically variable, within and across subjects (Patel et al., 1996; Celermajer et al., 1994; 69 
Deanfield & Spiegelhalter, 1990; Tzivoni et al., 1987). Furthermore, non-ischemic states have 70 
electrophysiological characteristics similar to myocardial ischemia (e.g., cardiac valve 71 
dysfunction, repolarization abnormalities, or an electrolyte imbalance; Michaelides et al., 2010; 72 
Sapin et al., 1991; Petrov et al., 2012; Gutterman, 2009). Therefore, detecting myocardial ischemia 73 
is complicated by significant biomarker variability and off-target states. 74 

The majority of bioelectronic medicines use preprogrammed open-loop stimulation 75 
schedules. However, a closed-loop bioelectronic medicine that selectively responds when needed 76 
can optimize therapeutic efficacy (Wright et al., 2016; Sun & Morell, 2014; Hays, 2016; Ganzer 77 
et al., 2018; Ganzer & Sharma, 2019). Also, myocardial ischemia occurs throughout the day at 78 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2021. ; https://doi.org/10.1101/2020.12.30.424900doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.30.424900
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

random (Schwartz et al., 2018; Gutterman, 2009; Cecchi et al., 1983). Therefore, an effective 79 
bioelectronic treatment for myocardial ischemia may need to leverage responsive closed-loop 80 
control – where on-demand stimulation is autonomously triggered when needed for benefit. 81 

Lastly, artificial intelligence (AI) is becoming a powerful tool in medicine. Importantly, 82 
AI enabled medicines must be easily interpretable for widespread adoption (Vellido, 2019; 83 
Tonekaboni et al., 2019; Tjoa, E., & Guan, 2019). AI interpretability can be enhanced using 84 
visualizations. However, it can be challenging to create interpretable visualizations of both high-85 
dimensional data and complex algorithm decisions (Vellido, 2019, 2012, & 2011; Liu et al., 2017; 86 
Zahavy et al., 2016). Furthermore, disease pathophysiology and biomarker data are always 87 
changing – over time, subjects can experience new forms of cardiovascular stress, and new 88 
pathophysiological states may emerge (Epel et al., 2018; Schwartz et al., 2018). Therefore, future 89 
AI enabled medicines will need to be both interpretable and adaptive to physiological changes. 90 
 91 
Results: 92 
 93 
Inducing Acute Myocardial Ischemia 94 
 95 
 Clinical myocardial ischemia is associated with enhanced catecholamine tone, increased 96 
afterload, and changes to the myocardial oxygen supply / demand ratio commonly lasting 30 97 
seconds or more (Gutterman, 2009; Rocco et al., 1986; Rehman et al., 1997; Hinderliter et al., 98 
1991; Deedwania & Nelson, 1990). We modeled these attributes of clinical myocardial ischemia 99 
using injections of dobutamine and norepinephrine in rats. Dobutamine (primarily a β1 receptor 100 
agonist) is commonly used in the clinic to induce cardiovascular stress and subsequent myocardial 101 
oxygen demand (Mandapaka & Hundley, 2006). Norepinephrine (primarily an α1 receptor 102 
agonist) is extensively implicated in both coronary and peripheral vasoconstriction, cardiovascular 103 
stress, and myocardial ischemia (Heusch G & Ross, 1990; Kawada et al., 2002). Our approach was 104 
motivated by previous studies modeling cardiovascular stress and acute myocardial ischemia using 105 
injected catecholamines (Vimercati et al., 2012; Segar et al., 1995; Barger et al., 1961; Lepeschkin 106 
et al., 1960). We used three types of injections (schematic of experimental interfaces: 107 
Supplemental Fig. S1A): 1) dobutamine alone (D), 2) norepinephrine alone (NE), or dobutamine 108 
and norepinephrine combined (D+NE). Injection protocols consisted of an initial rest period 109 
followed by a 2-minute injection period (injection start = vertical dashed line, Fig. 1B-1E).  110 

Each injection type differentially impacted traditional biomarkers of cardiovascular stress 111 
and myocardial ischemia, including heart rate (Fig. 1B), mean arterial pressure (MAP, Fig. 1C), 112 
rate-pressure product (RPP, Fig. 1D), and ST epoch level (Fig. 1E). The combined D+NE injection 113 
tended to have a larger effect on two biomarkers intimately related to myocardial ischemia: 1) 114 
RPP, an index of myocardial oxygen consumption (Gobel et al., 1978; Detry et al., 1970); and 2) 115 
ST epoch depression, a classic electrophysiological correlate of subendocardial ischemia 116 
(Klabunde, 2017).  A representative averaged ECG is shown before (Rest, gray; Fig. 1F) and 117 
during D+NE induced myocardial ischemia (D+NE, cyan; Fig. 1F). Electrophysiological 118 
correlates of decreased myocardial membrane potential and ischemic currents (Klabunde, 2017; 119 
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Figure 1. Inducing Acute Myocardial Ischemia In Vivo. A. Cartoon of rat experiments for inducing cardiovascular 120 
stress and myocardial ischemia (blood vessel / vasoconstriction cartoon: top left; heart / tachycardia cartoon: bottom 121 
left; arterial blood pressure waveforms: top right; electrocardiogram or ECG waveforms: bottom right). Heart rate 122 
(HR, B), mean arterial pressure (MAP, C), rate-pressure product (RPP, D), and ST epoch level (E) were differentially 123 
modulated following a dobutamine (D, green), norepinephrine (NE, blue), or combined dobutamine and 124 
norepinephrine (D+NE, cyan) injection, indicative of cardiovascular stress and myocardial ischemia (time series 125 
include lighter shaded regions = ± 95% confidence intervals; vertical black dashed line = time of injection). F. 126 
Representative ECG during rest (gray) or D+NE induced myocardial ischemia (cyan). Note the pronounced 127 
suppression of ECG epochs during both diastole and systole, indicative of ischemic currents (ECG waveforms 128 
respectively averaged across 10 seconds from each given period; relative P, Ta, R, S, and T ECG wave time points 129 
shown at top of the panel). G. ST epoch level depression was significantly correlated with RPP (RPP = an index of 130 
myocardial oxygen consumption). These results demonstrate that injected catecholamines differentially impact 131 
cardiovascular states and can induce acute myocardial ischemia.  132 
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Janse, 2007; Cinca et al., 1980; Kleber et al., 1978) were observed during both systole (during 133 
QRS) and diastole (during the ST and Ta epochs). Specifically, D+NE induced a maximal ST 134 
epoch depression up to ~0.1 mV. ST epoch depression was significantly correlated to RPP across 135 
all injections (Fig. 1G: R = -0.74; p<0.001). Therefore, increased subendocardial ischemia was 136 
associated with higher myocardial oxygen consumption. These results demonstrate that 137 
catecholamine injections induce correlates of cardiovascular stress and acute myocardial ischemia. 138 

 139 
Creating Features for Cardiovascular State Decoding  140 
 141 
 We next created a broader set of features from the ECG and blood pressure signals for state 142 
decoding and target ischemia detection (ECG feature schematic: Fig. 2A; blood pressure feature 143 
schematic: Fig. 2B). The broader 13 element feature vector further quantified several biomarkers, 144 
such as ECG segment durations (ms), relative ECG wave point levels (mV), blood pressures during 145 
diastole and systole (mmHg), and breath rate. Changes in features were assessed for D, NE, and 146 
D+NE, quantified with respect to baseline levels (i.e., ∆ relative to baseline).  147 

Figure 2. Schematic of Cardiovascular Feature Components. All 13 cardiovascular features (shown in Figure 3) 148 
were derived from the ECG (A) or arterial blood pressure (B) signals. Across wave cycles, we identified correlates of 149 
the P wave (red triangles, atrial depolarization), Ta wave (orange triangles, atrial repolarization), R wave (yellow 150 
triangles, ventricular depolarization), S wave (green triangles, nadir between ventricular depolarization and 151 
repolarization), T wave (blue triangles, ventricular repolarization), diastolic pressure (magenta circles), and systolic 152 
pressure (cyan circles). Breath rate was derived from the linear envelope of the blood pressure signal. The 13-element 153 
feature vector was calculated every 100 ms, and averaged over a 4 s sliding window. Please see the On-Line 154 
Cardiovascular Signal Conditioning and Feature Extraction section of the methods for more details on feature 155 
extraction. 156 
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Additional biomarkers of cardiovascular stress and myocardial ischemia were observed 157 
across the added features (Klabunde, 2017; Janse, 2007; Rehman et al., 1997; Deedwania & 158 
Nelson, 1990; Cinca et al., 1980; Kleber et al., 1978), including increases in pulse pressure, 159 
decreases in myocardial conduction velocity, and depression of other ECG wave points indicative 160 
of ischemic currents (Fig. 3A: ECG features; Fig. 3B: blood pressure features; Fig. 3C, pulmonary 161 
feature; Table 1: omnibus ANOVA results). The combined injection of D+NE also had a maximal 162 
effect on this broader set of features compared to D or NE. These results demonstrate the more 163 
distributed impact of catecholamines on broader features of cardiovascular stress and myocardial 164 
ischemia. 165 

 166 
Figure 3. Cardiovascular Feature Changes During Induction of Cardiovascular Stress and Myocardial 167 
Ischemia. A more detailed 13 element cardiovascular feature vector was created for eventual decoding of 168 
cardiovascular state. Dobutamine (D, green), norepinephrine (NE, blue), or a combination of dobutamine and 169 
norepinephrine (D+NE, cyan) induced significant changes to features related to the ECG (A), blood pressure (B), and 170 
pulmonary function (C). Of note, D+NE maximally impacted several cardiovascular features (* = different from D at 171 
p<0.05; ** = different from D at p<0.01; *** = different from D at p<0.001). This 13-element feature vector was next 172 
used for decoding cardiovascular stress and myocardial ischemia. Data presented are mean ± SEM.  173 

 174 
 175 
 176 
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Table 1: Omnibus ANOVA results (related to Fig. 3). 177 
 Omnibus ANOVA Results 

