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ABSTRACT 

Acquired mutations are sufficiently frequent such that the genome of a single cell offers a record                
of its history of cell divisions. Among more common somatic genomic alterations are loss of               
heterozygosity (LOH). Large LOH events are potentially detectable in single cell RNA            
sequencing (scRNA-seq) datasets as tracts of monoallelic expression for constitutionally          
heterozygous single nucleotide variants (SNVs) located among contiguous genes. We identified           
runs of monoallelic expression, consistent with LOH, uniquely distributed throughout the           
genome in single cell brain cortex transcriptomes of F1 hybrids involving different inbred mouse              
strains. We then phylogenetically reconstructed single cell lineages and simultaneously          
identified cell types by corresponding gene expression patterns. Our results are consistent with             
progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and             
distinct waves of neurogenesis. Compared to engineered recording systems, LOH events           
accumulate throughout the genome and across the lifetime of an organism, affording            
tremendous capacity for encoding lineage information and increasing resolution for later cell            
divisions. This approach can conceivably be computationally incorporated into scRNA-seq          
analysis and may be useful for organisms where genetic engineering is prohibitive, such as              
humans.  
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INTRODUCTION 

A fundamental question of developmental biology addresses how the fertilized egg, through a             
repertoire limited to cell division, migration, differentiation, and death, matures into a            
multicellular organism. Sulston and colleagues employed a microscope, pen, and paper to            
painstakingly record the history of each of the 959 cells of the transparent nematode C. elegans                
during its 14-hour development (Sulston et al., 1983). However, cell fate determination in             
vertebrates remains daunting because there are vastly more cells, more types of cells, more              
time required for development, opaque tissues, and, unlike C. elegans, lineage is not invariant              
between individuals. 
Other experimental approaches have utilized embryonic chimerism and cell marking with dyes            
(Salipante and Horwitz, 2007), as well as transgenic markers and barcodes to track clonal              
histories (Weissman and Pan, 2015). However, the relationship between the number of clonally             
related cells and permissible lineages grows explosively. For example, for a 32-cell embryo,             
more than 10 42 distinct lineage histories are possible (Salipante and Horwitz, 2007). A massive              
capacity for uniquely labeling cells is therefore required to unambiguously resolve lineage. 
In recent years, single cell genomic and transcriptomic analyses have accelerated capabilities            
for decoding cell lineage and identity (Wagner and Klein, 2020). 
One approach for deciphering cell lineage is to retrospectively infer the sequence of mutations              
acquired in single cells (Carlson et al., 2011; Frumkin et al., 2008; Ju et al., 2017; Lee-Six et al.,                   
2018; Lodato et al., 2015; Ludwig et al., 2019; Salipante and Horwitz, 2006). Mutations are               
sufficiently frequent such that a large proportion of cells acquire a genome unique unto              
themselves. In fact, brute force sequencing of single cell genomes provides sufficient            
information to unambiguously infer the lineage of mouse cells, tracing back to the zygote, albeit               
at low resolution due to the infrequency of spontaneous mutations (Behjati et al., 2014). 

More recently, engineered recorder systems, such as GESTALT (McKenna et al., 2016) and             
MEMOIR (Frieda et al., 2017), which induce mutations with CRISPR or other means to generate               
cellular barcodes, have enabled high throughput lineage reconstruction from zebrafish and other            
model organisms (Wagner and Klein, 2020). 
At the same time, breakthroughs in single cell RNA sequencing (scRNA-seq), in combination             
with algorithmic advances, have allowed for elucidation of cell state trajectories (Packer and             
Trapnell, 2018; Trapnell et al., 2014). However, the relationship between a cell’s developmental             
trajectory, as reflected in its transcriptome, and its lineage, as defined by its history of cell                
divisions, remains an important and challenging question (Wagner and Klein, 2020). Engineered            
recorder systems can extract both cell state and lineage at single cell resolution by incorporating               
barcodes into a transcript that can be read out through scRNA-seq (Raj et al., 2018; Wagner                
and Klein, 2020). Of course, genetic engineering cannot be used to study development in              
humans or other organisms not suitable for genetic engineering. Previous approaches in            
humans for correlating cell state with lineage based on somatic mutations have required parallel              
RNA and DNA sequencing, respectively (Huang et al., 2020). 
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In principle, somatic mutations occurring within genes should also be detectable in the             
transcriptome. Mutational analysis of transcripts solves a principal technical challenge for           
detecting mutations in single cells. In order to interrogate multiple markers or perform             
sequencing on a single genome, whole genome amplification (Frumkin et al., 2008), which is              
error-prone (Sabina and Leamon, 2015), or in vitro culture of clonally expanded cells (Behjati et               
al., 2014; Salipante et al., 2008), which is difficult to scale, is required. In contrast, thousands of                 
copies of a given RNA molecule may be present in a single cell. However, the transcriptome                
comprises only a fraction of the genome, and mutations concentrate in hotspots (Alexandrov et              
al., 2013), typically non-transcribed repetitive sequences, which are difficult to sequence           
(Shendure and Ji, 2008), even if transcribed. Accuracy limitations impose additional challenges            
for detecting mutations through RNA sequencing: RNA polymerase has an error rate of ~10 -5,              
which is about 5,000-fold higher than point mutation frequency (Gout et al., 2017), apparent              
mutations often reflect RNA edits (Ding et al., 2019), reverse transcriptase used to generate              
cDNA sequencing libraries has a fidelity of ~10 -4 (Ji and Loeb, 1992), and next-generation              
sequencing misreads ~10 -3 bases (Minoche et al., 2011). 
Detection of loss of heterozygosity (LOH) offers a potential workaround. While somatic point             
mutations are not uncommon, LOH, which can arise from somatic recombination or other             
mechanisms, occurs frequently. The phenomenon was first described as ‘twin spotting’ in            
Drosophila, more than 80 years ago (Stern, 1936). LOH can result in surprisingly frequent              
reversion of germline disease mutations (Revy et al., 2019). For example, in ichthyosis with              
“confetti,” innumerable revertant clones densely speckle skin (Choate et al., 2010).           
Measurements at marker genes (LaFave and Sekelsky, 2009; Larson et al., 2006; Moynahan             
and Jasin, 2010) indicate that LOH occurs with a frequency of ~10 -4-10 -5/locus/cell division.             
Multiple regions of LOH of variable length are distributed throughout the genome, thereby             
potentially uniquely marking each cell. 
Compared with the identification of somatic point mutations, detection of LOH offers            
advantages: LOH occurs frequently and affords voluminous informational coding capacity. LOH           
represents a homogenization of tolerated genetic variants, less likely to skew cell growth             
patterns. LOH can be assayed at sites known to be germline heterozygous and are therefore               
predictable and dramatically more economical to survey than mutations, which can arise            
anywhere throughout the genome. The signal of LOH will be reinforced by multiple adjacent              
informative loci spanning large chromosomal segments. LOH corresponds to heterozygous          
base positions converting to homozygosity, whereas most sequencing errors involve false calls            
of heterozygosity (Shendure and Ji, 2008). 

LOH distributed throughout the genome may be identifiable in the transcriptome as tracts of              
apparent monoallelic expression in contiguous genes. However, not every gene is expressed in             
all tissues nor at the same time or levels, scRNA-seq sampling can be sparse, and the                
phenomenon would go undetected in inbred genetic backgrounds, since there is no            
heterozygosity to be lost. 

Here we investigate a computational strategy for overcoming these challenges and employ            
scRNA-seq to identify cell state, based on gene expression, while simultaneously extracting cell             
lineage, based on detection of LOH manifesting as tracts of monoallelic expression. 
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In an initial application, we have studied major cellular classes during development of mouse              
cerebral cortex at single cell resolution. 

