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Abstract 

Systematic analysis of statistical and dynamical properties of proteins is critical to 

understanding cellular events. Extraction of biologically relevant information from a set of 

high-resolution structures is important because it can provide mechanistic details behind the 

functional properties of protein families, enabling rational comparison between families. Most 

of the current structure comparisons are pairwise-based, which hampers the global analysis of 

increasing contents in the Protein Data Bank. Additionally, pairing of protein structures 

introduces uncertainty with respect to reproducibility because it frequently accompanies other 

settings for superimposition. This study introduces intramolecular distance scoring, for the 

analysis of human proteins, for each of which at least several high-resolution are available. We 

show that the results are comprehensively used to overview advances at the atomic level 

exploration of each protein and protein family. This method, and the interpretation based on 

model calculations, provide new criteria for understanding specific and non-specific structure 

variation in a protein, enabling global comparison of the dynamics among a vast variety of 

proteins from different species.  
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Introduction 

 

Experimental investigation of protein structures, especially those of human proteins, is an important 

issue in life science research. The Protein Data Bank (PDB)1–6 has recently been growing by 

approximately 11,000 entries per year4; the majority of entries are X-ray structures of human proteins. 

Conversely, a substantial fraction of PDB entries is archived without accompanying publications. The 

number of new entries, for each protein with a known structure, is also steadily increasing with efforts 

applying significant experimental variations. This highlights a need for effective use and comparison 

of these structures on a global scale. 

A detailed and reproducible examination of a set of experimental coordinates is valuable for 

understanding the structural bases for functionality of a protein, and/or a protein family, at an atomic 

level. A few structures that differ substantially may be considered to be enough to understand the 

function of a protein in some cases. However, using most of the available experimental evidence in a 

global, quantitative, and reproducible manner provides new insights and spurs further advances in 

structural biology. 

Previous work on heptahelical transmembrane (7TM) proteins, such as G protein-coupled receptors 

(GPCRs), one of the largest protein families in the human genome, suggested that conventional 

superimposition and root-mean-square deviation (RMSD) calculations are not always optimal for 

extracting information on the mechanism of transition among the different structural states and on the 

inherent flexibility7. Deviation in a set of structures, possibly originating from specific or non-specific 

(random) variability of a protein, has not been convincingly quantitated in a manner that makes 

systematic comparison possible among a large number of proteins. Rmsd is convenient for comparing 

a limited number of structures, but is pairwise-based, which can result in inconsistent results 

depending on the algorism of superimposition, and choice of reference. Even the 7TM structures of a 

GPCR are sometimes superimposed differently, especially with respect to the inactivated and activated 

forms. 

In this work, we aimed to precisely define “crystallographically observed” variation in the 

intramolecular distances for each protein assigned with a UniProt ID8.  For example, intramolecular 

distances between all Cα pairs in a polypeptide of 100 amino acids generate 100 x 99 / 2 = 4950 data 

whereas the number of RMSDs at Cαs equals to only 100 data. Our previous studies on GPCRs and 

other 7TM proteins9 show that an inverse of “coefficient of variation [standard deviation (stdev) 

divided by average]”, assigned to the distance of each Cα pair, appears as a comprehensive numeral 

and reasonably reflects the observed variability/invariability; thus, we term it a “score” and term the 

method as distance scoring analysis (DSA). For example, a score of 100 is equal to 0.1 Å stdev for the 
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distance of 10 Å (with the coefficient of variation of 1%); a higher score indicates higher invariability. 

Additionally, when all the Cα pair scores are averaged for a protein, the value can provide a measure 

that represents its variability/invariability as observed by X-ray crystallography. 

Experimental conditional variations, resulting in multiple PDB entries for a protein, include many 

factors such as quality of crystals, lattice packing, binding of other proteins and/or small molecules, 

and engineered mutations. All these factors can induce more or less structural variations, or 

stabilization in some cases, in a given protein; this can be functionally/inherently specific or 

non-specific. Thus, when analyzed precisely, a set of X-ray structures, with identically selected initial 

and terminal positions in a protein, represents the status of the current knowledge on the variability of 

that protein. 

 

Results and discussion 

 

The regularly updated statistics in the PDB website indicates that more than a quarter of all entries 

contain human proteins. Such a prevailing data availability reflects the extensive focus in the structural 

genomics and makes them a prior subject of our analysis. This work summarizes the results for 300 

human proteins, based on the usage of 10,338 PDB entries (the sum of the “entries” column in 

Supporting Table 1). The statistics for 30 proteins highlighted in the following text are shown in Table 

1. The usage ratio to the total entries, archived for these proteins, is 86.3% (91.2% for the 30 proteins in 

Table 1) [the average of the entries(%) column in the Tables]; this indicates that we have inspected 

11,979 entries, which is equal to 36.7% of 32,656 (total X-ray entries for all human proteins as of Aug. 

28, 2017). The remaining 13.7% (inspected but unused) includes entries containing the protein in the 

form of such as just a short peptide fragments, or long enough but with lacking (unmodeled) residues. 