∆ Feature 1 (Heart Rate) F[2,24] = 2.8, p = 0.07 
∆ Feature 2 (QRS Duration) F[2,24] = 0.02, p = 0.97 
∆ Feature 3 (RT Duration) F[2,24] = 8.9, p < 0.01 
∆ Feature 4 (ST Duration) F[2,24] = 4, p < 0.05 

∆ Feature 5 (Ta Level) F[2,24] = 4, p < 0.05 
∆ Feature 6 (R Level) F[2,24] = 10.1, p < 0.001 

∆ Feature 7 (ST Epoch Level) F[2,24] = 13.3, p < 0.001 
∆ Feature 8 (ST Slope) F[2,24] = 3.2, p <0.05 

∆ Feature 9 (Diastolic Pressure) F[2,24] = 44.2, p < 0.001 
∆ Feature 10 (Systolic Pressure) F[2,24] = 71.3, p < 0.001 

∆ Feature 11 (Mean Arterial Pressure) F[2,24] = 60.7, p < 0.001 
∆ Feature 12 (Pulse Pressure) F[2,24] = 28.9, p < 0.001 

∆ Feature 13 (Breath Rate) F[2,24] = 7.3, p < 0.01 
 178 

Importantly, biomarker features of myocardial ischemia can be variable within and across 179 
subjects (Patel et al., 1996; Celermajer et al., 1994; Deanfield & Spiegelhalter, 1990; Tzivoni et 180 
al., 1987). Furthermore, seemingly separate cardiovascular states can exhibit highly correlated 181 
biomarkers and thus statistically overlap (Sharma & Gedeon, 2012; Michaelides et al., 2010; 182 
Petrov et al., 2012; Sapin et al., 1991; Gutterman, 2009). Therefore, both biomarker variability and 183 
correlation across states should be attributes of a myocardial ischemia model. 184 

The cardiovascular feature data (from Fig. 3) exhibited variability and disorder comparable 185 
to human cardiovascular data recorded in either the intensive care unit (Supplemental Fig. S2A; 186 
Kim et al., 2016; Goldberger et al., 2000) or during ambulatory episodes of myocardial ischemia 187 
(Supplemental Fig. S2B; Taddei et al., 1992; Jager et al., 2003; Goldberger et al., 2000). 188 
Furthermore, there was a significant correlation between NE and D+NE, even though they are 189 
distinct and separate cardiovascular stress states (Supplemental Fig. S2C). These findings 190 
demonstrate that the recorded cardiovascular features importantly model the variability and state 191 
overlap seen during human cardiovascular stress and myocardial ischemia, a clinically relevant 192 
challenge for cardiovascular state decoding.  193 
 194 
Decoding Complex Cardiovascular States Using an Artificial Neural Network 195 
 196 
 Biological neural networks are largely incapable of detecting myocardial ischemia (~75% 197 
of episodes are asymptomatic: Gutterman, 2009; Deedwania & Nelson, 1990; Rozanski & Berman, 198 
1987; Cecchi et al., 1983). An artificial neural network (ANN) may be able to supplement deficient 199 
biological neural networks to reliably detect, and even help correct, myocardial ischemia. We 200 
developed an ANN architecture to decode cardiovascular states during cardiovascular stress and 201 
myocardial ischemia, comprised of both a hidden dense layer and a hidden long short-term 202 
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memory (LSTM) layer (4 total layers, schematic in Supplemental Fig. S3A; see the Decoding 203 
Myocardial Demand Ischemia Using an Artificial Neural Network section of the methods for more 204 
details). A LSTM layer was incorporated to detect long-term dependencies across time in the 205 
cardiovascular data and potentially enhance decoding performance (Murat et al., 2020; Gers et al., 206 
1999). The output of the ANN is a continuous prediction score across the 4 states: rest (no drug 207 
injected), D, NE, or D+NE (example decoder outputs during a D+NE injection: Supplemental Fig. 208 
S3B). 209 
 Despite significant feature variability and state overlap, the ANN decoded cardiovascular 210 
state with high overall accuracy (~92%, Fig. 4 & Supplemental Fig. S3C; F[3,36] = 163.5, p < 211 
0.001). Replacing the LSTM layer with a normal dense layer removed the network’s ability to 212 
assess long term dependencies in the signal, significantly decreasing accuracy (i.e., an ANN-NO-213 
LSTM architecture; Supplemental Fig. S3C). The ANN also outperformed other classifiers such 214 
as a support vector machine or a linear discriminant analysis (Supplemental Fig. S3C).  215 

 216 
Figure 4. The ANN Accurately Classifies Cardiovascular Stress States and is Significantly Impacted by the 217 
Removal of Features Related to Cardiac Electrophysiology & Vascular Resistance. The ANN was challenged to 218 
decode complex cardiovascular state changes (cardiovascular feature variability and state overlap assessment: 219 
Supplemental Fig. S2) across a total of 4 classes: Rest, D, NE, or D+NE. Continuous decoder outputs are shown for 220 
the injection of D (panel A), NE (panel B), or D+NE (panel C). The ANN performed with a high overall accuracy 221 
(~92%) and sensitivity (~86%) (confusion matrix showing average performance values: panel D; * = above chance at 222 
p<0.001). E. The removal of features related to ECG ischemic currents (features 5 & 8) or blood pressure (features 9-223 
12) led to the largest losses in decoding accuracy. These results show that an ANN can accurately decode 224 
cardiovascular states, despite significant cardiovascular feature variability and state overlap. Data presented are mean 225 
± SEM. 226 
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The ANN exhibited an overall sensitivity of ~86% (example decoder outputs: Fig. 4A-4C; 227 
confusion matrix showing average performance values: Fig. 4D). Although the ANN had an 228 
overall accuracy of ~92%, the most common misclassification was between the NE and D+NE 229 
classes (potentially due to their high degree of variability and correlation, as shown in Fig. 1, Fig. 230 
3, and Supplemental Fig. S2C). Features related to ECG wave point depression, ischemic currents, 231 
and vascular resistance were the most important features for ANN decoding performance (Fig. 4E 232 
and Table 2). Lastly, a fixed ANN trained on subsets of the data robustly generalized to testing 233 
days spread out over several months and different animals (Supplemental Fig. S4). Overall, these 234 
results show that ANNs can robustly decode complex cardiovascular states to supplement deficient 235 
biological neural networks.  236 

 237 
Table 2. Feature number and name, ranked according to loss in accuracy (i.e., highest loss 238 
to lowest loss; related to Fig. 4E). 239 

Feature 
Number 
(Fig. 4E) 

5 8 9 11 12 10 2 6 1 7 3 4 13 

Feature 
Name 

Ta 
Level  

ST 
Slope 

Diastolic 
Pressure 

Mean 
Arterial 
Pressure 

Pulse 
Pressure 

Systolic 
Pressure 

QRS 
Duration 

R 
Level 

Heart 
Rate 

ST 
Epoch 
Level 

RT 
Duration 

ST 
Length 

Breath 
Rate 

 240 
Responsive ANN Controlled Vagus Nerve Stimulation Reverses Myocardial Ischemia  241 
 242 
 Myocardial ischemia can cause irreversible heart damage if not treated rapidly. Therefore, 243 
beyond rapid detection alone, rapid myocardial ischemia correction is also needed. We next 244 
leveraged the ANN decoder to enable closed-loop vagus nerve stimulation (VNS) and potentially 245 
reverse myocardial ischemia (i.e., ANN-VNS; cartoon schematic: Fig. 5A). VNS can decrease 246 
chronotropy, afterload, and myocardial oxygen demand (Capilupi et al., 2020; Levy & Schwartz, 247 
1994; Buck et al., 1981), all factors that are elevated during spontaneous myocardial ischemia 248 
(Svensson et al., 2001; Rehman et al., 1997; Deedwania & Carbajal, 1992; Hinderliter et al., 1991; 249 
Deedwania & Nelson, 1990). D+NE targets catecholamine receptors relevant for myocardial 250 
ischemia and has a maximal effect on the recorded features. Therefore, we targeted D+NE induced 251 
myocardial ischemia for detection and correction, using ANN-VNS. 252 

In real-time and in vivo, the ANN detected spontaneous D+NE induced myocardial 253 
ischemia with high overall accuracy (~94%, Supplemental Fig. S5A; average decoder outputs: 254 
Supplemental Fig. S5B), similar to offline performance (~92%). ANN-VNS reversed pathological 255 
changes in heart rate, MAP, RPP, and ST epoch level (Fig. 5C, Isch. + ANN-VNS, red), compared 256 
to D+NE ischemia alone (Fig. 5C, Isch., cyan; Heart Rate: F[2,20] = 29.6, p < 0.001; MAP: F[2,20] 257 
= 5, p < 0.05; RPP: F[2,20] = 14.2, p < 0.001; ST Epoch Level: F[2,20] = 7.6, p < 0.01; full 13-258 
element feature vector shown in Supplemental Fig. S6A; experimental schematic: 4B).  Open-loop 259 
VNS failed to reverse any major correlates of D+NE induced myocardial ischemia 260 
pathophysiology (Fig. 5C, Isch. + OL-VNS, magenta; open-loop VNS = 20% duty cycle, with a 261 
balanced amount of VNS compared to the closed-loop ANN-VNS paradigm, and parameters 262 
similar to previous human open-loop VNS studies: Anand et al., 2020; Table 1: Radcliffe et al., 263 
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2020; full 13-element feature vector shown in Supplemental Fig. S6B; experimental schematic: 264 
Fig. 5B, magenta). There were no significant side effects across groups related to breath rate or 265 
blood oxygen saturation (Fig. 5D; Breath Rate: F[2,20] = 0.9, p = 0.41; SpO2: F[2,20] = 0.4, p = 266 
0.63). Importantly, only ANN-VNS significantly mitigated a side effect related to arrythmia 267 
probability (Fossa, 2017), and therefore enhanced myocardial electrical stability (Fig. 5D; QT / 268 
TQ ratio: F[2,20] = 9.3, p < 0.01). These findings demonstrate that pre-programmed open-loop 269 
VNS misses spontaneous myocardial ischemia that ANN-VNS is designed to respond to and  270 