 

RESULTS 
 
Cortical Cell Identification 
We analyzed single cells from the cerebral cortex of eight mice (Fig. 1A). In order to distinguish                 
parental alleles, we studied F1 offspring of a cross between two different inbred strains,              
C57Bl/6J (B6) and CAST/EiJ (CA), whose genomes have previously been sequenced. To            
control for parental sex, four mice were products of matings of female B6 and male CA parents,                 
and four mice were born to parents in which strain sexes were reversed. From each group of                 
four, we analyzed a female and male at two developmental time points, postnatal days 0 (P0)                
and 42 (P42). We focused our analysis on Emx1+ cortical projection neuron and glia lineage. To                
this end, we utilized B6 mice transgenic for Emx1-Cre;Z/EG, such that enhanced green             
fluorescent protein was expressed in cells that, at least at some point during their development,               
had expressed the neuronal transcription factor EMX1 (Gorski et al., 2002). Emx1-marked cells             
were isolated by flow cytometry and underwent scRNA-seq to a high depth of coverage using               
Smart-seq2 (Picelli et al., 2013). Approximately 50 cells from each mouse cortex (404, in total)               
passed quality control filtering (median of 1,735,775 unique reads per cell). 
 
Using known markers of cell type (Supplemental Fig. 1 and Supplemental Table 1 ),             
scRNA-seq analysis of cells from all mice combined led to identification of eight cell types (Fig                
1B). 
 
Radial glial cells (RGC) are neural progenitors defined by expression of several genes marking              
transition from neuroepithelial to mesenchymal states. We used expression of the genes            
encoding intermediate filaments Vimentin (Vim) and Nestin (Nes), the extracellular matrix           
component Tenascin C (Tnc), neurogenic transcription factors Pax6 and Sox2, as well as glial              
markers GLAST (Slc1a3) and Blbp (Fabp7) to identify these cells. 

We defined three classes of neurons using a variety of markers. Doublecortin (Dcx) and              
Neurod1 expression arises in the immature neural cluster and decreases in the more mature              
neuron and glutamatergic neuron clusters. Beta III Tubulin (Tubb3) transcription increases in the             
immature cluster and peaks in the neuron cluster. The immature neuron cluster also shows              
marked increase in Sema3c and Sox11 transcription, suggesting that these cells are radially             
migrating (Hoshiba et al., 2016; Wiegreffe et al., 2015), while the neuronal cluster is              
post-migratory. The post-mitotic neuronal marker NeuN (Rbfox3) shows low expression in           
immature neuron and neuron clusters, with a marked increase in the glutamatergic neuron             
cluster. Neuronal cytoskeleton components Nefm and Nefh also demonstrate increased          
transcription in glutamatergic neurons. The glutamatergic cluster is marked by the vesicular            
glutamate transporter vGluT1 (Slc17a7), the NMDA receptor subunit of the glutamate receptor            
channel GluN1 (Grin1), and glutaminase (Gls). Together these results describe the general            
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maturation of a neuron to a functional state and are expected, as Emx1 expression marks               
excitatory pyramidal projection neurons in the mouse cortex (Gorski et al., 2002).  

Astrocytes, in general, are distinguished by the presence of GLAST, the glutamate/aspartate            
transporter Glt-1 (Slc1a2), and glutamine synthetase (Glul). We also identified a separate            
cluster of astrocytes that are marked by increased expression of the calcium binding component              
S100b and the brain-specific aldolase C (Aldoc). S100b expression marks commencement of            
astrocyte terminal differentiation (Raponi et al., 2007). 
 
Two oligodendrocyte populations were identified. The first, corresponding to an oligodendrocytic           
intermediate progenitor population (oIPC), is uniquely marked by platelet-derived growth factor           
receptor Pdgfra and proteoglycan Ng2 (Cspg4). Expression of the transcription factor Sox10            
increases in these cells while continuing at a lower level in oligodendrocytes. The second              
mature oligodendrocyte population is identified by increased expression of the tight junction            
component Claudin 11 (Cldn11) and Myelin Oligodendrocyte Glycoprotein (Mog). 
 
In general, the identified cell types were consistent with the age of sampled cortex. Analysis of                
cell cycle-related genes (Supplemental Table 2) revealed that clusters identified as mature and             
predicted to be post-mitotic are predominantly classified as G1 phase cells (Supplemental Fig.             
2). Most P42 cells are classified as G1, while the oIPC of those mice exhibit populations in both                  
S and G2/M phases. RGC, immature neurons, and neurons display more heterogeneous            
distributions within the cell cycle This is expected for RGC, but not for neurons, which are                
post-mitotic. However, our findings are consistent with previous reports suggesting that, on a             
transcriptional level, the progression to a post-mitotic state in neurons is gradual and that cell               
cycle genes are expressed but do not lead to productive cell division (Anda et al., 2016). 
 
Detection of Allele-Specific Expression 
A cross between different inbred mouse strains, each homozygous throughout their diploid            
genome, should predictably generate heterozygosity in F1 progeny wherever parental strains           
differ in DNA sequence, consisting of indels, microsatellite polymorphisms, and single           
nucleotide variants (SNVs). Of these, SNVs are most readily interrogated by scRNA-seq. Using             
the published genomes of the B6 and CA parental strains, we constructed a list of 20,667,142                
SNVs across all autosomes and the X chromosome, which serves as a guide for determining               
expressed allele status in each cell. 
 
For further studies, we focused on the four mice (one of each sex, for P0 and P42 stages)                  
derived from a female B6 crossed to a male CA. For each mouse, we interrogated a mean of                  
200,540 (standard deviation 67,959) informative heterozygous SNVs distributed across mapped          
scRNA-seq reads in our dataset, corresponding to an average density of 81 loci per megabase               
(Mb). SNV positions that were homozygous for either parental variant suggest monoallelic            
expression, potentially consistent with LOH, while heterozygosity would indicate that both           
parental alleles are present, excluding the possibility of LOH. When using scRNA-seq            
information as a starting point, the number of loci that yield allele information is dependent on                
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cell type and its corresponding transcriptome. Recognizing that not all cells express the same              
transcript, as well as incomplete capture of all transcripts, the median number of transcribed              
SNV coordinates that passed quality filters for any given cell for each mouse was 10,805 (LQ                
7,232; UQ 14,160), yielding an average median autosomal coverage density of 4 SNVs/Mb (LQ              
3; UQ 6). These results show that scRNA-seq generated transcriptomes have the potential to              
provide allele state information at a density comparable to commercial DNA-based genomic            
SNV microarrays clinically employed for detection of LOH and copy number variants in the              
~20% larger human genome (e.g., Affymetrix High Density, 750K loci; Agilent Medium Density,             
30K loci; Oxford Gene Low Density, 6,186 loci), although we do not explore here whether               
scRNA-seq data are useful for detecting copy number changes.  
 
Detection of X-Inactivation and Imprinting with scRNA-seq 
A measure of our variant calls and filtering methods can be provided by examining regions with                
predictable allele-specific expression patterns. Most obvious is the X-chromosome in female           
mice. One of the two X-chromosomes is randomly inactivated during embryogenesis in female             
mice, leading to expression from predominantly one chromosome or the other (Galupa and             
Heard, 2018). Certain regions on the inactive chromosome, however, escape inactivation, and,            
in fact, some are responsible for maintaining the inactive state. For the purpose of our studies,                
these exceptions offer an important test of whether biallelic expression can be identified at loci               
that might otherwise be interpreted as monoallelic. 
 
Plots of the X-chromosome from eight representative cells of a B6 (female) × CA (male) F1 P0                 
female hybrid mouse are shown in Fig. 1C . For each cell, allele frequencies of informative SNVs                
are plotted along the length of the chromosome. Their position on the vertical axis, along with                
color, indicates which parental allele(s) are detected, with monoallelic CA (yellow) shown on top,              
monoallelic B6 (blue) on the bottom, and biparental expression (green) in-between. Four cells             
exhibit inactivation of the B6 X-chromosome, while the other four cells reveal inactivation of the               
CA X-chromosome, as indicated by the predominant expression of the opposite parental allele.             
A reversal of this pattern occurs predictably at the Xist/Tsix locus. Xist and Tsix are exclusively                
expressed, respectively, from the inactive and active X-chromosomes and contribute to           
X-inactivation (Galupa and Heard, 2018). Some cells show regions with inconsistent escape            
from X-inactivation, including genes previously observed to exhibit leaky expression          
(Supplemental Table 3 ). Complicating matters is that detection of escape from X-inactivation in             
hybrid mice appears dependent on parental strains and can be tissue specific (Andergassen et              
al., 2017; Berletch et al., 2015). Nevertheless, for the X-chromosome, our data capture the              
expected variation in allele-specific transcription, with each cell displaying a dominant parental            
variant in female mice. 
 