As an initial survey of this long-term project, only continuously modeled X-ray structures of more than 

70 residues have been analyzed. Because of stdev calculation, at least three structures are required for 

a protein to be investigated by DSA. Therefore, among 32,656 entries, roughly more than 5,000 entries 

of only 1 or 2 entries per protein were not the subject of this study. Also, because of a limitation in the 

sequence coverage of the archived structures in PDB, the proportion of analyzed length to the full 

length of a protein varies from 100 to 4.4% [the length(%) columns in the Tables], and the average for 

300 proteins is 73.5% (78.5% for the 30 proteins in Table 1). However, even in the partially analyzed 

proteins, the region covers at least 1 structural domain annotated in Pfam10 (Supporting Table 1). The 

most abundant Pfam clan in 300 proteins is Pkinase (18 proteins), followed by NADP_Rossmann (15 

proteins) and P-loop_NTPase (12 proteins) clans.  
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The main plot – 2D representation of variability 

In Fig. 1, we plotted the score against the average distance for all Cα pairs in a protein. Each of the 

panels is a “main plot” for a protein and the pattern represents the current status of a protein’s 3D 

structural variation depicted in a 2D figure; this reflects the overall fold and its variability/invariability 

shown in the lower/upper part of the plot, respectively. The initial purpose of this plot was to delineate 

the common features in rhodopsin-like GPCRs7; then, the usefulness of it was further evaluated with 

another family of 7TM helical proteins, microbial rhodopsins9. Based on these studies, we are 

confident that the plot can be used for any proteins to concisely grasp crystallographically observed 

structural variations. In the following, a protein is noted with its primary gene name found in UniProt 

and the protein name in parenthesis. 

First, we describe the interpretation of the overall pattern of the plot. In some proteins, the main cluster 

of the score dots exhibits a round shape lifted toward a longer distance (Fig. 1a, Supporting Fig. 2a). 

The distance dependence is indicative of random and uniform variations in each position of Cα, 

because the score increases when stdev is nearly constant at the longer distance. Additionally, some of 

the proteins exhibiting such a pattern include a thin nearly horizontal array of lower score data points 

separated from the main body of the plots (Fig. 1a). This kind of an array originates from structural 

variations in some limited part of a polypeptide, such as that in part of the loop region that follows 

Cys200 linked by a disulfide bond with Cys170 of ctsk (cathepsin K)11,12. For all these proteins, the 

plots indicate that X-ray crystallography has not explored their substantial large-scale structural 

variations so far. 

Among proteins with such a feature, the plot for hist1h2ab (histone H2A.2) is remarkable in terms of 

that the main body of the data points exhibits a thinner cluster with clearer distance dependency (Fig. 

2c). Therefore, we attempted to mimic this pattern using model data (Fig. 2a,b). The model data was 

prepared using randomly generated stdev values ranging from 0.05 to 0.4 Å, which were assigned to 

each of 5253 Cα pairs of the 103 residues in the hist1h2ab structures (sequence range 17 to 119). Then, 

5253 model scores were calculated using the actual average distance data. To compare the effect of the 

number of sets of such model scores, we show the two model plots obtained by averaging 3 or 10 sets 

of artificial 5253 scores. The stdev range of 0.05 to 0.4 Å was chosen based on the minimum and 

maximum values of the actual stdev data for hist1h2ab. 

From these plots, we suppose that the variation in the analyzed 48 structures of hist1h2ab (Table 1) 

largely arises from random and limited range of deviations in the major part of the examined 

polypeptide backbone; the large difference between the actual and model data at the longer distance 

region indicates greater variability in the two terminal parts of the elongated shape of this protein. 

The main plot pattern for hist1h2ab was found to be an extreme case among 300 proteins. In many 
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cases, the plot exhibits significantly dispersed distribution in the vertical (score) range and without 

obvious distance dependency; this is shown for prkaca (cAMP-dependent protein kinase catalytic 

subunit alpha, Fig. 1b). It is possible that the unique hist1h2ab pattern represents the fact that the 48 

structures were all obtained as a part of a nucleosome13, in which hist1h2ab is able to exhibit only a 

limited range of structural variations. 

Interestingly, hist1h2ab, ctsk, and proteins exhibiting a similar profile of the main plot can be grouped 

as having a common feature; the distribution of the stdev values for all Cα pairs in a protein, except for 

that adjacent to each other (at ~3.8 Å distance), could be well fitted with a log-normal function whereas 

that of prkaca and many other proteins described below could not (Supporting Fig. 1). This 

observation suggests that such comparison with a model function will provide another distinctive clue 

on differentiating specific and non-specific structural variations. The log-normal pattern might be 

explained as that the distance deviations would be somewhat amplified, even if the degree of deviation 

at each position is similar to each other, as the considered Cα pairs in a connected polypeptide chain 

became apart successively. 

In the case of proteins exhibiting large domain movement, a more characteristic main plot pattern 

appears as represented by ddb1 (DNA damage-binding protein 1, Fig. 1c) which is known to rearrange 

the positioning of its ~300-residue beta-propeller domain against the other part of the polypeptide14. 