 271 
Figure 5. ANN Controlled Vagus Nerve Stimulation (ANN-VNS) Reverses Several Pathophysiological 272 
Correlates of Myocardial Ischemia Without Significant Side Effects. A. The ANN was next used on-line in vivo 273 
for rapid detection of spontaneous myocardial ischemia and control of vagus nerve stimulation (ANN-VNS; inset: left 274 
cervical vagus nerve and VNS cuff during dissection). B. We assessed biomarkers of cardiovascular stress and 275 
myocardial ischemia during either D+NE ischemia alone (cyan, Isch.), D+NE ischemia & closed-loop ANN-VNS 276 
(red, Isch. + ANN-VNS), and D+NE ischemia & open-loop VNS (magenta, Isch. + OL-VNS). Only closed-loop ANN 277 
controlled VNS (red, Isch. + ANN-VNS) reversed several biomarkers of myocardial ischemia, including heart rate, 278 
ST epoch level (electrophysiological correlate of subendocardial ischemia), rate-pressure product (RPP, index of 279 
myocardial oxygen consumption), and mean arterial pressure (MAP, correlate of afterload). Open-loop VNS 280 
(magenta, Isch. + OL-VNS) failed to reverse correlates of myocardial ischemia, and was essentially no different from 281 
myocardial ischemia alone (cyan, Isch.) (different from Isch. at: p<0.001 = ***,  p<0.01 = **, or p<0.05 = *; different 282 
from Isch. + OL-VNS at: p<0.001 = ###,  p<0.01 = ##, or p<0.05 = #). D. There were no significant differences in 283 
breath rate or blood oxygen saturation across groups (SpO2 = blood oxygen saturation). Importantly, only closed-loop 284 
ANN-VNS significantly mitigated a side effect related to arrythmia probability (QT / TQ ratio, averaged across ECG 285 
cycles). These results demonstrate the ability of ANNs to supplement biological neural networks and facilitate the 286 
reversal of spontaneous myocardial ischemia in vivo using a bioelectronic medicine. Data presented are mean ± SEM. 287 
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correct. Overall, these results support the hypothesis that ANNs can supplement deficient 288 
biological neural networks in a number of ways: not only via detection, but also using bioelectronic 289 
control for correction of spontaneous cardiovascular pathophysiology. 290 

Lastly, we performed a vagotomy caudal to the VNS site to examine the role of efferent 291 
vagal fiber activation. Caudal vagotomies blocked the major effects of ANN-VNS, indicating that 292 
the efferent fibers are critical for the therapeutic effects of ANN-VNS (Supplemental Fig. S6C, 293 
orange). Lastly, all 3 VNS groups received an equivalent amount of VNS (Supplemental Fig. S5C; 294 
F[2,14] = 1.3, p = 0.28). These additional findings show that both the vagal fibers engaged, and 295 
VNS timing (not necessarily VNS quantity), play critical roles in myocardial ischemia reversal.  296 
  297 
Detecting New Emerging Stress States Using ANN Autoencoders  298 
 299 
  Our next set of experiments addressed the need for decoding architectures to adapt as 300 
physiology changes. Over time, subjects can engage in new activities, and new forms of 301 
cardiovascular stress can emerge (Epel et al., 2018; Schwartz et al., 2018). A clinically deployed 302 
decoding architecture will fail if it is not capable of detecting new emerging physiological states. 303 
We assessed techniques potentially capable of detecting new, unknown, and emerging stress states 304 
(emerging state / outlier detection review: Park, 2019). To model new unknown emerging stress, 305 
we used feature data recorded during a higher magnitude of cardiovascular stress and myocardial 306 
ischemia (i.e., at a higher dose level; emerging stress states: H-D, H-NE, and H-D+NE). A subset 307 
of the detection techniques used an ANN approach (i.e., autoencoders).  308 

LSTM autoencoders (LSTM-AE) detected new emerging stress states with a sensitivity of 309 
~99%, even though the network was not exposed to these states during training (Fig. 6A; F[2,27] 310 
= 26, p < 0.001; reconstruction loss distributions for known and unknown stress data: 311 
Supplemental Fig. S7; no significant differences for ‘known state’, i.e., D, NE, and D+NE, 312 
sensitivity across the 3 techniques, F[2,27] = 2.1, p = 0.13).  Using sparse autoencoders removed 313 
the ability to assess long term dependencies in the data, significantly decreasing emerging stress 314 
state detection performance (i.e., no LSTM components, a Sparse-AE; Fig. 6A). The ANN enabled 315 
LSTM-AE also outperformed the widely used isolation forest technique (Fig. 6A). These results 316 
further demonstrate how biological neural networks can be supplemented with ANNs, and suggest 317 
that ANNs can also potentially adapt to new emerging physiological changes. 318 
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Figure 6. Detecting New Emerging Cardiovascular Stress States. A. We implemented techniques for detecting 319 
new emerging stress states (new emerging stress states = high dose versions of D, NE, and D+NE). LSTM 320 
autoencoders (LSTM-AE) significantly outperformed the sparse autoencoder (Sparse-AE) and isolation forest (Iso-321 
Forest) approaches (*** = different at p<0.001). These results support the hypothesis that ANNs can also be used to 322 
detect new emerging stress states, as physiology evolves over time. Data presented are mean ± SEM. 323 

 324 

Enabling Interpretable and Adaptive AI: Visualizing Emerging Stress States Within the 325 
'Cardiovascular Latent Space' and Unsupervised Dissociation of Different Emerging Stress 326 
Types  327 

 AI enabled medicines can suffer from a lack of interpretability – where either data or 328 
algorithm decisions cannot be readily understood. AI enabled medicines must be easily 329 
interpretable for widespread adoption (Vellido, 2019; Tonekaboni et al., 2019; Tjoa, E., & Guan, 330 
2019). Visualizations are one solution for creating interpretable representations of both high-331 
dimensional data and complex algorithm decisions.  332 

We next created an interpretable visualization of all known and new emerging stress states 333 
(Fig. 7A; using the LSTM-AE hidden layer, and the dimensionality reduction technique uniform 334 
manifold approximation and projection, or UMAP; McInnes & Healy, 2018). This architecture 335 
approach has recently achieved state-of-the-art performance converting complex high dimensional 336 
data into interpretable representations (McConville et al., 2019). Across all stress states, the 337 
uninterpretable high dimensional LSTM-AE hidden layer (256 dimensions) was transformed to an 338 
interpretable 2-dimensional representation (Supplemental Video 1, Fig. 7B, & Supplemental Fig. 339 
S8). In this ‘cardiovascular latent space’, known and new emerging states formed clear clusters 340 
(Fig. 7B). Furthermore, known and new emerging stress states generally occupied separate regions 341 
of the ‘cardiovascular latent space’ at ~85% accuracy, performing well above chance levels (t[18] 342 
= 7.1, p < 0.001; data from all 10 folds: Supplemental Fig. S8; performance = ability to separate 343 
the known and new emerging stress state clusters using a linear boundary). This interpretable 344 
visual information showcases the ability of ANNs to help meet clinical needs and create 345 
meaningful representations of complex high-dimensional cardiovascular data, even though the 346 
architecture has never been exposed to the new emerging stress state data.  347 

Emerging state detection architectures should also be able to autonomously identify 348 
different types of emerging states, if multiple types exist. Unfortunately, this is exceedingly 349 
challenging, as the architecture cannot be exposed to one or multiple types of new emerging stress 350 
states during training. To address this challenge, our final analyses leveraged the LSTM-AE 351 
enabled 'cardiovascular latent space' combined with unsupervised clustering (unsupervised 352 
clustering method: hierarchical density-based spatial clustering of applications with noise or 353 
HDBSCAN; Campello et al., 2013). This fully unsupervised architecture achieved 78% 354 
performance when challenged to autonomously identify different types of emerging stress states, 355 
performing well above chance levels (Fig. 7C; i.e., unsupervised dissociation of varying 356 
combinations of H-D, H-NE, and H-D+NE; t[18] = 20.1, p < 0.001; performance metric = V-357 
measure * 100%, Rosenberg & Hirschberg, 2007; V-measure is a well-studied metric for quantify 358 
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clustering and detection capability; Supplemental Fig. S9: separate completeness, homogeneity, 359 
and performance values for all 7 emerging stress state scenarios). The architecture achieved this 360 
performance, in spite of unsupervised operation and significant out of sample generalization to 361 
multiple types of new emerging stress states. Overall, these results show that ANNs can further 362 
enable an interpretable unsupervised emerging state detection architecture, relevant for adapting 363 
to physiological changes over time.  364 

 365 
Figure 7. Leveraging the ‘Cardiovascular Latent Space’ for Unsupervised Identification of New Emerging 366 
Cardiovascular Stress States. A. Schematic of the emerging state detection architecture. For a given stress state 367 
observation, the feature matrix (top) is passed into the LSTM-AE (consisting of the encoder, hidden layer, and decoder 368 
components; LSTM-AE cartoon not to scale). Using the reconstruction loss, the LSTM-AE then predicts whether the 369 
given observation is a known or new emerging stress state. This prediction is then used as a label for UMAP 370 
dimensionality reduction and subsequent visualization of the LSTM-AE’s processes (see Supplemental Video 1 for a 371 
representative movie of these processes).  B. The hidden layer of the LSTM-AE is an uninterpretable 256-dimensional 372 
vector. We next generated an interpretable version of all known and unknown stress states using a combination of the 373 
LSTM-AE hidden layer and the dimensionality reduction technique UMAP (uninterpretable input = 256 dimensions; 374 
interpretable output = 2 dimensions). This ‘cardiovascular latent space’ interestingly contained clustering of known 375 
(circles) and unknown emerging stress states (X’s), indicating that the ‘cardiovascular latent space’ may also be useful 376 
for identifying different types of new emerging stress states (plotted data is representative of overall performance; 377 
black dashed line: linear decision boundary, calculated using a SVM). C. We next combined the ‘cardiovascular latent 378 
space’ with unsupervised clustering to potentially identify different types of new emerging stress states (via 379 
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hierarchical density based spatial clustering of applications with noise, or HDBSCAN). This fully unsupervised 380 
method achieved 78% performance when challenged to autonomously detect emerging stress states, performing well 381 
above chance performance levels (*** = different from chance at p<0.001). Data presented are mean ± SEM. Overall, 382 
these findings show that an ANN can help enable an interpretable and unsupervised emerging state detection 383 
architecture, relevant for a detection system that can adapt as physiology changes.  384 

