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1.Abstract
Predicting the functional consequences of single point mutations has relevance to protein function annotation and to
clinical  analysis/diagnosis.  We developed and tested Packpred that makes use of  a multi-body clique statistical
potential in combination with a depth dependent amino acid substitution matrix (FADHM) and positional Shannon
Entropy  to  predict  the functional  consequences of  point  mutations  in  proteins.  Parameters were  trained over  a
saturation mutagenesis data set of T4-lysozyme (1966 mutations). The method was tested over another saturation
mutagenesis data set (CcdB; 1534 mutations) and the Missense3D data set (4099 mutations). The performance of
Packpred was compared against those of  six other contemporary methods. With MCC values of 0.42, 0.47 and 0.36
on the training and testing data sets respectively, Packpred outperforms all method in all data sets, with the exception
of marginally underperforming to FADHM in the CcdB data set. On analyzing the results, we could build meta servers
that chose best performing methods of wild type amino acids and for wild type-mutant amino acid pairs. This lead to
an increase of MCC value of 0.40 and 0.51 for the two meta predictors respectively on the Missense3D data set. We
conjecture that it is possible to improve accuracy with better meta predictors as among the 7 methods compared, at
the least one method or another is able to correctly  predict ~99% of the data.
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2.Introduction    

Amino acid substitutions could affect protein stability, alter/impair its function and possibly lead to disease conditions
(Zhang et al., 2012). Several such single amino acid substitutions in proteins, also called missense mutations, are
implicated in diseases such as cystic fibrosis, diabetes, cancer etc. (Roach et al., 2010; Stranger et al., 2011). Data
from clinical studies as well as from large-scale projects such as the Human Genome Project (Craig Venter et al.,
2001), HapMap Project (Frazer et al., 2007), Exome Sequencing Project and the 1000 Genomes Project (Altshuler et
al.,  2012) unearth  such  single  amino  acid  mutations.  It  would  be  instrumental  to  have  a  fast  and  automated
computational method to accurately predict the functional effect of these mutations. Such an exercise could also
provide valuable insights into the development of personalized medicine.

Several computational methods predict the effect of missense mutations. The methods utilize sequence or structure
information or a combination of the two. The sequence based methods rely on previously known protein sequences
and their  characterizations deposited in  databases.  For  example,  in  the SIFT method (Ng and Henikoff,  2003),
mutational  effect  prediction  are  made  based  on  a  customized  position  specific  substitution  matrix  (PSSM),
constructed with PSI-BLAST (Altschul et al., 1997) and MOTIF finder (Smith et al., 1990) to identify conserved local
sequence regions. A majority of structure-based methods are based on machine learning algorithms. These methods
employ different feature sets and machine learning architectures. For example, I-mutant2.0 (Capriotti et al., 2005) is
trained on features such as pH, temperature and mutation type using a support vector machine. AUTO-MUTE 2.0
(Masso and Vaisman, 2014)  constructs a statistical contact potential with Delaunay tessellation and trained their
models with additional  attributes such as ordered identities of  amino acids,  pH and temperature. PoPMuSiC-2.0
(Dehouck et al.,  2009) uses a linear combination of 26 different statistical energy functions in an artificial neural
network architecture. mCSM (Pires et al., 2014b) utilizes a graph metric to summarize physicochemical interactions
within a cut-off distance as pattern signatures, and trained them with Gaussian process regression model.  SDM
(Pandurangan et al., 2017), which does not rely on machine learning, constructs an environment-specific amino acid
substitution matrix based on observed substitutions in  evolutionary time.  DUET (Pires et  al.,  2014a) is  a meta-
algorithm that consolidates the methods of mCSM and SDM (Worth et al., 2011). Missense3D (Ittisoponpisan et al.,
2019) is another structure based method that uses seventeen structural properties to predict the effect of mutation.
Dynamut2.0 (Rodrigues et al., 2020) uses normal mode analysis and graph-based signatures. Polyphen (Adzhubei et
al., 2010), is a hybrid method that combines sequence and structural features to predict the effect of a mutation. It
uses an improved version of PSSM, information from the Pfam database and structural features such as accessible
surface area and volume of an amino acid to make a prediction. SuSPect (Yates et al., 2014), is another hybrid based
method that uses PSSMs, Pfam domain profiles(Finn et al., 2014). It also includes information from protein-protein
interaction network, and searches in the database for known functional annotations of a mutated position. Despite
these various efforts and algorithms, the functional fate of point mutations remains a challenging problem.