A few autosomal segments exhibit imprinting, containing genes in which only one or the other               
parental allele is expressed, thereby offering another opportunity to assess accuracy for            
identifying loci with biallelic expression amidst regions of allele-specific expression. A cluster of             
imprinted genes on mouse chromosome 17 includes insulin-like growth factor II receptor (Igf2r)             
and lncRNA Airn (Latos et al., 2012). Unlike humans, mouse Igf2r is exclusively maternally              
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expressed in most peripheral tissues. However, Igf2r imprinting is relaxed in mouse astrocytes             
and oligodendrocytes, giving a more human-like biparental expression pattern (Hu et al., 1998).             
We detect cells expressing either maternal or paternal Igf2r alleles, along with exclusively             
paternal expression of Airn (Fig. 1D ). 
 
Another imprinted locus is the Prader-Willi/Angelman syndrome (PWS/AS) region of mouse           
chromosome 7, which consists of several imprinted genes, expressing only paternal copies of             
Snrpn, Snurf, Ipw, and Npn, along with exclusively maternal expression of Ube3a (Bervini and              
Herzog, 2013). Developing neurons and glial cells, however, biallelically express Ube3a           
(Judson et al., 2014). We again capture this relaxation of imprinting (Fig. 1E). As expected,               
expression at other loci (Snrpn, Snurf, and Npn) is predominantly paternal, though we also              
observe low levels of biallelic or maternal expression.  
 
The examples above demonstrate that our variant calling pipeline and quality filters are             
sufficient to produce positive and specific biallelic variant calls in well-studied regions of the              
genome where monoallelic expression is known to occur, thus mitigating false inference of LOH              
due to epigenetic factors. In addition, we can capture predicted tissue dependent allele             
expression patterns. These results suggest that these data are of sufficient quality to detect              
regions of LOH with specificity in single cells.  
 
Inferring Loss of Heterozygosity in Single Cells 
Compared to bulk RNA-seq, scRNA-seq may artifactually indicate monoallelic expression due to            
stochastic sampling biases, especially for genes with modest levels of expression, and            
transcriptional “bursting,” in which, at the time sequencing is performed, only one active allele is               
captured (Borel et al., 2015; Deng et al., 2014; Finn and Misteli, 2019; Reinius and Sandberg,                
2015; Reinius et al., 2016). The latter concern is at least partly mitigated by the fact that                 
transcriptional bursts are typically shorter than the half-lives of RNA (Finn and Misteli, 2019).              
Nevertheless, these phenomena complicate interpretation of allele states. The chance that an            
apparently monoallelic SNV reflects sampling noise due to the nature of the scRNA-seq             
protocol, rather than an underlying LOH event, must therefore be considered. To take             
advantage of the fact that contiguous tracts of monoallelic SNVs help validate interpretation of              
reads at adjacent positions, we employed a hidden Markov model (HMM) to infer the most likely                
genotype corresponding to observed patterns of allele specific expression. 
 
We posit three hidden states relating to a cell’s genotype: heterozygous, homozygous B6, or              
homozygous CA. A transition from the heterozygous state to either homozygous state is             
10,000-fold less likely than remaining in the heterozygous state, based on observed frequencies             
of interhomolog chromosomal exchanges (Larson et al., 2006). Within a stretch of homozygosity             
created by recombination, transitioning back to the heterozygous state would require a second             
recombination event, which observations suggest is 10-fold less likely than a single event (i.e.,              
overall 100,000-fold less likely than remaining in the particular state) (Larson et al., 2006).              
Transitions from one homozygous genotype to the other cannot be generated through            
recombination. The ultimate effect of these transition rates is that, given an observed             
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homozygous run of either allele, there is a small bias for continuation of calling a homozygous                
state, instead of transitioning back and forth between heterozygous and homozygous states.  
 
The probability of observing a particular SNV in the heterozygous state or either homozygous              
state is described by the emission state matrix. Due to both bursting and incomplete sampling,               
we estimated that biallelic SNVs will be observed correctly as heterozygous in the scRNA-seq              
data with a probability of 0.10 but will be more frequently incorrectly observed as monoallelic for                
the maternal allele with probability 0.45 or the paternal allele also with a probability of 0.45, as                 
was demonstrated by comparing bulk to single cell sequencing on the same sample (Borel et               
al., 2015). A truly homozygous locus should only be observed as monoallelic. An observation of               
either heterozygous SNVs or homozygosity for a SNV from the opposite allele would switch the               
hidden state back to heterozygosity. 
 
In our model, the heterozygous to homozygous transition probability only modestly influences            
determination of tracts of LOH. A ten-fold decrease in probability (i.e., from 10 -4 to 10 -5) results in                 
a requirement for just three more continuously observed monoallelic SNVs necessary to assign             
a region of LOH (Supplemental Fig. 3). We therefore selected an intermediate transition             
probability to account for genome wide variance in observed frequencies of LOH (Larson et al.               
2006). In fact, most LOH events would still be called using this model if the transition probability                 
were set to 10 -8. 
 
We used a Viterbi path, which describes the most likely set of hidden states and transitions                
given an observed dataset, to infer underlying genotypes for the observed readout across             
autosomal SNVs from scRNA-seq data. Examples of chromosome 19 from two cells, one with              
evidence of LOH and one without, are shown in Fig. 2A . For each cell, two plots are shown.                  
The upper plot illustrates the observed allele state for any SNV based on scRNA-seq data, while                
the bottom plot shows the most likely HMM-inferred genotype. Note, as well, that the density of                
SNV coverage corresponds to which genes are expressed in each cell type, as shown by               
transcripts mapped for relevant cell types in the Tabula Muris project (Tabula Muris Consortium              
et al., 2018). Cell 64461 demonstrates the tendency for scRNA-seq to capture SNVs within              
transcripts corresponding to only one allele. Most SNVs are observed as homozygous for either              
parental allele (colored yellow or blue by parent of origin). Nevertheless, biallelically expressed             
SNVs (green) and monoallelically expressed SNVs from either parent are interspersed           
throughout. Consequently, the inferred genotype for this chromosome is heterozygous, with no            
LOH events, throughout its length. This interpretation is consistent with previous studies            
showing that in silico aggregation of what may appear to be predominately monoallelic             
scRNA-seq data becomes biallelic, matching bulk RNA-seq data from another sample of the             
same cell line (Borel et al., 2015). The second cell (64474) shows a similar stochastic               
monoallelic expression pattern, but two LOH events are inferred. The first is an interstitial event               
proximal to the centromere while the second is a more telomeric interstitial event. 
 
Applying this approach to all cells across all mice, we observe predominantly interstitial LOH              
events (Fig. 2B ). For all called LOH regions across all autosomes and cells, mean, standard               
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deviation, and number of events are as follows: P0-1 - 5.30, 6.14, 795; P0-2 - 2.80, 3.65, 3447;                  
P42-2 - 3.69, 6.44, 2469; P42-3 - 3.44, 6.93, 2381. 
 
Consistent with this, data from high density SNP microarrays show that the predominant LOH              
event in healthy tissue is interstitial (Melcher et al., 2011; Mohamedali et al., 2007; O’Keefe et                
al., 2010). The size distribution of LOH events we detect (Fig. 2C) is also similar to reported                 
values. For example, for the P0-1 mouse, we find a median size of 4.6 Mb, (range 1.0 - 29 Mb),                    
compared to median estimates (in humans) of 1.2 Mb (range 0.3 - 6.7 Mb) (Mohamedali et al.,                 
2007) and 8.7 Mb (range 0.3 - 65 Mb) (O’Keefe et al., 2010). In sum, our method of detecting                   
LOH from scRNA-seq information appears to capture LOH events similar in size and             
chromosomal position to those observed using high density SNP microarrays based on genomic             
DNA. 
 