 385 
Discussion: 386 
 387 
"It is hard to understand the biological strategy and hence development of a system providing the 388 
wild animal with hundreds of fibers exclusively designed for signaling unlikely coronary 389 
emergencies" 390 

-Alberto Malliani (Malliani, 1986) 391 
 392 

In this study, we demonstrate several ways ANNs can supplement deficient biological 393 
neural networks. ANNs effectively decoded cardiovascular states with high accuracy, even though 394 
biomarkers exhibited significant variability and state overlap, similar to human myocardial 395 
ischemia. Beyond detection alone, an ANN enabled bioelectronic medicine reversed myocardial 396 
ischemia by reactively triggering VNS to reduce correlates of chronotropy, afterload, and 397 
myocardial oxygen demand. Preprogrammed open-loop VNS or ANN-VNS without efferent vagal 398 
fibers intact both failed to reverse myocardial ischemia, demonstrating the importance of VNS 399 
timing and vagal fibers engaged. Lastly, ANNs enabled clinically relevant interpretable 400 
visualizations and adaptive detection of emerging cardiovascular stress. This study demonstrates 401 
for the first time that ANNs can supplement deficient cardiovascular biological neural networks 402 
via an artificially intelligent bioelectronic medicine system. 403 

 404 
Supplementing Deficient Biological Neural Networks with Artificial Neural Networks  405 
 406 

It is exceedingly problematic that the leading cause of mortality world-wide -407 
cardiovascular disease and myocardial ischemia - largely develops without conscious awareness. 408 
~75% of myocardial ischemia events are asymptomatic and therefore subperceptual, known as 409 
'silent myocardial ischemia' (Gutterman, 2009; Deedwania & Nelson, 1990; Rozanski & Berman, 410 
1987; Cecchi et al., 1983). Furthermore, up to ~50% of myocardial infarctions (i.e., 'heart attacks') 411 
are also asymptomatic and happen without any sensation (Soliman, 2019). These significant 412 
deficits in biological neural networks likely come from several sources. 413 

Firstly, deficient detection of myocardial ischemia may be due to evolutionary constraints. 414 
Several human-related factors that contribute to cardiovascular disease are relatively new from an 415 
evolutionary perspective, including consuming high-fat foods, smoking, or a sedentary lifestyle 416 
(Ding & Kullo, 2009). Therefore, there may have been insufficient time to develop an effective 417 
cardiovascular pathophysiology detection system in humans, via evolutionary modifications to 418 
neural systems or other mechanisms (Kember et al., 2013; Ding & Kullo, 2009; Malliani, 1986). 419 
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Secondly, ischemia itself and other diseases contribute to deficient detection of myocardial 420 
ischemia. Symptomatic ischemia, known as angina, only comprises ~25% of all ischemic events 421 
and is often misdiagnosed as off-target musculoskeletal pain, making it difficult to diagnose 422 
accurately (Gutterman, 2009; Swap & Nagurney, 2005). Even when angina occurs, subsequent 423 
ischemic events can be silenced and become asymptomatic, via desensitization of afferent 424 
signaling (known as ‘neural stunning’: Gutterman, 2009; Pomblum et al., 2010). Lastly, 425 
cardiovascular disease can accompany other disorders such as diabetes. Diabetic autonomic 426 
neuropathy further impairs myocardial ischemia signaling, degrading neural sensing systems 427 
innervating the heart (Tabibiazar & Edelman, 2003; Pop-Busui, 2010).  428 

Regardless of the mechanism, biological neural networks are largely incapable of reliably 429 
detecting myocardial ischemia. In this study, we address this deficiency of biological neural 430 
networks using ANNs. Future approaches that supplement biological neural networks using ANNs 431 
hold significant promise for mitigating numerous shortcomings of physiological systems.  432 

Biological neural networks and ANNs have had a long history together. These interactions 433 
range from the early days of parallel distributed processing to recent ANN architectures that mimic 434 
mammalian neural systems (reviews: Hassabis et al., 2017; Marblestone et al., 2016). Aside from 435 
controlling a therapeutic device during disease, ANNs can now also assist healthy humans (e.g., 436 
medical diagnoses, self-driving cars, military applications, and more: Wilson & Daugherty, 2018; 437 
Jarrahi, 2018). These findings further highlight several areas of opportunity for ANNs to enhance 438 
human function, during either disease or even healthy states. 439 

 440 
Reversing Spontaneous Myocardial Ischemia Using A Responsive Closed-loop Bioelectronic 441 
Medicine 442 
 443 
 High rates of ‘silent myocardial ischemia’ lead to increases in myocardial injury, 444 
myocardial infarction, and sudden death (Conti et al., 2012; Gutterman, 2009; Lotze et al., 1999; 445 
Deedwania & Carbajal, 1990). Treating silent or symptomatic myocardial ischemia reduces rates 446 
of myocardial injury, myocardial infarction, and death (Braun et al., 2018; Conti et al., 2012; 447 
Gutterman, 2009; Cohn, 1998). Treating myocardial ischemia using a pharmacological medicine 448 
can promote vasodilation and / or reestablish an appropriate myocardial oxygen supply-demand 449 
ratio (Balla et al., 2018; Cohn, 1998). VNS mimics these desired effects via cholinergic 450 
modulation, decreasing intracellular calcium, presynaptic inhibition of norepinephrine release, 451 
coronary vasodilation, and other mechanisms (Capilupi et al., 2020; Ardell et al., 2015; Levy & 452 
Schwartz, 1994). Bioelectronic control of these physiological cascades motivated the use of VNS 453 
in this study.  454 

Bioelectronic medicines are beginning to address several shortcomings of pharmacological 455 
medicines (Ganzer & Sharma, 2019; Vitale & Litt, 2018; Birmingham et al., 2014). Although 456 
pharmacological medicines can be effective, they do not target specific tissues leading to side-457 
effects. Bioelectronic medicines can address this limitation, via stimulating specific nerves, and 458 
therefore targeting specific tissues, for a localized effect. Furthermore, several disease episodes 459 
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are spontaneous and may only occur for several minutes a day. Bioelectronic medicines can be 460 
dynamically switched on and off as needed, unlike pharmacological medicines that are active for 461 
several hours a day. Importantly, bioelectronic medicines can provide on-demand benefit via 462 
closed-loop activation. This on-demand attribute of bioelectronic medicine can reduce 463 
desensitization of target receptors, further mitigate side effects, and ultimately improve therapeutic 464 
efficacy. Overall, bioelectronic medicines mitigate several shortcomings of pharmacological 465 
medicines, providing spatial and temporal specificity to improve therapeutic outcomes and reduce 466 
off target effects.  467 

Our findings extend previous studies that apply vagal modulation during myocardial 468 
ischemia (Machada et al., 2020; Nuntaphum et al., 2018; Del Rio et al., 2008; Vanoli et al., 1991; 469 
Buck et al., 1981; Meyers et al., 1974), and specifically highlight the importance of responsive 470 
closed-loop VNS control (Fig. 5 and Supplemental Fig. S6). Notably, only responsive closed-loop 471 
VNS (with efferent vagal fibers intact) reversed major correlates of myocardial ischemia (Fig. 5 472 
and Supplemental Fig. S6). Efferent cervical vagal fibers innervate both the atria and ventricles 473 
(Capilupi et al., 2020; Levy & Schwartz, 1994). Acetylcholine release from efferent vagal fibers 474 
can mitigate elevated chronotropy, inotropy, afterload, and myocardial oxygen consumption seen 475 
during myocardial ischemia (Capilupi et al., 2020; Levy & Schwartz, 1994; Ardell et al., 2015; 476 
Nuntaphum et al., 2018; Del Rio et al., 2008; Vanoli et al., 1991; Buck et al., 1981; Meyers et al., 477 
1974). Our results demonstrate that closed-loop intact VNS decreases overall myocardial work, 478 
important for preventing cell death and injury during myocardial ischemia.  479 
 During myocardial ischemia alone, we observed depression of ECG segments during both 480 
systole and diastole (Fig. 3). These ECG epochs depress during the initial stages of myocardial 481 
ischemia, indicative of ischemic currents (Klabunde, 2017; Janse, 2007; Cinca et al., 1980; Kleber 482 
et al., 1978). Closed-loop intact VNS reduced chronotropy, afterload, myocardial oxygen 483 
consumption, and other factors leading to a full reversal of ST epoch depression. This result 484 
importantly demonstrates the complete reversal of subendocardial ischemia (Klabunde, 2017) 485 
during closed-loop intact VNS (Fig. 5). These findings support the hypothesis that closed-loop 486 
intact VNS suppresses these ischemic currents, via a responsive increase in parasympathetic drive 487 
restoring myocardial oxygen balance.   488 
 Lastly, the cardiovascular effects of VNS required precise timing and delivery of 489 
stimulation during spontaneous ischemic episodes. Open-loop VNS was not programmed to 490 
respond during spontaneous myocardial ischemia, and thus generally failed to affect biomarkers 491 
of myocardial ischemia (Fig. 5 and Supplemental Fig. S6). Therefore, open-loop VNS may simply 492 
miss random myocardial ischemia events. We used an open-loop VNS paradigm representative of 493 
human cardiovascular studies, near the upper limit of clinically tolerable VNS levels (20% duty 494 
cycle at 2-2.5 mA; Anand et al., 2020; Table 1: Radcliffe et al., 2020). From a translational 495 
perspective, the closed-loop VNS paradigm used here should deliver significantly less VNS 496 
compared to open-loop VNS over time. For example, several clinical studies indicate that 497 
myocardial ischemia can occur for several minutes and up to ~1 hour per day (Pepine et al., 1994; 498 
Trimarco et al., 1990; Hinderliter et al., 1991). Therefore, to responsively mitigate myocardial 499 
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ischemia, closed-loop VNS may only be needed for ~1 hour a day or less. Over a 24-hour period, 500 
closed-loop VNS should also deliver ~1-2 orders of magnitude less VNS compared to open-loop 501 
VNS. The total charge delivery of VNS is important for future safety studies aiming to treat 502 
spontaneous myocardial ischemia with VNS.  These results motivate future studies to optimize the 503 
total amount of stimulation delivered using responsive bioelectronic medicines, keeping in mind 504 
the desired safety and efficacy.  505 
   506 
AI Enabled Medicines: Opportunities and Challenges 507 