A missense mutation could lead to functional instability by either disrupting its structure or by affecting its interaction
interface and/or active sites without necessarily impacting its structure. A mutational effect predictor should hence
take into account both, the effect of mutation on overall structural stability and on its functional relevance. In this
study,  we  describe  Packpred that  addresses  both  these  aspects.  For  structural  features  Packpred  uses  an
environment-dependent multi-body statistical potential and a depth dependent substitution matrix, FADHM. We had
previously established that FADHM scores are useful in predicting the effects of point mutations (Farheen et al.,
2017). The multi-body statistical potential considers the observed/expected ratio of cliques of residues. The greater
the value of the ratio, the more energetically stable is the packing of amino acids in the residue clique. We further
categorized these residue cliques based on their residue depths. Residue depth (Chakravarty and Varadarajan, 1999;
Tan et al., 2011, 2013) measures the degree of burial and hence the solvation effect on amino acids. Depth has been
shown to correlate  well  with  structural  stability  and free  energy change of  cavity-creating  mutations in  globular
proteins (Chakravarty and Varadarajan, 1999; Tan et al., 2011). Our depth based statistical potential hence assesses
the effect of mutation on local packing stability. To capture the functional relevance of amino acids, we used residue
position Shannon entropy from a multiple sequence alignment of homologs of the query sequence. By this, we exploit
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evolutionary information to quantify degree of observed variation at the position of mutation. Usually, the lesser the
variation the greater is the functional importance of the residue.

3. Materials and methods
3.1. Data sets
3.1.1 Statistical potential data set

A set of  3753 protein structures obtained from the Protein data bank (PDB) (Berman et al.,  2000) was used to
construct the clique statistical potential. The structures in this set have a resolution of 2.5 Å or better, R-free of 0.25 or
better  and  are  non-redundant  at  30%  sequence  identity.  To  account  for  atomic  position  fluctuations  (protein
dynamics) while considering amino acid cliques, 10 homology models were built using Modeller (Šali and Blundell,
1993) with the native protein serving as target and template. These homology models along with the native structure
(i.e. 11 structures for each protein) were used to build a statistical potential.

3.1.2 Saturation mutagenesis data sets

Saturation mutagenesis data sets of two proteins, T4-lysozyme (Rennell et al., 1991) and Controller of cell division or
death B (CcdB) (Adkar et al., 2012) were used in this study. T4 Lysozyme is a 164 amino acid residue protein with
our reference structure being PDB: 2LZM that was solved at a resolution of 1.7 Å (Weaver and Matthews, 1987).
Each position except the first was mutated to 13 other amino acids (A, C, E, F, G, H, K, L, P, Q, R, S, and T). After
excluding key catalytic site residues (D10, E11, R145, R148P) the data set consists of 1966 mutations. CcdB is a
cytotoxin (an inhibitor of DNA gyrase) with 101 amino acids. Its native structure was solved at 1.4 Å resolution (PDB:
3VUB (Loris et al., 1999)). Full saturation mutagenesis (mutating each position to all  other 19 amino acids) was
performed at all positions of the protein. After removal of active site residues (I24, I25, N95, F98, W99, G100, I101), a
final set of 1534 mutations was obtained. In both saturation mutagenesis experiments, an assessment was made on
the phenotypic effect for each mutation. For T4-lysozyme the phenotypic effect was gauged based on the plaque-
forming ability of the mutant. Subject to the same experiment condition, a mutant is assigned to one of the four levels
of sensitivity if the size of the plaque is (i) similar to native control, (ii) significantly smaller, (iii) with hazy morphology
or  difficulty  in  discerning  plaques  and (iv)  no  plaque formation(Rennell  et  al.,  1991).  For  CcdB,  the  mutational
sensitivity score was quantitatively defined as the titer number at which the protein activity (in this case, inducing cell
death) decreases by 5-fold or more relative to its previous dilution. Values of mutational sensitivity range from 2 to 9
in CcdB and we scaled the T4-lysozyme values to range from 2 to 5. For both data sets, a mutation is regarded as
neutral if there is no perceptible phenotypic difference as compared to its native sequence (MS score = 2 in CcdB and
T4-lysozyme), and regarded as destabilizing otherwise. 