As noted, there is a tendency for scRNA-seq data, and in particular those that don’t utilize                
unique molecular identifiers (UMIs), to incorrectly imply monoallelic expression at any particular            
locus. To determine whether or not LOH events detected by our algorithm reflect noise or other                
sampling issues, we created 10,000 in silico “cells” for each mouse by scrambling the collected               
scRNA-seq data. Briefly, for each SNV in a single cell in any one mouse, we sampled, with                 
replacement, from the entire mouse cell set whether or not that locus was expressed and, if so,                 
its scRNA-seq state (B6, B6:CA, or CA). This was performed for all detected autosomal loci, and                
the results were stored for that particular cell. This process was repeated 10,000 times, and               
each cell was then processed in the same manner as our original single cells. The results are                 
shown in Fig. 2D . For all four mice the average number of LOH events per cell determined from                  
the actual data is ~15, while the average number of LOH events per cell for randomized data is                  
~0.02. An approximately 1,000-fold reduction in LOH detection in randomized data indicates            
that our detected events are unlikely to represent an scRNA-seq sampling artifact. 
 
The allelic ratio for SNVs distinguishing parental origin of expressed genes has been shown to               
correlate in scRNA-seq datasets for distances of up to about 500 kb (Borel et al., 2015). This                 
correlation is due in most part to SNVs locating within the same gene, and hence being                
contained within the same sequenced RNA molecule. Correlation between SNVs residing in two             
separate yet coordinately transcribed genes could conceivably also be observed when the            
genes reside within the same topologically associating domain, which are similarly between            
about 200 kb and 1 Mb in length (Finn and Misteli, 2019). To control for such phenomena, we                  
excluded regions of monoallelic expression shorter than 1 Mb from our analysis. A filter of this                
size also minimizes inclusion of loci that may be physiologically imprinted, as noted above, or               
otherwise monoallelically expressed, such as olfactory receptors or immunoglobulins (Khamlichi          
and Feil, 2018). 
 
SNVs are neither uniformly distributed across a chromosome nor are the transcripts in which              
they are located expressed in all cells. This creates ambiguity in precisely defining the beginning               
and ending of LOH regions. We consequently assigned beginning and ending points for each              
region to 2 Mb bins tiled across the length of each chromosome. Using these conditions, we                
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created an autosomal map of LOH events for each cell. This map, shown in Fig. 2E , represents                 
a cellular barcode uniquely identifying each cell. The collection of LOH events represent             
heritable somatic mutations that, just like single nucleotide, microsatellite, or CRISPR-Cas9           
induced variants, can be used to infer cell lineage. 
 
The distribution of LOH events shared between cells within each mouse is shown in              
Supplemental Fig. 4A . Most LOH events are unique to a single cell, but as many as nine are                  
shared across cells within a particular mouse. Boundaries for LOH events are only             
approximated as a result of the fact that not all transcripts are expressed in all cells.                
Nevertheless, most LOH events appear unique to each mouse (Supplemental Fig. 4B). 
 
To further address whether an LOH event is more likely to occur in cells from the same mouse                  
compared to a different mouse, we devised an enrichment quotient. For each LOH event, the               
numerator represents the number of cells containing that allele for one of the four mice, and the                 
denominator is the sum of all occurrences of that allele across all cells from that mouse and one                  
other mouse. A value of one would indicate that the allele is unique with respect to the particular                  
“target” mouse, whereas a value of ~0.5 would indicate that the allele is just as likely to be found                   
in cells from the other mouse it is compared to (approximate because of differences in the                
number of LOH events for each mouse). We report the mean quotient for all alleles for a                 
particular mouse (Supplemental Table 4). For each unidirectional pairwise comparison, the           
enrichment quotient ranges from 0.82-0.96, meaning that, on average, inferred LOH events tend             
to recur within cells from the same mouse. 
  
Loss of Heterozygosity as a Marker of Lineage 
To deduce cellular lineage, we employed Camin-Sokal parsimony, in which the most likely             
phylogeny minimizes the number of ordered character state changes from the base of the              
dendrogram to its tips (Camin and Sokal, 1965). LOH events for any one chromosome can be                
described as a discrete and irreversible event. We coded autosomal LOH events occurring on              
the same chromosome as a series of two-state characters, with heterozygosity being the             
ancestral character. In F1 mice, LOH events should not exist in the zygote. We implemented               
this model in a Bayesian phylogenetic analysis using the MrBayes algorithm (Ronquist et al.,              
2012). For each mouse we added a cell representing the zygote, with no LOH events assigned.                
The zygote branch length is expected to be close to zero and placed as the outgroup in the                  
resultant dendrogram. We excluded CNVs on the sex chromosomes. 
 
The consensus phylogram for a P0 (P0-2) mouse is shown in Fig. 3A . The zygote occurs as an                  
outgroup when compared to the rest of the cells (with an exception for just one other cell) and                  
shows the least amount of change (less than 1 LOH event), as expected. Most changes occur                
towards the tips of the tree, and intranodal distances are short. Pairwise comparison of              
differences between cells exhibits a unimodal distribution (Supplemental Fig. 5). Such a            
pattern, along with short intranodal distances, is consistent with expanding populations, as            
expected during embryogenesis; in contrast, populations of constant size exhibit more evenly            
spaced intranodal distances and monotonically decreasing pairwise-distance distributions        
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(Rogers and Harpending, 1992). Given these results, we believe that our evolutionary model             
reflects the sequence of LOH events acquired during development. 
 
Posterior probability support for a specific topology is less robust. The consensus tree, depicted              
as a phylogram in Fig. 3A and a cladogram in Fig. 3B , is based on 4,502 sample trees, and the                    
99% credible set contains 4,457 trees. This is unsurprising, given the large polytomy at the base                
of the tree. A cladogram showing node support is shown in Fig. 3B , along with composite                
visualization of 1,500 overlaid trees from the credible tree set. For nodes with a posterior               
probability ≥ 0.1, the maximum level of support was 0.60 (median interquartile range). In              
general, resolved nodes correlate with the presence of at least one shared LOH event in               
daughter cells, and several clades share an allele in all but one cell (⬤ and ▲, respectively,                 
along tree branches in Fig. 3B ). For some clades, one allele appears sufficient to distinguish a                
clone, as shown by large dense wedges in Fig. 3B , but the topology of the monophyletic group                 
cannot be resolved due to a lack of segregating alleles or confounding effects of coincidental               
identity by state (homoplasy). The informative chromosomal barcodes with segregating LOH           
alleles are shown for a representative clade in Fig. 3C . Taken together, these results indicate               
that there is a lineage signal driven by LOH events that is detectable using parsimony, but                
confounding variables such as homoplasy limit our ability to ascertain finer topological structure.  
 
While we do not know the true relationship of the cells of any given mouse, pairwise analysis of                  
any two mice can provide insight into the relationship between posterior probabilities and truly              
related cells, along with an estimate of homoplasy. Cells from a particular mouse should group               
together based on the principle of identity by descent while mixed groups should reflect              
homoplasy. An analysis of pooled cells from pairwise comparisons of mice, Supplemental Fig.             
6, reveals that a posterior probability of 0.45 - 0.50 is likely sufficient for detecting clonal patches                 
of cells.  
  
Stereotyped Expansion and Differentiation in Neocortical Histiogenesis 
Histogenesis in the mouse neocortex consists of a progression of progenitor cells with             
decreasing proliferative potential (Taverna et al., 2014). Neuroepithelial stem cells divide           
symmetrically to produce the initial progenitor pool in the ventricular zone of the developing              
neocortex. This population transitions to an asymmetrical cell division stage consisting of RGCs             
to create unitary clusters of neurons either directly or through transient progenitors that expand              
the size of the cluster. A subset of RGC (about one-sixth) transitions to a gliogenesis state                
where they produce astrocytes and oligodendrocytes (Gao et al., 2014). Symmetrically dividing            
glial progenitors are produced as well (Ge et al., 2012). This pattern of symmetrical cell division                
followed by unitary asymmetrical cell division, expansion, and differentiation should produce           
multiple monophyletic clades of mixed cell types. We see such a pattern in the inferred               
phylogenies, Fig. 4A . In P0 mice, the diversity of cell types is limited, but monophyletic groups                
appear, consisting of neurons and RGCs. The P42 mice, which have increased cellular             
diversity, show the same topological pattern. Heterogeneous clades are predicted to be            
composed of neurons, immature and mature astrocytes, as well as oligodendrocytes and their             
intermediate progenitors, in agreement with a unitary expansion model of neurogenesis (Gao et             
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al., 2014). Interestingly, the majority of glutamatergic neurons form their own clade in both P42               
mice. In contrast, RGC and neurons in P0 mice are distributed throughout different clades.              
Correspondingly, we note that the large polytomies in each mouse consist of a similar number               
of monophyletic groups (15, 14, 14, and 11, for each of the four mice, respectively) though we                 
cannot speak to whether or not this structure is meaningful, again due to low cellular sampling. 
 