 508 
State-of-the-art machine learning methods provide powerful capabilities for pattern 509 

recognition that in many cases exceed the abilities of expert humans. The financial industry was 510 
an early adopter of neural network models for forecasting stock market index, energy demand, and 511 
real estate prices, prompted initially by a need to model nonlinear multivariate datasets (Huang et 512 
al., 2007; Wang et al., 2018). In medicine, the role of AI has been increasing steadily (Miller & 513 
Brown, 2018), especially in the field of Radiology where AI-enabled systems are used not only 514 
for detection and interpretation of images, but also scheduling and triage, clinical decision support 515 
systems, and several other critical steps of the Radiology workflow (Choy et al., 2018). 516 

The uptake of AI-based solutions is driven by their capacity to ingest and comprehend vast 517 
quantities of data, permitting a more comprehensive assessment of a patient’s condition. Included 518 
in this is the ability to detect dynamic features that are not apparent in the typical snapshot 519 
evaluations that are performed in the clinic (Romiti et al., 2020; e.g., blood pressure and heart rate 520 
at a single point in time). We leverage these capabilities of AI systems to dynamically detect and 521 
correct pathological cardiovascular events in vivo (Fig. 5 and Supplemental Fig. S6), similar to 522 
previous studies using responsive therapies for cardiovascular treatment (Kawada, T., & 523 
Sugimachi, 2009; Gotoh et al., 2005; Sugimachi, M., & Sunagawa, 2009; Sato et al., 2002). 524 

Despite the clear benefits of AI-enabled technology solutions, trustworthiness is a major 525 
barrier to the adoption of AI-based diagnostics, and especially intervention. Some patients and 526 
physicians may be reluctant to allow a computer to make healthcare decisions. A recent survey of 527 
radiologists, information technology specialists, and industry representatives found that only 25% 528 
of the 123 people surveyed expressed confidence in results obtained by AI systems used in 529 
Radiology, and the vast majority (~91%) emphasized the need to validate the algorithms used in 530 
these systems (Jungmann et al., 2020). Strategies for building trust include the creation of 531 
‘Explainable AI’ that provides greater transparency and traceability, especially for systems that 532 
rely on deep learning architectures that are particularly opaque (Holzinger et al., 2019; Tjoa, E., 533 
and Guan, 2020). Improved methods for data and model visualization may facilitate 534 
interpretability and explainability in medical AI systems (Vellido, 2019, 2012, & 2011; Liu et al., 535 
2017), and were leveraged in the current study (via autoencoders, dimensionality reduction, and 536 
unsupervised clustering; Fig. 6 and 7). Importantly, building trust will likely be achieved gradually 537 
through an evolution of clinical trials that demonstrate with hard evidence the benefits of AI-based 538 
approaches in improving patient care. 539 
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 540 
 541 
Supplemental Figures: 542 

Supplemental Figure S1. Cartoon Schematic of Experiment (related to Fig. 1, 2, & 3). A. Cartoon schematic of 543 
the in vivo experiment and interfaces. All experiments were performed in isoflurane anesthetized rats (using 544 
tracheotomy, light red tube). We recorded arterial blood pressure from within the right carotid artery (aBP, red), a lead 545 
II electrocardiogram (ECG, blue patches; negative, positive, and ground electrodes noted), and a photoplethysmogram 546 
(right foot, black patch) during injections of cardiovascular stress and myocardial ischemia inducing agents into the 547 
femoral veins (catheters, green). All modules were synchronized and controlled electronically (laptop computer).  548 

 549 

Supplemental Figure S2. Cardiovascular Feature Data Exhibit Variability and State Overlap, Similar to 550 
Human Stress and Myocardial Ischemia (related to Fig. 3). A & B. Cardiovascular feature data recorded from the 551 
rat (‘Rat’) demonstrated similar levels of variability and entropy compared to cardiovascular feature data recorded 552 
from human subjects in either the intensive care unit (A; including all 13 features, ‘Human 1’) or from human subjects 553 
during ambulatory myocardial ischemia (B; including only ECG features, #1 - #8, ‘Human 2’ and ‘Human 3’). C. 554 
Cardiovascular feature data from the rat also exhibited significant stress state overlap, specifically between the NE 555 
and D+NE states. These results support the hypothesis that cardiovascular stress and myocardial ischemia induced by 556 
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D, NE, and D+NE injections induce variability and state overlap in the cardiovascular data, similar to human 557 
cardiovascular stress states. Data presented are mean ± SEM. 558 

 559 

 560 

 561 

Supplemental Figure S3. Artificial Neural Network (ANN) Architecture, ANN Decoder Outputs, and Superior 562 
Performance Compared to Other Classifiers (related to Fig. 4). A. Cartoon schematic of the 4-layer ANN 563 
architecture (layers not to scale; red: sequence input layer, 13 units; purple: dense layer, 100 units; blue: LSTM layer, 564 
50 units; green: class output layer, 4 units). Please see the Decoding Myocardial Demand Ischemia Using an Artificial 565 
Neural Network (ANN) section of the methods for more details on the ANN. B. A given recording begins with a 90 s 566 
period of rest (i.e., no drug injected) followed by a 120 s period of the given injected agent. Feature creation and 567 
decoding began at 34 seconds to allow for the recording of sufficient baseline activity. Example ANN decoder outputs 568 
across the 4 classes during an injection of D+NE (a respective decoder output ranges from zero [low confidence in the 569 
respective class] to 1 [high confidence in the respective class]; gray dashed line = decoder significance threshold; 570 
black dashed line = injection start). C. The ANN outperformed an artificial neural network without an LSTM layer 571 
(ANN-NO-LSTM), a support vector machine (SVM), and a linear discriminant analysis (LDA) (*** different at 572 
p<0.001; ### different from ANN-NO-LSTM or SVM at p<0.001). These results demonstrate the superior 573 
performance of ANNs and the importance of leveraging time series dependencies for cardiovascular state decoding. 574 
Data presented are mean ± SEM.  575 
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Supplemental Figure S4. Fixed ANNs Demonstrate Significant Robustness and Generalization Out of Sample 576 
Across Time and Animals (related to Fig. 4). A. Fixed ANNs were created to assess model generalization well out 577 
of sample to animals across the entire study. The original ANN performance level is shown as a reference (left, 578 
‘Original ANN’), where the model was trained on data from the whole study and therefore all animals. The remaining 579 
performance levels are shown for separate ‘fixed’ ANNs. A fixed ANN was first trained on the base data set plus the 580 
given animal’s data. The given fixed ANN was then challenged to predict on the remaining animals in the study 581 
(several weeks into the past or future), without any model updating. Although there was a decrease in accuracy and 582 
an increase in prediction variance, fixed ANNs still generalized well across time and even to other animals (chance 583 
level of prediction = ~25%). These results indicate that ANNs are robust and can generalize well out of sample. Data 584 
presented are mean ± SEM. 585 

 586 

 587 

Supplemental Figure S5. In vivo ANN Decoding Performance, Average ANN Decoder Outputs, and VNS 588 
Quantity Across Groups (related to Fig. 5). A. The ANN performed in vivo online decoding of the target ischemic 589 
state (i.e., a D+NE injection) with an overall accuracy of ~94% (cyan points = overall accuracies from single animals). 590 
B. ANN decoder outputs for the 3 cardiovascular stress states averaged across all animals from the in vivo experiments 591 
(N = 9; black dashed line = labeled period for the given injection). C. All 3 VNS groups received the same quantity 592 
of VNS (red = Isch. + ANN-VNS; magenta = Isch. + OL-VNS; orange = Isch. + ANN-VNS + (xcv)). Data presented 593 
are mean ± SEM. 594 

 595 
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Supplemental Figure S6. Effects Across All 13 Features Using Either Closed-loop VNS, Open-loop VNS, or 596 
Closed-loop VNS Following a Vagotomy Caudal to the VNS site (related to Fig. 5). A. All 13 features during 597 
either D+NE ischemia alone (cyan, Isch.) or D+NE ischemia & closed-loop ANN-VNS (red, Isch. + ANN-VNS). We 598 
performed 2 controls to appraise the mechanism of ANN-VNS. Both preprogrammed open-loop VNS (all features: B; 599 
magenta, Isch. + OL-VNS) and ANN controlled VNS following a vagotomy caudal to the VNS site (all features: C; 600 
orange, Isch. + ANN-VNS + (xcv)) essentially failed to significantly affect cardiovascular pathophysiology induced 601 
by ischemia alone (cyan, Isch.). The results highlight the importance of both closed-loop VNS and vagal fibers 602 
engaged for reversing myocardial ischemia pathophysiology. Data presented are mean ± SEM. 603 