3.1.3 Missense3D data set

The Missense3D data set consists 4099 mutations from 606 proteins extracted from Humsavar (Bateman et al.,
2017), ClinVar (Landrum et al., 2014), and ExAC (Karczewski et al., 2017) (Ittisoponpisan et al., 2019). Humsavar
lists  all  the  annotated  missense  variants  from humans reported  in  UniProt  and  SwissProtKB.  ClinVar  catalogs
variations in humans and their associated phenotype. ExAC is exome aggregation consortium that describes the
aggregation and analysis of human exome. The analysis includes quantification of the pathogenecity of variants. The
data set of 4099 mutations consists of 1965 disease-associated variants and 2134 neutral variants (not associated
with any known disease, yet). Packpred parameters were trained on the T4-lysozyme data set and tested on the
CcdB and Missesense3D data sets.
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3.2 Structural and Sequential features

3.2.1. Residue depth

Depth is defined as the distance of a protein atom to the nearest bulk water molecule (Chakravarty and Varadarajan,
1999).  The quantity  measures  the  degree  of  burial  of  the  atom.  Depth  has  been shown  capable  of  concisely
describing protein environment, as substantiated by its utilities in protein design and function predictions (Tan et al.,
2011, 2013, Farheen et al.,  2017). Atom depth values were computed using default parameters. The depth of a
residue clique is defined as the average depths of its constituent atoms.

3.2.2. Cliques of amino acid residues

A clique is defined as a sub-graph in which all possible pairs of vertices are linked. We define a (N, d cut) “residue
clique” to be a clique of N amino acids within a linkage distance of dcut. We consider two amino acids as linked when
at least four, or more than half of side chain non-hydrogen atoms (whichever smaller) are within dcut from atoms of
another amino acid (Figure 1). For Glycine, the Cɑ atom is used in lieu of the side chain. Residue cliques defined with
different combinations of N and dcut (N ranges from 2 to 4, dcut ranges from 7.0 Å to 10.5 Å in step of 0.5 Å) have been
computed and investigated in this study.

3.2.3 Statistical potential and residue clique score

A residue clique statistical potential is constructed by adopting the formulation of Sippl’s potential of mean force
(Sippl, 1990),

Ec=−kTlog(
(Pobs

c
+α Pexp

c
)

(Pexp
c

+α Pexp
c

) )             (1)

Where Ec is the pseudo potential energy and c is a residue clique of type {r1, r2, …}, where the ri’s are the amino acid
types; Pc

obs is the observed number of residue clique c; Pc
exp is its expected number in a hypothetical reference state

without energetic interactions; α is the ratio of pseudo-count introduced to account for sparse statistics, and is taken
as 0.00 in our study. -kT is a constant and is assumed as 1 in this study.

For each (N, dcut) clique, the statistical potential is built at 5 different levels of depth (2.80 Å – 5.25 Å, 4.25 Å – 6.25 Å,
5.25 Å – 7.25 Å, 6.25 Å – 8.25 Å, 7.25 Å - ∞). To calculate the score of a residue clique (S), the mean μ and standard
deviation σ of its depth is first computed. A Gaussian probability density function N(x | μ, σ) is then accordingly built.
The clique score is computed as the weighted sum of integrand at every depth level as, 

Sμ ,σ
c

=∑
d∈D

1
d f −d i

∫
x=di

x=d f

Ed
c ⋅N ( x∨ μ ,σ )dx (2)

Where d is one depth level, di and df is the lower and upper bound of the level. 

Most residue cliques in a protein are overlapping with one another, and an amino acid residue can participate in
multiple cliques. The score of a residue is taken as the average of all such cliques. The score of a protein is further
taken as the average of all its residue scores.

3.2.4. Shannon Entropy

Shannon entropy (H) is a measure of variation observed at a given position. It calculated from a multiple sequence
alignment obtained by a PSI-BLAST search against  the uniref50 database (Altschul  et al.,  1997). H for a given
position is then calculated as,
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(3)

Where Pi is the fraction of amino acid i observed at a given position.