Generation of LOH events correlates with cell division (Mehta and Haber, 2014) and therefore              
likely reflects mitotic age. At P0, particularly for the P0-2 mouse, the distribution of the number                
of identified LOH events among RGC is tighter than seen in either group of neurons (Fig. 4B).                 
The observation of fewer LOH events in more differentiated cells is consistent with RGC serving               
as a stem-like population, with neurons spun off earlier during embryogenesis. Conversely, the             
appearance of neurons exhibiting more LOH events is consistent with their production from             
older RGC populations along with subsequent additional cell divisions prior to terminal            
differentiation. At P42, the distribution of the number of LOH events in immature astrocytes is               
more tightly clustered than for mature astrocytes, and the median number of events is lower.               
Though we do not have contemporary RGC with which to compare, this pattern is consistent               
with immature astrocytes being produced from transitioning late-stage RGC, expanding, then           
differentiating into mature astrocytes. There appear to be at least two waves of oligodendrocyte              
production given that contemporary precursors are mitotically older than mature          
oligodendrocytes. Our findings are consistent with the concept of early vs. late populations of              
RGC producing neurons and glial cells, indicating that the differences we are observing in P42               
mice are due to sampling from both populations (Kriegstein and Alvarez-Buylla, 2009). 
 
DISCUSSION 
 
We have used scRNA-seq to simultaneously identify cell state based on gene expression profile              
and phylogenetically infer lineage by identifying LOH events corresponding to tracts of            
monoallelic expression. 
 
The goal of our studies is to reconcile lineage with cell state trajectory. Corticogenesis in the                
mouse is complex and involves a linear transition of distinct progenitors that contribute to the               
production of neurons and macroglia at different stages of development (Fig. 5A). Due to the               
asymmetrical nature of RGC division and potential symmetrical expansion of some daughter            
cells, one RGC can contribute to multiple cell types and can tie cells produced at later stages of                  
life to cells produced embryonically. Depending on the timing of LOH events during this process,               
several possible cell-type-specific phylogenetic topologies are possible. An event in          
neuroepithelial stem cells or early RGC would lead to mixed cell type clades while events               
occurring during the expansion of intermediate progenitor cells would mark more homogeneous            
clades. In P0 mice we observe mixed clades consisting of RGC, immature neurons, and              
neurons, a pattern that is highlighted for large clades when member cells are plotted in               
dimensionally reduced space based on transcription (Fig. 5B). These mixed clades are also             
seen in P42 mice (Fig. 5C), where cell types are more diverse given maturity. Combined, these                
results suggest that the large polytomies in all four mice might correspond to the initial               
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expansion of neuroepithelial stem cells during embryogenesis and are consistent with           
stereotyped neuronal expansion. Interestingly, we do observe clades of predominately          
glutamatergic neurons in both P42 mice. This could be a reflection of neurons produced from               
earlier RGC or could be an artifact of relatively low cellular sample sizes compared to the total                 
number of cells in the cortex. Increases in cellular sampling from the whole cortex or sampling                
from a much smaller region of cortex would allow greater resolution, and we would also expect                
to see increases in more cellularly uniform groups due to detection of events that occur during                
expansion of intermediate progenitor cells (Kriegstein and Alvarez-Buylla, 2009). 
 
As far as we are aware, our analysis provides the first indication that monoallelic expression               
observed in scRNA-seq datasets occurs in contiguous clusters unique to different cells, which             
we interpret as consistent with LOH. 
 
Among inbred strains of mice, LOH ordinarily goes undetected in experiments employing            
scRNA-seq because the diploid genome is entirely homozygous. Here we examined F1            
offspring of different mouse strains in order to generate frequent and predictable heterozygous             
SNVs distributed throughout the genome, focusing on transcribed loci, which can consequently            
be readily discriminated through scRNA-seq. 
 
Different cell types express different genes, meaning that the same SNVs distinguishing            
monoallelic expression will not always be informative when comparing different cells. A            
challenge in defining contiguous stretches of monoallelic expression shared by different cell            
types therefore relates to identification of their boundaries when they occur within a gene              
expressed in a tissue specific manner. However, across a sufficiently large chromosomal region,             
at least several genes are likely to be expressed in any particular cell, allowing more precise                
restriction of boundaries and reducing the likelihood that homoplasy will confound phylogenetic            
reconstruction of lineage. 
 
For any particular heterozygous SNV, there are several reasons why transcripts corresponding            
to only one parental allele may be detected, including limited sampling due to inadequate depth               
of coverage, capturing a moment in time when only one allele is actively undergoing              
transcription (i.e., “bursting” (Borel et al., 2015; Deng et al., 2014; Finn and Misteli, 2019;               
Reinius and Sandberg, 2015; Reinius et al., 2016)), and imprinting or other forms of allelic               
exclusion, such as X-inactivation (Galupa and Heard, 2018) or involving antigen receptors in the              
immune system or olfactory receptors (Khamlichi and Feil, 2018). 
 
Regarding the latter, random mitotically stable monoallelic expression of some genes (Savova            
et al., 2016), such as Pax5 (Nutt et al., 1999) and Il2 (Holländer et al., 1998), has been                  
proposed as a source of diversification of somatic cells. However, these observations prove             
controversial. For example, monoallelic expression of Nanog has been posited to regulate            
pluripotency (Miyanari and Torres-Padilla, 2012), while other reports find that its expression is             
biallelic and no different from other genes playing similar developmental roles (Faddah et al.,              
2013; Filipczyk et al., 2013). 
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Reinius et al. (Reinius et al., 2016) addressed the frequency of monoallelic expression using              
scRNA-seq. In primary B6×CA mouse fibroblasts, they found that 13% of autosomal genes             
exhibited monoallelic expression. To determine if monoallelic expression corresponded to a           
clonal distribution, scRNA-seq data were pooled from fibroblasts clonally expanded in vitro, at             
which point monoallelic expression was observed in no more than 0.5% of expressed genes              
and was therefore interpreted as dynamic and consistent with bursting. It is worth noting,              
however, that they excluded genes from regions with cell- or clone-specific chromosomal            
aberrations, which might underlie the clonal abnormalities we infer to represent LOH events. 
 
In further elegant studies, Reinius et al. isolated antigen-specific T cells following yellow fever              
virus vaccination in a human subject, under the premise that “rearrangements of the two T cell                
receptor (TCR) chains result in immense sequence variability [such that] cells with identical             
rearrangements can be identified as clones”. Counterintuitively, however, multiple individuals          
frequently share an identical, “public” TCR responding to the same antigen, due to biases and               
convergence in TCR rearrangements (Elhanati et al., 2018; Li et al., 2012; Madi et al., 2014;                
Pogorelyy et al., 2018a). In fact, in identical twins, about one-third of T cells responding to                
Yellow Fever vaccination share TCR sequences, which is concluded to arise from multiple             
independent clones undergoing convergent recombination and selection (Pogorelyy et al.,          
2018b). Therefore, T cells with identical TCR rearrangement may frequently have polyclonal            
origins. An additional limitation is that Reinius et al. restricted their scRNA-seq analysis to just               
~800 autosomal genes. Finally, it is worth emphasizing that they nevertheless detected clonal             
monoallelic expression at about 1% of loci, with a range reaching much larger values among               
some T cells. 
 
As an alternative to evaluating allele-specific polymorphisms, Nag et al. (Nag et al., 2013,              
2015), sought a characteristic chromatin signature simultaneously exhibiting marks associated          
with active transcription (H3K36me3) and silencing (H3K27me3) and predicted that monoallelic           
expression occurs for ∼20% of ubiquitously expressed genes and over 30% of tissue-specific             
genes across cell types. 
 
In contrast, for all cells of all four mice analyzed for LOH, we observed a mean of 5.1% (range 0                    
- 19.1%) of the autosomal genome exhibiting monoallelic expression, a result much closer to              
Reinius et al. than to Nag et al. One reason the value we determined may exceed Reinius et al.                   
is that our analysis of heterogeneous cell types required binning of the boundaries of regions of                
monoallelic expression to account for differences in gene expression between individual cells,            
which necessarily leads to overestimation. 
 