 604 

 605 

 606 

 607 
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608 
Supplemental Figure S7. Emerging Cardiovascular Stress State Detection: Raw Mean Square Error (MSE) 609 
Reconstruction Distributions for The LSTM Autoencoder (LSTM-AE) (related to Fig. 6). Using the LSTM-AE, 610 
emerging stress states were detected using a simple threshold method related to the reconstruction loss (i.e., mean 611 
square error or MSE), similar to previous studies (Park et al., 2019). A high reconstruction loss is indicative of a new 612 
emerging state that has never been seen by the LSTM-AE, and a low reconstruction loss indicates that the state is 613 
known. The MSE loss distributions across all folds are shown for the LSTM-AE models for reconstruction of known 614 
stress states (A, purple; i.e., D, NE, and D+NE), or new emerging stress states (A, gray; i.e., H-D, H-NE, and H-615 
D+NE). Colored curves (gaussian kernel fits) are shown on top of a given distribution (vertical dashed line = MSE 616 
threshold for determining known and new emerging stress states, optimized for accuracy). B. Receiver operating 617 
characteristic curve for the LSTM-AE technique, where true positive and false positive rates are plotted across a range 618 
of MSE thresholds.  619 

 620 

 621 

Supplemental Figure S8. Known and Unknown Cardiovascular Stress States Within the ‘Cardiovascular 622 
Latent Space’: Raw Data from All Folds (related to Fig. 7B). We assessed 2-dimensional representations of all 623 
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known and unknown stress states within the ‘cardiovascular latent space’, leveraging the emerging state identification 624 
architecture (architecture schematic: Fig. 7A; known stress states: D, NE, and D+NE; unknown stress states: H-D, H-625 
NE, and H-D+NE). Known and unknown stress states generally occupied mutually exclusive regions of the 626 
‘cardiovascular latent space’ across all folds at ~85% accuracy (folds 1-10 = panels A – J, respectively; region 627 
boundary: black dashed line, determined using a linear support vector machine; separation accuracy shown above 628 
each plot). These results demonstrate the ability to robustly increase interpretability and accurately visualize known 629 
and new unknown emerging stress states.  630 

 631 

Supplemental Figure S9. Emerging Cardiovascular Stress State Detection Performance Metrics Across All 7 632 
Presentation Scenarios (related to Fig. 7C). We performed emerging stress state detection across the 7 emerging 633 
stress state presentation scenarios (x-axes), and present well studied correlates of unsupervised clustering performance 634 
(Rosenberg & Hirschberg, 2007) including completeness (A), homogeneity (B), and performance (V-measure * 100%, 635 
C). Across metrics, almost all presentation scenarios performed well above chance performance levels (*** = different 636 
from chance at p<0.001). Data presented are mean ± SEM. 637 

 638 
 639 
 640 
 641 
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 654 
STAR Methods: 655 
 656 
Overview:  657 

All procedures were approved by the Institutional Animal Care and Use Committee of 658 
QTest Labs (Columbus, OH). Adult male Sprague Dawley rats (~400-750 gm; N = 14) used in 659 
this study were housed one per cage (12 hr light/dark cycle; ad libitum access to food and water). 660 
The general aims of the study were to: 1) establish a model of myocardial ischemia, 2) utilize 661 
machine learning approaches to decode cardiovascular state changes, 3) determine if responsive 662 
closed-loop vagus nerve stimulation (VNS) controlled by an artificial neural network can 663 
significantly mitigate spontaneous myocardial ischemia, and 4) assess machine learning 664 
architectures for enhancing interpretability and facilitate detection of new emerging cardiovascular 665 
states. To acquire cardiovascular data, we recorded a lead II electrocardiogram (ECG), arterial 666 
blood pressure, and a photoplethysmogram (PPG) (schematic of experimental interfaces: 667 
Supplemental Fig. S1A). Analyses were performed in either MATLAB or Python. 668 
 669 
Surgery & Interface Placement:  670 

Animals were first administered Carprofen (5 mg/kg, s.c. injection) and anesthetized using 671 
isoflurane, similar to previous studies assessing VNS effects on cardiovascular physiology 672 
(Plachta et al., 2013 & 2014). Isoflurane was vaporized into oxygen at 1.3-1.7%, and administered 673 
via a tracheotomy interface (Supplemental Fig. S1A, light red tube). Animals were kept supine 674 
throughout the procedure. Core body temperature was maintained at ~37° C using a heating 675 
platform placed under the animal (Vestavia Scientific; Birmingham, AL).  676 

The following 6 interfaces were next placed (schematic: Supplemental Fig. S1A): catheters 677 
were placed within the 1) right and 2) left femoral veins for intravenous (i.v.) administration of 678 
dobutamine and / or norepinephrine (see Inducing Myocardial Demand Ischemia Via Drug 679 
Injection for more details on drug administration); 3) arterial blood pressure (aBP) was recorded 680 
within the right carotid artery using a solid state blood pressure catheter (2 french; SPR-407 Mikro-681 
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Tip; Millar, Houston, Texas) and sent to a blood pressure amplifier (DA100C; BIOPAC, Goleta, 682 
CA); 4) a lead II electrocardiogram (ECG) was recorded using 3 hydrogel electrode contacts 683 
(ground: left arm, V+: right arm, V-: left leg) connected to an ECG amplifier (ECG100C; 684 
BIOPAC, Goleta, CA); 5) blood oxygen saturation level (SpO2) was recorded from the right 685 
hindpaw (OXY200; BIOPAC, Goleta, CA); 6) the left cervical vagus nerve was interfaced with a 686 
bipolar platinum iridium cuff electrode for delivering VNS, similar to our previous studies (Meyers 687 
et al., 2019; Ganzer et al., 2018). The bipolar VNS cuff electrode was tethered to a digitally 688 
controlled stimulator (Digitimer DS5; Hertfordshire, UK). Importantly, all instruments and 689 
stimulators were robustly electrically isolated to prevent stimulation artifact during cardiovascular 690 
data recordings. 691 
 692 
Vagus Nerve Stimulation (VNS) Cuff Implant: 693 

We interfaced with the left cervical vagus nerve to enable cardiovascular control, similar 694 
to several previous preclinical (Sachdeva et al., 2020; Plachta et al, 2013 & 2014; Yamakawa et 695 
al., 2014; Shinlapawittayatorn et al., 2013) and human studies (Lewis et al., 2001; Anand et al., 696 
2020). VNS was delivered with the following stimulation parameters: biphasic square wave 697 
morphology, 2-2.5 mA, 300 micro-second pulse width, at 30 Hz. VNS was delivered during 698 
closed-loop or open-loop stimulation regimes (see Modes of VNS Delivery for more details). 699 
Importantly, these VNS parameters are similar to previous preclinical studies using VNS for 700 
cardiovascular control (Sachdeva et al., 2020; Plachta et al, 2013 & 2014; Yamakawa et al., 2014; 701 
Shinlapawittayatorn et al., 2013), and fall within clinically relevant stimulation ranges used in 702 
previous human trials using VNS for cardiovascular therapy (Anand et al., 2020; Table 1: Radcliffe 703 
et al., 2020). 704 

 705 
System Control for Signal Recording, Stimulation, and Injections:  706 

A schematic of the experiment and interfaces are shown in Supplemental Fig. S1A. All 707 
data was collected using a National Instruments USB-6259 data acquisition system (DAQ). The 708 
DAQ was controlled using MATLAB 2019a via a custom graphical user interface (The 709 
MathWorks; Natick, MA). We recorded 5 signals during the experiments: 1) the voltage sent to 710 
the VNS cuff electrodes, 2) the current drawn from the VNS cuff electrodes, 3) the lead II ECG 711 
waveform, 4) the aBP waveform, and 5) the SpO2 signal. Signals #1 and #2 were only active during 712 
VNS events. We also enabled 3 outputs during the experiments, as needed: 1 & 2) triggers 713 
controlling the two drug injection pumps (KDS-200; Kent Scientific, Holliston, MA), and 3) a 714 
trigger controlling the VNS module. The DAQ operated at 10 kHz. This rate was needed to create 715 
VNS trains with the appropriate waveform morphology (e.g., biphasic square waves with the 716 
appropriate shape and resolution). Recorded signals were down-sampled and conditioned on-line 717 
as needed. 718 

 719 
Inducing Myocardial Ischemia Via Catecholamine Agent Injection:  720 
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Cardiovascular stress and myocardial ischemia were induced using i.v. injection of 721 
dobutamine (~2 μg x kg-1 x min-1) and / or norepinephrine (~2 μg x kg-1 x min-1). Pilot studies were 722 
performed to assess dose dependent effects. These agents and similar dose rates have been used in 723 
several previous studies (Vimercati et al., 2012; Zhang & Mazgalev, 2009; Mandapaka & Hundley, 724 
2006; Berk et a., 1977; Heusch & Ross, 1991). 725 
 726 
On-Line Cardiovascular Signal Conditioning and Feature Extraction:  727 

A schematic of the feature extraction is shown in Fig. 2. The subcomponents of features 728 
were first extracted online via the following signal conditioning processes (occurring every 100 729 
ms): 1) a 10 kHz sampled epoch of the ECG and aBP waveforms were first down-sampled to 500 730 
Hz sampled waveforms; 2) for the ECG epoch (Fig. 2A), the R waves were first detected using the 731 
‘Peak Prominence’ attribute of the ‘findpeaks’ function in MATLAB 2019a. Window based 732 
detection was then used to identify the P, Ta, S, and T wave correlates (Fig. 2A). The time and 733 
voltage level of the given ECG wave correlates were recorded; 3) for the given aBP epoch (Fig. 734 
2B), the systolic and diastolic pressure wave points were detected using the ‘Peak Prominence’ 735 
attribute of the ‘findpeaks’ function in MATLAB 2019a. The mmHg values of the systolic and 736 
diastolic aBP levels were recorded; 4) inhalation and exhalation cycles were encoded into the low 737 
frequency components of the aBP waveform. The linear envelope of the aBP waveform was 738 
calculated to extract the respiratory cycles time series. Inhalation points (i.e., breaths) were 739 
detected and recorded using the ‘Peak Prominence’ attribute of the ‘findpeaks’ function in 740 
MATLAB 2019a. 741 

The thirteen-element feature vector was finally constructed from the above ECG and aBP 742 
waveform attributes via the following calculations (again, occurring every 100 ms): 743 
 744 