3.2.5. FADHM Scores

FADHM scores are depth dependent pairwise amino acid substitution likelihood scores extracted from the FADHM
matrices.  The FADHM matrices  quantify  the  substitution  frequencies  at  different  depths  obtained by  performing
protein-protein structural alignments. A detailed account of the FADHM score can be found elsewhere (Farheen et al.,
2017)

3.2.6 The Packpred score for mutations

The Packpred score is given as,

PS = 1.5(S) + 1.75(H) + 0.5(FADHM) (4)

Where PS is Packpred score, S (section 3.2.5) is the residue clique score obtained from the statistical potential, H is
Shannon entropy (section 3.2.3) and FADHM (section 3.2.4) is the depth based amino acid substitution likelihood
score. The weights were obtained by training on T4 saturation mutagenesis data set (Supplementary Table1). The
coefficients for S, H and FADHM (weights) were systematically sampled in the range 0 to 3 with a step size of 0.25.
The cut off score threshold that best discriminates neutral mutations from destabilizing ones was 1.6 in the training
data (see section 4.1). Mutation with a score greater than 1.6 is neutral and is destabilizing otherwise. To score a
mutant, we modify the clique composition without explicitly modeling the mutant protein structure, with the mutant
amino acid inheriting all the properties of the wild type residue. 

Packpred is implemented as a web server  at  http://cospi.iiserpune.ac.in/packpred/.  A standalone version is  also
available for download.

3.2.7 Matthew’s correlation coefficient

We  gauge  the  binary  classification  performance  of  Packpred  using  Matthews’s  correlation  coefficient  (MCC)
(Matthews, 1975) given as,

 (5)

Where, TP, TN, FP and TN represents true positive, true negative, false positive and false negative predictions.

4. Results

4.1 Training and testing Packpred score

Packpred uses a linear combination of sequence position Shannon entropy, a residue clique statistical potential and a
depth dependent substitution matrix (FADHM) to predict the functional effect of missense mutations. The Shannon
entropy part of the score estimates the functional importance of residues based on evolutionary information. The
clique statistical potential and the substitution matrix gauges the effect of the mutation on local environment/structure.
The statistical potential computes the observed and expected probabilities to calculate a score for a clique. The
FADHM scores are taken from substitution matrices that are derived from structural  alignments of  proteins.  The
substitution likelihood scores are calculated by categorizing a protein  in  three regions based on residue depths
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(exposed intermediate and buried). The substitution scores indicate the likelihood of a residue getting replaced by
another at a given depth. 

We performed a grid search in the range of 0 to 3 with a step size of 0.25 for S, H and FADHM to optimize the
coefficients (weights) of each component of linear combination Packpred score. The optimization was to maximize
the Matthews correlation coefficient (MCC) (see below) T4 lysozyme saturation mutagenesis data training set. The
weights that gave highest MCC on the training set were 1.5, 1.75, and 0.5 for the clique statistical potential, Shannon
entropy and FADHM respectively. We also obtained a cut-off threshold that distinguishes the destabilizing from the
neutral ones from this training exercise. The cut off was sampled in the range 0 to 2 with a step size of 0.1. Mutations
with scores greater than 1.6 are classified as neutral and scores below 1.6 are classified as destabilizing. The T4-
lysozyme training set consists of 1362 (~69%) neutral and 604 (31%) destabilizing mutations of which Packpred
correctly identifies 1049(~77%) neutral mutations and 406(~67%) destabilizing mutations (Supplementary Table2).

The  weights  and  threshold  obtained  from  the  training  set  were  applied  to  two  testing  sets,  CcdB  saturation
mutagenesis data (Supplementary Table3) and Missense3D data set (Supplementary Table4). CcdB data set has
1258 (~80%) neutral mutations and 276 (~20%) destabilizing while the Missense3D data set has 2134(~52%) neutral
and 1965(~48%) disease mutations respectively. We used the PDB structures, 2LZM and 3VUB to obtain Packpred
scores of T4-lysozyme and CcdB respectively. The biological unit of CcdB is a dimer and we did all the calculations
using this dimeric state structure for CcdB. Packpred correctly predicts 864/1258(~68%) neutral and 253/276(~92%)
destabilizing mutations from CcdB testing set and 1670/2134 (~78%) neutral, 1123/1965 (~57%) disease causing
mutations from the missense3D data set.