We emphasize that for any given locus exhibiting monoallelic expression, we infer that the vast               
majority of cells, including from the same cell type, exhibit a heterozygous genotype, which              
would not be true if there were pervasive random clonal monoallelic expression. We agree with               
the conclusion of Reinius et al. that random clonal monoallelic expression is an infrequent gene               
regulatory mechanism and is therefore unlikely to confound interpretation of LOH events. To             
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further control for this issue, we surveyed for large, contiguous tracts of monoallelic expression,              
spanning multiple genes, beyond distances generally correlated with transcriptional bursting or           
topologically associated domains, thereby attempting to minimize artifactual detection of          
monoallelic expression. To assure that segmental clustering of monoallelic expression was           
similarly not a random phenomenon or an artifact of the algorithm employed for its detection, we                
found that the tracts largely disappeared when SNV genotypes were permuted and that shared              
LOH events were enriched in cells from the same, as opposed to different, mice. 
 
Several recombinational pathways can lead to LOH, whether it be copy neutral or result in loss                
of chromosomal material (Mehta and Haber, 2014). Analysis of these pathways at a single cell               
level may be helpful in defining LOH events in cancer and elucidating how some heritable               
disorders undergo somatic reversion (Revy et al., 2019), in addition to its application in              
developmental biology. 
 
A mechanism of LOH consistent with our observations is gene conversion, resulting in copy              
neutral LOH. The size and frequency of LOH we detect is comparable to prior observations.               
Nevertheless, we cannot exclude LOH arising due to deletion of the undetected allele. While the               
density of informative SNVs in our experiments is comparable to SNV microarrays clinically             
employed for detection of copy number variants, cell-to-cell differences in gene expression level             
would prove challenging for purposes of copy number analysis. 
 
We cannot entirely exclude epigenetic silencing of one allele, as proposed as an explanation for               
monoallelic expression (Andergassen et al., 2017; Nag et al., 2013, 2015). However, for that to               
occur would somewhat implausibly require coordinated epigenetic regulation of multiple          
adjacent genes, including across different cell types. Moreover, the occasional observation of            
single cell biallelic expression at some loci on the X chromosome or the PWS/AS region               
engender confidence in our calls of LOH, as these “escapes,” or otherwise apparently leaky              
expression, indicate that an underlying heterozygous genotype remains determinable when          
large regions are epigenetically silenced. Even if epigenetic phenomena were contributing to our             
calls of LOH, the information would likely still prove useful for inferring lineage. In fact, an early                 
approach for retrospectively inferring lineage from sequencing data employed detection of           
cytosine methylation, involved in developmentally regulated gene silencing (Shibata and          
Tavaré, 2007).  
 
The number of possible lineage histories grows explosively as a function of the number of cells                
(Salipante and Horwitz, 2007), complicating phylogenetic approaches for inferring lineage. A           
workaround to this issue could come in the form of a deterministic barcode, similar to a                
“blockchain” (Ozercan et al., 2018), in which the sequence of cell divisions and daughter cell               
relationships to one another were explicitly recorded. In such a situation, the number of              
barcodes required to unambiguously reconstruct the cell lineage would simply equal the number             
of cells. Intriguingly, mitotic recombination is typically reciprocal, such that heterozygosity at a             
locus undergoing recombination is expected to be inherited by one daughter cell as             
homozygosity for one parental allele and, for the other daughter cell, as homozygosity for the               
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opposite parental allele. It is possible that by performing scRNA-seq on a larger number of cells,                
reciprocal copy neutral LOH outcomes of a single recombination event could be identified and              
lend greater certainty to lineage reconstructions. 
 
A distinct advantage to the approach described here, compared to recently introduced            
technologies for dynamically barcoding cells through genome editing, is that it can be performed              
retrospectively, permitting its use for studying development in humans and other organisms            
where genetic engineering or other forms of embryonic manipulation are infeasible or where             
lifetimes are long. Unlike laboratory mouse strains, humans and individuals from other species             
with large populations are outbred, and heterozygous SNVs are abundant, making the method             
applicable without any special breeding strategy, provided that the underlying phased genome            
sequence is determinable using experimental and/or computational approaches (Choi et al.,           
2018). For example, our approach may prove particularly informative in evaluating the lineage of              
the earliest events in cancer, where there may be fewer mutations to otherwise infer clonality, or                
in studying aging in long-lived organisms, where it is most convenient to sample endpoints late               
in life. 
 
Because LOH events are likely to be cumulative throughout the lifespan of an organism, an               
additional source of information for inferring lineage relates to the total number of LOH events.               
In contrast, some of the genetically engineered barcoding strategies lead to a concentration of              
mutations at early stages of embryogenesis. Combining both approaches could prove           
complementary and help improve the reliability of sequence-based mass scale lineage           
reconstructions. 
 
A limitation of our approach is that it requires both a breadth and depth of scRNA-seq sufficient                 
to infer the allelic origin of SNVs contained within a transcript, compared to more limited               
sampling necessary to simply identify a transcript’s cognate gene. As throughput increases and             
nucleic acid sequencing costs continue to decline, this may become less of an issue. 
 
METHODS 
 
Mice 
The dataset we used for our analysis was previously published; mouse strains, breeding             
strategy, cell isolation, and scRNA-sequencing approaches are as described (Laukoter et al.,            
2020). Briefly, B6 (Emx1-Cre;Z/EG) and CA mouse strains obtained from The Jackson            
Laboratory were bred and analyzed in accordance with protocols approved by Institutional            
Animal Care and Use Committees at IST Austria. Cells were dissociated from cerebral cortex,              
and Emx1+ single cells were sorted by FACS for library preparation. RNA sequencing data can               
be accessed using the GEO Series accession number GSE152716         
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152716). 
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scRNA-seq 
RNAseq cDNA libraries were prepared from single cells using Smart-seq2 (Picelli et al., 2013).              
Single-end 50 base pair (bp) reads were mapped to GRCm38.p5 (mm10) and expression             
determined using Ensmbl [91, Dec 2017] with STAR 2.5.0c (Dobin et al., 2013), as previously               
described (Laukoter et al., 2020). A million or greater total reads and a range of 10,000-30,000                
total mRNAs were used to filter high quality single cell samples. 1,735,775 unique reads were               
mapped to the median cell (Lower Quantile (LQ) 990,582; Upper Quantile (UQ) 2,858,522).  
 
Cell Identification 
Cell identity was determined through the Seurat R package (Butler et al., 2018; Stuart et al.,                
2019). Gene level expression data from all 404 cells from 8 mice were combined and filtered.                
Genes expressed in a minimum of three cells were analyzed. Cells with a minimum of 200                
genes detected were kept for further inspection. All 404 cells passed the criteria above resulting               
in a 404 × 23,373 feature count matrix (Supplemental Data). The count matrix was normalized               
with the NormalizeData function, setting normalization.method to “LogNormalize” and         
scale.factor to 10,000. Each cell was assigned a cell cycle state using the CellCycleScoring              
function. The list of S and G2/M genes is provided in Supplemental Table 2 . The expression                
matrix was scaled (mean expression = 0, variance = 1) so that highly-expressed genes do not                
dominate downstream analysis. We also removed variation due to mitochondrial contamination,           
library preparation (individual mouse), mouse age, and cell cycle stage (S or G2/M) using the               
vars.to.regress option in the ScaleData function. We reduced the dimensionality of the            
expression data via principal component analysis (PCA) of the top 2,000 variably expressed             
genes (selection.method = “vst”) and UMAP, using the first 15 components. Cells were             
clustered using Seurat’s graph-based clustering tools. A K-nearest neighbor graph, based on            
Euclidean distance in PCA space, was constructed for all cells using the FindNeighbors             
function. The Louvain algorithm (FindClusters(resolution = 0.8)) was then used to iteratively            
group cells together. Clustered cells were then annotated based on marker gene expression             
patterns (Supplemental Table 1 ). 
 
scRNA-seq Variant Calling 
Further studies focused on a subset of four mice (P0-1, 56 cells; P0-2, 64 cells; P42-2, 56 cells;                  
and P42-3, 47 cells). Heterozygous sites were identified using the CA Mouse Genome Project              
sequencing data (CAST_EiJ.mgp.v5.dbSNP142.vcf) (Keane et al., 2011). Briefly, homozygous         
SNV loci for CA, when compared to mm10 (B6), passing GATK hard filtering metrics for SNV                
detection based on DNA sequencing were identified and used as a guide (ROD file) for loci to                 
be analyzed in GATK. 20,667,142 SNV loci were identified. On average, this provides 8,392 loci               
per Mb coverage of autosomes and X chromosomes. RNA-based SNV calls were made at              
predicted sites of heterozygosity in B6:CA F1 mice using the GATK (Auwera et al., 2013) variant                
calling tool (-T GenotypeGVCFs -stand_call_conf 20 -stand_emit_conf 10) and hard filtered           
using recommended settings for scRNA-seq variants (-T VariantFiltration -window 35 -cluster 3            
-filterName FS -filter “FS > 30.0” -filterName QD -filter “QD < 2.0”). 
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Genotype Determination 
A cell's genotype at a particular locus was inferred by modeling the scRNA-seq variant data as a                 
hidden Markov process with the underlying genotype at a particular locus corresponding to the              
hidden state and the scRNA-seq-based variant status as the emission or observation state. 
 