• Feature #1: Heart Rate (beats per minute, or bpm) = R-R interval (s) / 60 s 745 
• Feature #2: QRS Duration (ms) = relative Q wave to S wave duration 746 
• Feature #3: RT Duration (ms) = R wave to T wave duration 747 
• Feature #4: ST Duration (ms) = S wave to T wave duration 748 
• Feature #5: Ta Level (mV) = voltage level of the Ta wave + voltage level of the TP 749 

interval 750 
• Feature #6: R Level (mV) = voltage level of the R wave + voltage level of the TP 751 

interval 752 
• Feature #7: ST Epoch Level (mV) = voltage level of the S wave + voltage level of the 753 

TP interval 754 
• Feature #8: ST Slope (mV / s) = (T wave level (mV) – S wave level (mV)) / (T wave 755 

time (s) – S wave time (s)) 756 
• Feature #9: Diastolic Pressure (mmHg) = minimum pressure level during diastole 757 
• Feature #10: Systolic Pressure (mmHg) = maximum pressure level during systole 758 
• Feature #11: Mean Arterial Pressure (mmHg) = (systolic pressure (mmHg) + diastolic 759 

pressure (mmHg)) / 2 760 
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• Feature #12: Pulse Pressure (mmHg) = systolic pressure (mmHg) – diastolic pressure 761 
(mmHg) 762 

• Feature #13: Breath Rate (breath rate per minute, or brpm) = breath count / 60 s 763 
 764 

This feature vector contains relatively simple features that enhance decoding interpretation, 765 
and can be extracted for decoding without the need for burdensome compute power. To smooth 766 
the data, the feature vector was calculated every 100 ms and averaged over a 4 s sliding window 767 
continuously during real-time recordings. The feature data was recorded for offline analysis and 768 
was also used for online decoding in vivo (see Decoding Myocardial Demand Ischemia Using an 769 
Artificial Neural Network for more details).  770 
 771 
Decoding Myocardial Demand Ischemia Using an Artificial Neural Network (ANN): 772 
Overview: A schematic of the artificial neural network (ANN) architecture and decoder outputs 773 
are shown in Supplemental Fig. S3A & S3B. We employed an ANN architecture and a supervised 774 
learning approach to decode 4 different cardiovascular states (i.e., classes): 1) rest (i.e., no drug 775 
injected), 2) dobutamine injection (D), 3) norepinephrine injection (NE), and 4) a combined 776 
dobutamine and norepinephrine injection (D+NE). The decoder outputs were assessed both offline 777 
and online to evaluate algorithm performance. Online predictions were used to either validate the 778 
ANN model or control closed-loop VNS. 779 
Recording Events and Data Labels: Each recording contained the following events in sequence: 780 
1) time 0 s = start of initial data streaming; 2) time 4 s = initiation of 4 s sliding window used for 781 
averaging features (sliding window increment per observation = 100 ms); 3) time 34 s = initiation 782 
of decoding (allows for 30 s of background feature data; this background feature data is used to 783 
both baseline subtract and standardize the subsequent recorded feature data); 4) time 94 s = start 784 
of a given injection; 5) time 214 s  = end of injection, decoding, and recording.  785 

To determine data labeling time points for supervised learning and ANN architecture 786 
attributes, we initially recorded pilot data from N=5 animals. On average, all 13 features 787 
statistically changed from baseline levels ~15 s after an injection is started (feature changes were 788 
averaged across all 3 injection types). Said differently, average physiological changes across 789 
injection types occurred at 109 s. Therefore, the ‘rest’ class label occurred from 4 – 109 s, and the 790 
given drug’s class label occurred during the injection period from 109 - 214 s. This labeling 791 
approach enabled both physiological motivated data labels, and balanced durations of rest and a 792 
given cardiovascular stress state during a given recording (for mitigating class imbalance). 793 
Grid Search for ANN Architecture and Hyperparameters: We used a grid search to arrive at an 794 
ANN architecture and hyperparameters (schematic of the final ANN architecture: Supplemental 795 
Fig. S3A).  The grid search leveraged the same pilot data that was used for creating data labels 796 
described above (again from N=5 animals; a total of data ~1.2 million points), and was performed 797 
on a computer with a graphical processing unit (NVIDIA GeForce GTX 1080; Santa Clara, CA). 798 
Overall accuracy (i.e., average accuracy across all classes) was used as the given algorithm’s 799 
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performance metric. Our preliminary analysis demonstrated best performance using 2 hidden 800 
layers (a dense layer followed by a long short-term memory (LSTM) layer).  801 

We next assessed combinations of the following architecture and hyperparameter values: 802 
1) number of units in the dense layer (100, 250, or 500), 2) number of units in the LSTM layer 803 
(100, 250, or 500), 3) drop-out layer mask (between both the dense and LSTM and the LSTM and 804 
output layers; at 25%, 50%, or 75%), 4) mini-batch size (25%, 50%, or 75% of total data), and 6) 805 
early stopping criteria (reaching either 95% or 98% overall accuracy during training). The 806 
following were fixed during the grid search: sequence input layer size (13 units), output layer size 807 
(4 units), optimization algorithm (Adam), gradient decay metric (0.8), learning rate (0.01), gradient 808 
threshold (2), and L2 regularization metric (0.0005). The following ANN architecture and 809 
hyperparameters consistently performed the best, and were used throughout the study: architecture 810 
= sequence input layer (13 units), dense layer (250 units), drop-out layer mask (50%), LSTM layer 811 
(100 units), drop-out layer mask (25%), output layer (4 units); hyperparameters = mini-batch size 812 
(75%), early stopping (reaching 98% overall accuracy during training).  813 

 814 
Algorithm Performance Evaluation:  815 
Online In Vivo Assessments (related to Fig. 5 and Supplemental Fig. S5):  816 
We performed online in vivo decoding of cardiovascular state and ANN controlled VNS in a total 817 
of N=9 animals. Overall, we modeled a clinical use case for the ANN. We continuously added to 818 
the base training set across experiments, and performed supervised updating of the ANN within a 819 
given animal for subsequent real-time prediction and closed-loop ANN-VNS control. 820 
Experimental design details: 1) the initial training set consisted of the pilot data; 2) each subsequent 821 
new animal then contributed 6 more recordings to the base training set (injection order 822 
randomized; 2 injections of D, 2 injections of NE, and 2 injections of D+NE); 3) for a given new 823 
animal, a new ANN model was trained and validated online in vivo; 4) online testing consisted of 824 
real time prediction during 3 injections of the target ischemic state (D+NE). We report overall 825 
accuracy for online in vivo ANN performance (Supplemental Fig. S5A).  826 
 827 
Offline Assessments (related to Fig. 4, Supplemental Fig. S3, and Supplemental Fig. S4): 828 
We also assessed algorithm performance offline using the final data set (pilot data [N=5] + 829 
experimental data [N=9]). 10-fold cross validation was used to appraise the performance of the 830 
ANN and other types of classifiers for comparison (using 80% / 20% train / test splits, 831 
respectively). We compared the ANN performance to 3 other classifier types: 1) an ANN-NO-832 
LSTM architecture (via replacing the LSTM layer with a second hidden dense layer); 2) a support 833 
vector machine (SVM); and 3) a linear discriminant analysis (LDA). Similar to the ANN, we 834 
performed a hyperparameter grid search to optimize the performance of both the SVM and LDA. 835 
We report overall accuracy for all classification approaches (Supplemental Fig. S3C). 836 
 837 
Modes of VNS Delivery (related to Fig. 5, Supplemental Fig. S5, and Supplemental Fig. S6): 838 
We assessed the effects of ANN-VNS during episodes of spontaneous myocardial ischemia (i.e., 839 
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‘Isch.’ induced by D+NE). Supplemental Fig. S5B shows the average ANN decoder outputs during 840 
real-time predictions in vivo (decoder outputs averaged across all N=9 animals). Closed-loop VNS 841 
was triggered when the ‘Isch.’ decoder output score was greater than 0.5, representing a class 842 
probability greater than 50% (similar to our previous decoding and device activation studies: 843 
Ganzer et al., 2020; Bouton et al., 2016). Once triggered by the ANN, VNS remained active for 844 
the remainder of the injection (i.e., up until 214 s). Importantly, all instrumentation and stimulators 845 
were robustly isolated to prevent stimulation artifact during recordings.  846 
Additional VNS Controls: We performed 2 VNS controls, complimenting ANN-VNS. The first 847 
VNS control condition was open-loop VNS (data presented in Fig. 5 and Supplemental Fig. S6B). 848 
We used a 20% VNS ON / 80% VNS OFF duty cycle for the open-loop VNS condition, to model 849 
preprogrammed open-loop VNS duty cycles used in clinical trials for cardiovascular treatments 850 
(Anand et al., 2020; Table 1: Radcliffe et al., 2020). Open-loop VNS recordings lasted a total of 851 
~500 s, with 2-3 recording replicates within an animal (across N=5 animals). A D+NE injection 852 
was started at a randomized time during an open-loop VNS recording epoch, using the same 2 min 853 
injection duration. 854 

The second VNS control condition was ANN-VNS following a vagotomy caudal to the 855 
cervical VNS site (data presented in Supplemental Fig. S6C). The vagus nerve was cut using 856 
surgical scissors and the cut ends were further separated by ~1 mm to ensure a complete vagotomy. 857 
Recording and VNS was resumed approximately 30 mins after the vagotomy to allow for 858 
physiological equilibration. We performed 3 recording replicates within an animal (across N=3 859 
animals). 860 
 861 
Data Analyses for Assessing Cardiovascular Feature Changes (With or Without VNS): Several 862 
cardiovascular features shown throughout the manuscript are presented as a change from baseline 863 
(i.e., ∆ relative to baseline). For the given feature, baseline activity from the first 30 s of a recording 864 
was used to create the baseline subtracted feature time series (see On-Line Cardiovascular Signal 865 
Conditioning and Feature Extraction for details on feature creation). A given feature was further 866 
processed to assess effects as follows: 867 