We compared Packpred’s binary classification with several popular methods such as i-mutant2(Capriotti et al., 2005),
mCSM(Pires et al., 2014b), SDM(Pandurangan et al., 2017), dynamut2(Rodrigues et al., 2020), FADHM(Farheen et
al.,  2017),  and Missense3D (Ittisoponpisan et  al.,  2019)  (Table 1).  All  the predictions were made using default
parameters. Packpred was the best performing method on the T4-lysozyme training set and the Missense3D testing
set with MCC values of 0.42 and 0.36 respectively. The next best method is Missense3D with MCC values of 0.40
and 0.33 for the T4 and Missense3D data sets respectively. The MCC of Packpred on the CcdB data set is 0.47 and
is marginally outperformed by the best performing method, FADHM, which has an MCC of 0.48 (Table 1).

4.2 Analysis of the predictions on the Missense3D data set

The missense3D data set has a balanced representation of ~48% disease-associated mutations and ~52% neutral
mutations. The data set however is skewed in terms of amino-acid abundance when compared to natural abundance
(Supplementary data Figure 1). For instance, Arginine has highest representation and accounts for ~16%  (664/4099)
of  the  missense3D  data  set  while  its  natural  abundance  is  ~5%.  The  next  most  abundant  amino-acid  in  the
Missense3D data set is glycine that accounts for ~9% ( 372/4099) of the data (natural abundance is ~7%). The most
frequent mutant is also Arginine (347/4099) followed by serine (343/4099). There are 2233 mutations in the exposed
environment (depth less than 5 Å), 1258 in the intermediate environment (depth between 5 and 8 Å) and 608 in the
buried environment (depth greater than 8 Å).

We assessed the performance of various methods on the Missense3D data set using metrics including sensitivity,
specificity,  precision,  recall,  accuracy  and  f1  (Table  2).  Packpred  outperforms  all  other  methods  in  MCC  and
accuracy. Missense3D has highest specificity and precision, while mCSM and i-mutant outperform all other methods
in sensitivity,  recall  and f1-score.  However,  mCSM, i-mutant,  SDM and dynamute predict  large number of  false
negatives (Table 3) that affects their MCC. Hence, we compare Packpred with FADHM and Missense3D in the next
sections unless otherwise stated. Packpred has less number of false positives among FADHM, Missense3D and
has highest number of false negatives. The high false positive rate contributes to its lower specificity.

We analyzed the results structure wise (Supplementary Table5). Packpred correctly predicted all mutations from 264
(out of 606) structures and at least 50% mutations correctly from 507 structures. It could not correctly predict any
mutation from 56 structures. In these 56 PDBs, the maximum mutations in any one protein were 4 while the average
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number of mutations per PDB is whole set ~6. These 56 structures did not follow any particular discernible pattern or
trait.

We stratified the missense3D data to particular depth zones to assess performance of these methods at particular
depths. Packpred has 597/2233 (~72%) correct predictions from the exposed environment, 796/1258 (~63%) from
the intermediate and 400/608 (~66%) from the buried environment. Packpred is least accurate in predicting the effect
of mutations in the intermediate environment. Interestingly, Missense3D is also the least accurate in this intermediate
zone (Figure 2).

4.3 Meta predictions

Of the 4099 mutants, at least one of the seven methods we tested made an accurate prediction in 4036 cases. This
motivated us to make two different meta predictions by combining the different methods. 

The first meta prediction makes use of the method that performs the best for particular amino acids. We studied the
wild type amino acid-wise trends of all the seven methods. For instance, amino-acids N, K, Q, R and T are best
predicted by Missense3D and FADHM outperforms other methods in prediction of I and M amino acids and Packpred
is best at predicting A, D, E, G, L, P, V, and Y. In fact all seven methods feature as the best method for at least one
amino acid (Supplementary Table6). Interestingly, we found that Packpred has about 68% correct predictions when
averaged over the 20 amino acids with a standard deviation of ~4 while FADHM has 62% correct predictions with a
standard deviation ~7 and Missense has 64% correct predictions with ~10 standard deviation. Dynamute2, mCSM, i-
mutant2.0, and SDM have 54%, 53%, 54%, 59% correct predictions with a standard deviation of ~ 12, 14, 14, 11
respectively. Packpred thus shows consistency in prediction across amino acid types. We then used these prediction
strengths of each of the method to get a hybrid/meta prediction scheme  (Supplementary Table7) that combines
predictions from all of the methods and has an MCC of 0.40, easily outperforming all the individual methods.