The hidden Markov model (HMM) contains three hidden states and three emission states,             
described below. 
 
The hidden genotype has three possible states: homozygous B6, heterozygous, or homozygous            
CA. The transition matrix between states is defined as: 

 
The observed scRNA-seq-based genotype (monoallelic B6, biallelic B6:CA, or monoallelic CA)           
is based on the emission state probability of the underlying hidden state given here: 

 
The Markov-chain's starting state probability is given as 0.05 for each of the homozygous states               
and as 0.90 for the heterozygous state. 
 
For any given chromosome of any given cell the underlying genotypes of scRNA-seq detected              
loci were determined by the most probable order of hidden states (Viterbi path) based on the                
scRNA-seq variant data using the Viterbi algorithm contained in the HMM R package             
(https://cran.r-project.org/web/packages/HMM/index.html ). The Viterbi path describes the      
amalgamation of both homologous chromosomes and is assumed to have a copy number of              
two. Hemizygosity will appear as LOH, and duplications will appear as heterozygous            
(Supplemental Data ). 
 
Identification of LOH Events 
A single transition from the hidden heterozygous state to either homozygous state could indicate              
recombination between two homologous chromosomes that extends to the telomere. A           
subsequent transition from the homozygous state back to the heterozygous state would            
describe an interstitial event such as a double crossover or non-crossover strand invasion.             
Partial or micro chromosomal deletions would also trigger these transitions. Transcriptional           
bursting kinetics or epigenetic silencing on one allele could account for short runs of either B6 or                 
CA alleles, as well, confounding our results. To control for such events we removed              
homozygous runs that spanned a region ≤1 Mb.  

 

  Homozygous B6 Heterozygous Homozygous CA 
Homozygous B6 0.99999 0.00001 0 
Heterozygous 0.00010 0.99980 0.00010 
Homozygous CA 0 0.00001 0.99999 

Hidden\Emission state Monoallelic B6 Biallelic Monoallelic CA 

Homozygous B6 1 0 0 
Heterozygous 0.45 0.10 0.45 
Homozygous CA 0 0 1 
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Due to non-uniform scRNA-seq coverage across cells we grouped LOH events in 2 Mb bins,               
starting at the beginning of each chromosome. Events were characterized by their beginning             
and ending bins along with their parental allele identity. 
 
Permutation Analysis 
For each mouse, a subset of randomly sampled “cells” was created in silico based on the                
observed scRNA-seq variants. For each locus, an scRNA-seq allele state (no coverage,            
biallelic, monoallelic B6, or monoallelic CA) was randomly sampled with replacement from the             
pool of allele states at that locus across all cells from the mouse in question. This process was                  
repeated for all analyzed loci along the length of each autosome. These virtual cells were then                
genotyped as described above, and LOH events were identified for each generated cell             
(Supplemental Data ). 
 
Encoding LOH Events for Cladogram Construction 
Tracts of LOH >1 Mb are described by four elements: their chromosome location, the 2 Mb bin                 
in which they start, the strain identity of the tract (B6 or CA), and their ending 2 Mb bin. For                    
example, a homozygous run on chromosome 19, starting at position 5,000,000 and ending at              
position 9,000,000, and consisting exclusively of CA variants would be described as            
chr19_3CA5. A chromosome with no LOH event is coded as HT, designating that the              
chromosome as apparently heterozygous (e.g., for chromosome 19 the designation would be            
chr19_HT). A chromosome for any one cell can contain multiple LOH events.  
 
Each chromosome is considered its own independently evolving region within a mouse, with the              
cell specific combination of LOH events defining its state. An LOH event occurring over a               
specific region of the chromosome does not preclude another event happening nor does it affect               
the probability of that event happening. Once a heterozygous stretch of chromosome is             
converted to a homozygous run it cannot revert back to the homozygous state. For any               
chromosome, each LOH event is treated as independent and irreversible. The multiple            
character states for any chromosome in any mouse can be factored into binary characters              
representing the presence (1) or absence (0) of any chromosome specific LOH event. For              
example, consider the state of chromosome 19 in three fictitious cells: 
 
Cell01: chr19_HT 
Cell02: chr19_2B65, chr19_20CA30 
Cell03: chr19_2B65, chr19_15B626 
 
There are three unique LOH events with one cell lacking any event. These cells would be                
factored and encoded as: 

 

Cell\State chr19_2B65 chr19_15B626 chr19_20CA30 
Cell01 0 0 0 
Cell02 1 0 1 
Cell03 1 1 0 
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LOH Evolution Model 
We implement a Camin-Sokal (Camin and Sokal, 1965) parsimony-inspired Bayesian model of            
LOH evolution to infer lineage relationships, using the restriction site model in the MrBayes              
software package (Ronquist et al., 2012). It is assumed that the zygote for any F1 mouse is                 
biallelic across the assayed SNVs for any particular autosome (a state of 0 in the coding                
scheme described above) and that this is the ancestral condition. An LOH event creates a new                
character state (1), and the transition from 0 to 1 is 100-fold more likely than the reverse.                 
Though LOH events can occur between two X-chromosomes, sex chromosomes are not            
considered here because two mice are male and X-inactivation in female mice changes             
assumptions of the HMM used to infer genotypes based on RNA. Visualization of the Bayesian               
posterior distribution of cladograms employs the DensiTree algorithm (Bouckaert, 2010). 
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Figure 1. Isolation and whole transcriptome sequencing of mouse neocortical cells. (A)            
B6 (blue) and CA (yellow) mice were crossed in both directions to create heterozygous F1               
offspring (green). Single Emx1 expression-marked neocortical cells were isolated from two           
different ages and their transcriptomes sequenced. (B) 404 cells were clustered in dimensionally             
reduced (UMAP) space based on gene expression, and eight cell types were identified. oIPC =               
oligodendrocytic intermediate progenitor cell. (C) Representative allele plots of heterozygous          
SNV loci detected along the X chromosome in 8 cells (rows) from a female P0 mouse showing                 
X-inactivation. Note the reciprocal allele state detected at the Xist/Tsix locus. Allele state: blue              
(B6) = B6, green (BA) = B6:CA, yellow (CA) = CA. N = neuron, A = astrocyte, O =                   
oligodendrocyte. (D & E) Relative density histogram ridgeline plots (1 bp bins) of cells              
expressing maternal, paternal, or biparental variants at particular SNV locations from one            
mouse (P0-2, 64 cells). Chromosome coordinates and relevant genes are indicated on the             
x-axis. Density for each allele category is indicated on the y-axis. (D) Igf2r locus. (E)               
Prader-Willi/Angelman syndrome locus. 
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Figure 2. Inferring loss of heterozygosity regions from scRNA-seq. (A) Hidden Markov            
Model (HMM) results showing two cells with either no LOH event (cell 64461) or two events (cell                 
64474). Detected loci are depicted as a plot for chromosome 19 with the horizontal axis               
indicating chromosome position and the vertical axis indicating expressed allele state (RNA) or             
HMM inferred genotype (Gen). For each cell, the scRNA-seq data is shown on top with the most                 
likely HMM genotype shown below. Tabula Muris cell-type specific transcription tracks are            
shown at the bottom. N = neuron, A = astrocyte, O = oligodendrocyte. (B) Normalized               
chromosome positions of all LOH events from all autosomes of one mouse (P0-1). (C)              
Distribution of LOH lengths for all four mice showing median (bar) and IQR (box). (D) Average                
LOH events per cell for each mouse and the average LOH events of 10,000 randomly sampled                
in silico cells derived from the respective mouse. (E) Autosomal barcode of 56 cells plus a                
virtual zygote (bottom bar) derived from one mouse (P0-2). Autosomes are shown at the top               
with the centromeres on the left. Black bars indicate autosomal boundaries. For all panels: blue               
= B6, green = B6:CA, yellow = CA. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2021. ; https://doi.org/10.1101/2020.12.31.425016doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.31.425016
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