• Related to Fig. 1D: Rate-pressure product (RPP) across time was not a component of the 868 
overall 13-element feature vector, but was calculated similar to previous studies (Gobel et 869 
al., 1978): RPP = (Heart Rate x Systolic Blood pressure) / 100. 870 

• Related to Fig. 1G: Each point is a single animal’s recording for a given drug condition. 871 
For a given point, the ∆ ST epoch level or ∆ RPP value was its average during the entire 872 
injection period, relative to baseline. We report the Pearson’s correlation coefficient R. 873 

• Related to Fig. 3: A given feature’s ∆ value was its average during the entire injection 874 
period, relative to baseline. 875 

• Related to Supplemental Fig. S2A & S2B: We compared the variability (i.e., entropy) of 876 
cardiovascular changes for our preclinical rat data and human data collected in other 877 
studies. We used the following human cardiovascular data acquired from the physionet.org 878 
database (Goldberger et al., 2000):  Supplemental Fig. S2A, ‘Human 1’ = recorded in the 879 
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intensive care unit (Kim et al., 2016); Supplemental Fig. S2B, ‘Human 2’ (Taddei et al., 880 
1992) & ‘Human 3’ (Jager et al., 2003) = recorded during ambulatory episodes of 881 
myocardial ischemia. The cardiovascular feature matrices were next prepared using either 882 
all 13 features (Supplemental Fig. S2A) or only the 8 ECG features (Supplemental Fig. 883 
S2B). The feature matrices for the human data used a modified version of the rat feature 884 
extraction algorithm. Entropy was finally calculated and reported using the ‘entropy’ 885 
function in MATLAB 2019a. 886 

• Related to Supplemental Fig. S2C: We assessed the relationship between different pairs 887 
of drug states and report the Pearson’s correlation coefficient R. Within each animal (N=9), 888 
we calculate the R values for all possible pairs of injections using the feature matrix across 889 
time (e.g., a D+NE & NE correlation). We plot each animal’s average R (single points in 890 
the figure) across the 3 different types of injection correlations.   891 

• Related to Fig. 5C, 5D, and Supplemental Fig. S6: In Fig. 5D, we report two additional 892 
features: SpO2 = blood oxygen saturation value from the PPG monitor, and the QT / TQ 893 
ratio (related to arrythmia probability; Fossa et al., 2017; relevant wave point correlates are 894 
shown in Fig. 2). Overall, for ‘Isch.’ a given feature’s ∆ value was its average during the 895 
entire injection period, relative to baseline. Overall, for ‘Isch. + ANN-VNS’, ‘Isch. + OL-896 
VNS’, and ‘Isch. + ANN-VNS + (xcv)’ a given feature’s ∆ value was its average while 897 
VNS was on, relative to baseline.  898 

 899 
Detecting New Emerging Cardiovascular Stress States (related to Fig. 6 and Supplemental Fig. 900 
S7): In a subset of animals (N=4), we recorded the 13 features during injections at a higher dose 901 
rate (10 μg x kg-1 x min-1) across 3 injection types: ‘high dose dobutamine’ = H-D; ‘high dose 902 
norepinephrine’ = H-NE; ‘high dose dobutamine & norepinephrine combined’ = H-D+NE. These 903 
recordings at a ~5x higher dose rate presented a significantly different feature profile during a 904 
given injection (data not shown) and were used for subsequent emerging stress state detection. We 905 
appraised the ability of 3 techniques to detect these emerging stress states (emerging state / outlier 906 
detection technique review: Park, 2019): 1) LSTM autoencoder (LSTM-AE), 2) sparse 907 
autoencoder (Sparse-AE), and 3) isolation forest (Iso-Forest). Each technique was optimized using 908 
a grid search on a subset of the data (LSTM-AE major parameters: encoder layer (input) = 2730 909 
units, hidden layer = 256 units, decoder layer (output) = 2730 units, L2 regularization = 0; Sparse-910 
AE major parameters: encoder layer (input) = 546 units, hidden layer = 50 units, decoder layer 911 
(output) = 546 units, L2 regularization = 0.1, sparsity proportion = 1; Iso-Forest major parameters: 912 
N estimators = 2, max features = 140, outlier proportion = 0.16). We finally performed a 10-fold 913 
cross validation to appraise the performance of the 3 techniques (using 80% / 20% train / test splits, 914 
respectively). We report ‘emerging stress state detection sensitivity’ for the 3 techniques (Fig. 6; 915 
i.e., true positive rate when presented with a new emerging stress state, averaged across the 3 types 916 
of emerging stress states). 917 
 918 
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Visualizing the ‘Cardiovascular Latent Space’ Using LSTM Autoencoders & UMAP (related to 919 
Fig. 7A, 7B, Supplemental Video 1, and Supplemental Fig. S8): We used the hidden layer of the 920 
LSTM-AE combined with the dimensionality reduction method uniform manifold approximation 921 
and projection (or UMAP; McInnes & Healy, 2018) to visualize interpretable 2-dimensional 922 
representations of the emerging stress states (i.e., the ‘cardiovascular latent space’). The hidden 923 
layer of autoencoders and UMAP are both commonly used for generating latent features and 924 
dimensionality reduction (McConville et al., 2019). The hidden layer of the LSTM-AE (256 925 
elements) was labeled and passed into the UMAP algorithm for supervised dimensionality 926 
reduction (schematic of architecture: Fig. 7A; final UMAP hyperparameters: n_neighbors = 15; 927 
min_dist = 0.1; n_components = 2). The ability to separate the 2-dimensional known and emerging 928 
stress state points in the ‘cardiovascular latent space’ was assessed using a linear SVM (related to 929 
Supplemental Fig. S8). 930 
 931 
Identifying New Emerging Cardiovascular Stress State Types Using Unsupervised Clustering 932 
(related to Fig. 7C): We performed unsupervised clustering of the 2-dimensional ‘cardiovascular 933 
latent space’ points using the hierarchical density based spatial clustering of applications with 934 
noise (HDBSCAN) method. HDBSCAN is a robust unsupervised clustering technique that deals 935 
well with diverse clustering scenarios. For a given stress state presentation scenario (combinations 936 
of 1, 2, or 3 emerging stress types), the unsupervised HDBSCAN method was first challenged to 937 
cluster the 2-dimensional ‘cardiovascular latent space’ points (i.e., determine the number of 938 
emerging stress states present). We next calculated clustering performance (V-measure * 100%, 939 
Rosenberg & Hirschberg, 2007; V-measure is a well-studied metric for assessing clustering 940 
quality; 0 = completely random clustering, 1 = perfect clustering). In this implementation, V-941 
measure based performance also quantifies correlates of several processes including the LSTM-942 
AE’s ability to generate useful latent space vectors, the quality of the subsequent UMAP 943 
dimensionality reduction, and the quality of the final HDBSCAN method. We calculate and report 944 
performance (Fig. 7C) averaged across the 7 stress state presentation scenarios (H-D alone, H-NE 945 
alone, H-D+NE alone, H-D & H-NE, H-D & H-D+NE, H-NE & H-D+NE, and H-D & H-NE & 946 
H-D+NE). 947 
 948 
Statistics: Normality tests were performed for each analysis to determine if parametric or 949 
nonparametric statistics should be used. All statistical tests were two-tailed unless otherwise noted, 950 
and were performed in GraphPad Prism. An alpha level of 0.05 was accepted for significance, 951 
unless Bonferroni corrections are noted. Chance performance levels were generated by randomly 952 
permuting the true data labels 10 times, similar to previous studies (Ganzer et al., 2020; Ojala & 953 
Garriga, 2010).  954 

We report the Pearson’s correlation coefficient R for data in panel Fig. 1G and 955 
Supplemental Fig. S2C. Effects of injections on the 13-element feature vector were evaluated using 956 
a separate one-way ANOVA for each feature (related Fig. 3). The factor was injection type with 3 957 
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levels: D, NE, and D+NE. Tukey’s post-hoc test was used to determine differences for a given 958 
feature across injection types.  959 

Differences in classification performance were evaluated using a one-way ANOVA 960 
(related Supplemental Fig. S3C). The factor was classifier type with 4 levels: ANN, ANN-NO-961 
LSTM, SVM, and LDA. Tukey’s post-hoc test was used to determine differences in performance 962 
across classifier types. A one-tailed independent samples t-test was used to determine if ANN 963 
performance values were above chance levels (related to Fig. 4D, confusion matrix). A Bonferroni 964 
corrected alpha value of 0.003 was used for significance (0.05 / 16 comparisons).  965 

Differences in cardiovascular biomarkers were assessed using separate one-way ANOVAs 966 
for each main effect (related to Fig. 5C) and side effect (related to Fig. 5D). The factor was state 967 
type with 3 levels: Isch., Isch. + ANN-VNS, and Isch. + OL-VNS. Tukey’s post-hoc test was used 968 
to determine differences across state types. VNS ON time was also assessed using a one-way 969 
ANOVA (related to Supplemental Fig. S5).  970 

2-dimensional known and emerging stress state points in the ‘cardiovascular latent space’ 971 
were separated using a linear boundary (related to Supplemental Fig. S8), and differences between 972 
actual and chance performance were assessed using a t-test. Differences in emerging stress state 973 
detection performance were evaluated using a one-way ANOVA (related Fig. 6A). The factor was 974 
detection technique with 3 levels: LSTM-AE, Sparse-AE, and Iso-Forest. Tukey’s post-hoc test 975 
was used to determine differences in performance across detection techniques. A receiver 976 
operating characteristic curve was generated for the LSTM-AE approach to present the raw MSE 977 
data (related to Supplemental Fig. S7). Lastly, we report the performance for unsupervised 978 
clustering and detection of different types of emerging stress states (related to Fig. 7C; 979 
performance = V-measure * 100%; Rosenberg & Hirschberg, 2007). We assessed differences 980 
between actual and chance performance using a t-test (either averaged across the emerging stress 981 
state presentation scenarios = Fig. 7C; or assessed separately across the emerging stress state 982 
presentation scenarios = Supplemental Fig. S9).  983 
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