The second meta prediction only involves Packpred, FADHM and Missense3D as these were the methods that did
consistently well over all different data sets and amino acids. Here we considered the method that best predicted wild
type-mutant pairs. Further, we segregated these amino acid pairs into different depth categories - exposed to solvent
(depth < 5 Å), intermediate (depth between 5 to 8 Å) and buried (depth > 8 Å). Our meta prediction then chose the
best performing method for a particular pair at a particular depth level. For instance, the wild type-mutant pair A→D,
Packpred  has  the  best  predictions  in  an  exposed  environment,  FADHM  in  the  intermediate  environment  and
Missense3D in the buried environment (Figure 3). In case of a tie between methods, the one with the better MCC was
chosen. By thus combining the strengths of  the three methods the MCC of the predictions rises to 0.51 for the
Missense3D data set (Supplementary Table8). An analysis to rationalize/explain why certain methods are best for
certain pairs/environments did not yield any illuminating results. It  is clear however that there is some degree of
complementarity in these different methods and perhaps with a more rigorous treatment of  the results from the
individual methods could further improve prediction accuracy.

4.4 Rank ordering the degree of phenotypic change by mutations

Along with the binary classification, it is also favorable for a statistical potential if it quantifies the degree of phenotypic
change caused by the amino acid mutation. The degree of change is measured by the mutational sensitivity score,
which categorizes each mutation into one of 4 and 8 levels in T4-lysozyme and CcdB data sets respectively. We
chose to  use Spearman’s  rank correlation coefficient  (SCC) to  measure the performance of  rank-ordering,  as it
makes no assumption on linear relationship between the scores and the phenotypical change. SCC is calculated as 

(6)

where d is the difference between the actual and the predicted ranks of a mutation, and n is the number of levels. The
SCC for T4 and CcdB data sets is -0.48 and -0.54 respectively. At best, this correlation is weak and indicates that
these scores could be further improved. 
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5. Discussions
In this study we have developed a method to predict what a single point mutation would do to protein function. Our
method, Packpred, is constructed in a way that it is sensitive to structural changes effected by the mutation as well as
any functional changes it may effect without perturbing the structures. To assess the impact of the mutation on the
structure (and hence he function) of the protein, we devised a multi-body clique statistical potential. This statistical
potential evaluates the strength of interaction in a local neighborhood (amino acid clique). To assess the impact of
mutation, we consider the same residue neighborhood environment while replacing the wild type amino acid with the
mutant. The score of the clique with the wild type residue and with the mutant are then computed. An inferior score
for the mutant in comparison to the wild type would be indicative of a destabilizing mutation. The structural stability of
introducing the mutant residue is also gauged by a depth dependent substitution matrix, FADHM, whose efficacy at
detecting the fate of mutations we had previously benchmarked and tested. To account for functional changes that
could happen even when structure is not affected on mutation, we invoke evolutionary information from a multiple
sequence alignment using Shannon entropy. The more conserved the position, the more likely it is going to affect
function. These different scores are taken together in a linear combination, whose coefficients were optimized using
the T4-lysozyme saturation mutagenesis data set of ~2,000 mutation.

Packpred was tested on two different data sets, another saturation mutagenesis data set (CcdB) and the Missense3D
data set. Its performance on these data sets was also compared to six other method including FADHM, Missense3D,
Dynamut2.0,  mCSM,  i-mutant2.0  and  SDM.  With  the  exception  of  the  CcdB  data  set  where  it  marginally
underperforms FADHM, Packpred clearly outperformed all  other methods on all  data sets. Among the methods,
Packpred balances well between predicting true positives and true negatives (neutral and deleterious mutations) and
hence has the best MCC values. Packpred has the best accuracy and is close to the best specificity, precision and
F1. It loses out to the best methods in these measures as well as on sensitivity as methods such as mCSM predict a
disproportionately large number of negatives. When the performance of the different methods is compared on a (wild
type) amino acid by amino acid basis, Packpred performs consistently well, with prediction accuracies never falling
below 60% while maintain an average of 68%, which is easily the best among the methods tested. Qualitatively, a
similar picture also emerges when the results are broken down into wild type-mutant amino acid pairs. 