Figure 3. Phylogenetic analysis using LOH events. The lineage of 56 cortical cells plus a               
virtual zygote from a P0 mouse was inferred using a Camin-Sokal parsimony-inspired Bayes             
model. (A) A consensus phylogram showing the relatedness and number of LOH events for              
each cell. Scale bar = 12.5 events. ■RGC, ■Immature Neuron, ■Neuron, ■Zygote. (B) The              
same lineage in cladogram form with supporting nodal posterior probabilities ≥ 0.1 indicated. A              
“densiTree” representation of 1,500 sampled cladograms is shown as a mirror image. The             
complete densiTree representation is shown as an inset with the magnified area indicated by a               
black rectangle. ⬤ Mutations shared across members of a particular node; ▲ mutations that are               
shared in all but one member of a particular node . (C) Barcode of segregating alleles (*) from a                   
monophyletic clade marked “C” in panel (B). Chromosomes are aligned with the centromere to              
the left. Blue and yellow regions indicate LOH events (B6 and CA, respectively). Green regions               
indicate heterozygosity. Node posterior probability is shown on the cladogram.  
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Figure 4. Stereotyped expansion in the mouse neocortex. (A) Consensus cladograms of two             
P42 mice. Nodes with posterior probability of >0.05 are resolved. Posterior probabilities of >0.10              
are indicated. ⬤ LOH event shared among all daughter cells. ▲ LOH event shared in all but                 
one daughter cell. (B) LOH events by mouse and cell type. Total autosomal LOH events are                
shown for each cell on the y-axis. Violin plots show the normalized density for each cell type in                  
each mouse. RGC = radial glial cells, ImmN = immature neurons, Neur = neurons, GlutN =                
glutamatergic neurons, ImmA = immature astrocytes, Astro = astrocytes, oIPC =           
oligodendrocytic intermediate progenitor cells, Oligo = oligodendrocytes. 
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Figure 5. Lineage across cell types. (A) Expansion and differentiation of Emx1 + neural stem              
cells (NSC) into neurons and glia. Neuroendothelial (NE) cells expand (circular arrow) to form a               
pool of radial glial cells (RGC) that produce neurons and glia in the cortex via asymmetric cell                 
division (red lines), expansion, and maturation (dashed lines). Time-dependent development          
proceeds horizontally. Observed cells in this study are indicated by vertical dotted lines along              
with their relative time points. oIPC = oligodendrocyte intermediate progenitor cell, SVZ =             
subventricular zone, as adapted (Kriegstein and Alvarez-Buylla, 2009). (B) Example of different            
clades encompassing multiple cell types for a P0 mouse. All 404 cells are shown in reduced                
dimensional (UMAP) space to illustrate all possible cell types, indicated by color-bound regions.             
Cells from four representative clades of the P0-2 mouse (inset cladogram) are indicated by their               
corresponding colors. (C) Same as in (B) for mouse P42-3. 
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SUPPLEMENTAL MATERIALS 
 
Supplemental Figures (appended below) 
 
Supplemental Table 1. Genes used to identify cell types , xlsx file. 
 
Supplemental Table 2. Cell cycle related genes , xlsx file. 
 
Supplemental Table 3. Genes escaping X-inactivation , xlsx file. 
 
Supplemental Table 4.  LOH allele enrichment , xlsx file. 
 
Supplemental Data (ZIP archive): 
https://drive.google.com/file/d/1gupKbsqf5mLj_b3OeIqlrihFxP2_eurh/view?usp=sharing  
 

Seurat_CountMatrix.txt 
The count matrix of gene level transcription from 404 cells used in combination with              
Seurat. 23,373 features.  
 
Folder - Consensus_Trees 
“Majority rule” consensus trees for each mouse and mouse comparisons in NEXUS            
format. 
 
Folder - HMM_Genotype_Tables 
scRNA-seq based HMM genotype calls for all 19 autosomes. This folder contains two             
sub-folders. HMM_Genotype_Tables_Mouse contains the TSV files for P0-1, P0-2,         
P42-2, and P42-3. HMM_Genotype_Tables_Sampled_10K contains the tar.gz       
compressed TSV files based on the in silico sampled 10,000 “cells” for P0-1, P0-2,              
P42-2, and P42-3. 
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Supplemental Figure 1. Mean cluster expression of cortical cell marker genes. Scaled            
average cluster expression is shown by color for each gene. Percent of cells in each cluster                
expressing the gene is indicated by dot size. Radial glial markers: Vim, Pax6, Fabp7, Tnc, Nes,                
Sox2, Slc1a3. Neuronal markers: Dcx, Neurod1, Tubb3, Rbfox3, Nefm, Nefh, Slc17a7,           
Grin1,Gls . Migration markers: Sema3c and Sox11. Astrocyte markers: S100b, Aldoc, Slc1a3,           
Slc1a2, Glul. Oligodendrocyte markers: Cspg4, Pdgfra, Sox10, Cldn11, Mog. oIPC,          
oligodendrocyte intermediate progenitor cell. 
  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 1, 2021. ; https://doi.org/10.1101/2020.12.31.425016doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.31.425016
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 

 
Supplemental Figure 2. Distribution of mouse identity, age, and cell cycle state across             
individual cells. 404 neocortical cells plotted in dimensionally reduced (UMAP) space based on             
gene expression. Individual cells (dots) are colored based on (A) cell type (repeated here for               
convenience from Fig. 1B), (B) mouse identity, (C) age, and (D) cell cycle phase determined by                
expression of cell cycle related genes. 
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Supplemental Figure 3. The required number of continuous monoallelically expressed          
variants for a predicted LOH event, as shaped by the homozygous state transition             
probability and the emission matrix. (A) The number of continuous SNV loci observed as              
monoallelic needed to trigger a homozygous hidden state change is shown as a function (black               
line) of the homozygous transition state probability (given the emission matrix described in the              
methods section). The gray region indicates the area where the hidden state remains             
heterozygous while the white region describes the conditions needed to trigger a hidden state              
change to homozygous for either allele, thus indicating an LOH event. (B) A histogram showing               
consecutive variant loci with length of LOH events ≥1 Mb for all four mice analyzed. A                
predominant number of LOH events contain at least 26 consecutive variants. These events             
would still be called even if the homozygous transition probability were 10 -8.  
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Supplemental Figure 4. Distribution of shared alleles within and across mice. (A)            
Frequency of shared LOH events (alleles) across cells within an individual mouse. Total number              
of alleles for each mouse; P0-1 = 557, P0-2 = 1544, P42-2 = 1243, P42-3 = 1080. (B)                  
Frequency of shared LOH events (alleles) across four mice. Total number of alleles = 3380. 
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Supplemental Figure 5. Distribution of pairwise differences between individual cells. For           
each mouse the distribution of pairwise differences between individual cells is shown. The solid              
line represents the expected distribution of differences in a population of constant size given the               
average pairwise distance for the sample. Populations undergoing exponential growth are           
predicted to have unimodal distributions of pairwise differences. 
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Supplemental Figure 6 . Clade support derivation from pairwise mouse mixing. (A)           
Phylogenetic analysis of two mice used to estimate meaningful posterior probability values,            
orange = mouse P0-1, blue = mouse P42-3. (B) Scatter plot of clade similarity (mouse identity)                
and posterior probability of clade suggesting a value of 0.45 - 0.50 as meaningful 
clonal designation, even if topology is not fully resolved. 
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