We also investigated whether Packpred (and other methods) preferred certain types of structures over others. No
clear deduction could be made from these analyses. However, there was one trend that could be considered for
further improvements – Packpred, similar to Missense3D and FADHM performed the worst in the intermediate amino
acid depth environment. Mutational effects in exposed and buried (according to residue depth) environments were
better predicted. Perhaps, the intermediate depth levels need to be further stratified, which in the case of Packpred
would be reflected in the FADHM matrix values as well as in the clique statistical potential. Improvements could also
be thought of by examining the reasons for why Packpred was unable to accurately predict the fate of 72 mutants that
were all accurately called by the other six methods. We could also dissect the 23 correct predictions that Packpred
made that was missed by all other method to determine the relative strength of Packpred in comparison to the other
methods.

The clique statistical potential developed here has many tunable parameters such as the number of amino acids in
the clique, cut off distance and definitions of what constitutes a ‘contact’  between residues, etc. Packpred could
improve by investigating these aspects too and this would form an independent study in itself.  Similarly,  further
tweaks to the FADHM matrix, as briefly discussed above, could also possibly improve overall prediction accuracy. In
its  current  implementation,  Packpred categorizes  mutations as  being neutral  or  destabilizing.  When we tried to
correlate the score with a discretized value of function, the correlations were around -0.5. Perhaps, with some of the
improvements discussed above this correlation would also improve.

One important observations from our findings is that of the 4099 mutations, 4036 were correctly called by at least one
of the methods. There exists great complementarity between the methods tested here. We were tempted to then use
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two simple meta prediction methods. We designated the predictions involving a particular wild type amino acid or a
wild type-mutant amino acid pair to the method that best predicted this type. Such a simple minded approach gave us
MCCs of 0.40 and 0.51 for the amino acid and the amino acid pair type predictions respectively, where the best
predicting method, Packpred, had an MCC of 0.36 (Missense3D data set). It is conceivable that a different method of
combining the results from these different method could vastly increase accuracy of predicting the functional fate of
single amino acid changes.
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Figures  

Figure 1: Residue clique of amino acids. (A). A 5-residue clique (P11, W30, H91, Q98, L100) of cut-off 7.5Å shown in
ball  and stick representation and enveloped with a meshed molecular surface from human recombinant MTCP-1
protein (PDB: 1A1X). 
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Figure 2:  Histograms of the prediction accuracy of  Packpred, FADHM and Missense3D at different depth levels
(exposed to the solvent, intermediate and buried).

Figure 3: Best performing methods for each wild type-mutant amino acid pair at different depth levels. 

Tables
Table 1: Performance of some methods on T4, CcdB saturation mutagenesis and missense3D data sets.  *: Values
taken from FADHM paper. 

Method MCC for T4 lysozyme
saturation mutagenesis data

set

MCC for CcdB saturation
mutagenesis data set

MCC for Missense 3D
data set

i-mutant 2.0 0.30* 0.36* 0.06

mCSM 0.22* 0.39* 0.05

SDM2 0.24* 0.33* 0.14

Dynamut2 0.09 0.15 0.06

Missense3D 0.40 0.39 0.33

FADHM 0.38* 0.48* 0.27

Packpred 0.42 0.47 0.36
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Table  2:  The  prediction  performance  of  seven  methods  on  the  Missense3D data  set.  The  best  score  in  each
assessment metric is shown in bold font.

Metric Packpred FADHM Missense3D Dynamut2.0 mCSM i-mutant SDM
MCC 0.36 0.27 0.33 0.06 0.05 0.06 0.14

Sensitivity 0.57 0.39 0.40 0.84 0.92 0.92 0.80
Specificity 0.78 0.85 0.89 0.20 0.10 0.12 0.34
Precision 0.71 0.71 0.76 0.49 0.49 0.49 0.52

Recall 0.57 0.39 0.40 0.84 0.92 0.92 0.79
Accuracy 0.68 0.62 0.65 0.51 0.50 0.50 0.55

F1 0.63 0.50 0.53 0.62 0.64 0.64 0.63

Table 3: Confusion matrix values for the different prediction methods. The values in bold font show the best in each
category. TP, FP, TN and FN stand for True Positive, False Positive, True Negative and False Negative respectively.

Metric Packpred FADHM Missense3D Dynamut2.0 mCSM i-mutant SDM
TP 1670 1816 1890 440 229 251 713
FP 842 1203 1177 312 158 164 420
TN 1123 762 788 1650 1804 1798 1542
FN 464 318 244 1685 1896 1874 1412
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