There is a clear low-score bump in the main plot of this protein reflecting such a large domain 

movement. We also found many proteins that exhibit a pattern that is intermediate to those of ctsk and 

ddb1; this demonstrates that the intramolecular positional variation in a region of a polypeptide 

manifests as a larger sub-cluster in the main plot when the size of the part increases. In Supporting Fig. 

2, we show such pattern changes in the main plot by comparing ctsk with the homologs ctss (cathepsin 

S) and ctsb (cathepsin B). In this comparison, out of over 200 residues, ctss exhibited scant deviations 

among 31 structures, whereas ctsb deviated significantly. This is represented in the main plot of ctsb 

by a low-score sub-cluster which is thicker than ctsk, even in 11 structures, mainly reflecting the high 

degree of variability in the ~20 residue occluding loop15,16. 

The plots of other proteins like amy2a (pancreatic α-amylase, Fig. 1d) are indicative of outstanding 

conservation especially at the longest distance region. Expectedly, amy1a (α-amylase 1) and amy2a 

exhibit a similar overall pattern, despite having a different number of analyzed chains (11 and 48, 

respectively, Supporting Fig. 3). These results show that the main plot reflects global features of a 

protein, delineated by a set of structures obtained under various conditions. 

 

The summary plot – global comparison of variability 

The “summary plot” (Fig. 3) represents a comparison among proteins based on an average score 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/202028doi: bioRxiv preprint 

https://doi.org/10.1101/202028
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 
 

calculated for each protein. For example, the score for akr1b1 (aldose reductase) was calculated as 

143.7 by averaging all 46971 Cα pair scores obtained from 128 PDB entries, covering 97.5% of the 

316 full-length residues (Table 1). Because the average X-ray resolution of 128 entries is 1.42, the 

data point for akr1b1 is shown in the summary plot as x=1.42 and y=143.7 (Fig. 3c). The average 

resolution was set for the x-axis because it was essential to observe whether any substantial score 

tendency, against quality of the structure data, would appear.  

In Fig. 3, we show scores obtained in this manner for 300 human proteins. The scores are separated 

into three panels; the top, middle and bottom panels include proteins analyzed using 4 to 14 entries, 15 

to 25 entries, and 26 to 638 entries, respectively, including roughly ~100 proteins for each group.  

For all panels, there might be only a moderate score dependency against the average resolution 

(correlation coefficients of -0.35, -0.37, -0.26 for panel a, b, c, respectively). The modest dependency 

is not surprising because appearance of better quality crystals can become more frequent as the 

variability of a protein decreases. With respect to dependency on the number of structures used for a 

protein, the data in the top panel are expectedly enriched for higher score proteins.  

Conversely, the scores obtained in all panels are more than 40, with the exception of calm1 

(calmodulin, score 16.4). The fact, that 299 out of 300 proteins exhibited average scores of more than 

40, indicates that crystallographically observable distance variations, when averaged for all the 

analyzed Cα pairs in a protein, is less than 0.25 Å stdev per 10 Å (2.5%). In other words, proteins that 

were reluctant to crystallize might exceed this limit because of the presence of highly flexible parts. 

The score of ~40, in the case of rbp2 (retinol-binding protein 2), is a level that the structure set contains 

the so-called “domain-swapped” form in a homodimer (PDB ID: 4ZCB). The extensively studied b2m 

(beta-2-microglobulin), exhibiting the score of less than 50, also shows a domain-swapped form17 in 

the analyzed 536 structures. 

The average score for each protein correlated well with the type of Pfam clan to which the analyzed 

domain belongs. The scores of 10 out of 12 proteins in the P-loop_NTPase clan were less than 87, 

whereas all 12 proteins in the NADP_Rossmann clan exhibit scores of more than 99. More specifically, 

the scores of three carbonic anhydrases are in the narrow range of 132 ~ 160, and we confirmed this 

kind of score similarity in many types of homologous protein groups, as shown in Supporting Table 1. 

The average score for 300 proteins was ~137. The highest scoring protein was fntb (protein 

farnesyltransferase subunit beta) with the score of 435.9; the cognate heterodimerization partner fnta 

also exhibited a high score (349.4). The second and third were naga 

(alpha-N-acetylgalactosaminidase) and bckdhb (mitochondrial 2-oxoisovalerate dehydrogenase 

subunit beta) with the scores of 427.6 and 391.1, respectively. The structures of bckdhb were also 

solved in a heterodimer with bckdha, which exhibited the score of 268.9. A survey of such 
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high-scoring proteins suggests that two factors, one biological and the other technical, may be 

involved in retaining the high score: tight association between long polypeptides and structure 

determination in a single crystal lattice type, respectively. With regard to the latter, any proteins solved 

in a single lattice exhibit low scores, provided that any conditional variations other than lattice packing 

successfully provoked substantial structural deviations. On the other hand, the scores shown in the 

present study for some of the high-scoring proteins can decrease substantially as the availability of 

crystal structures solved in multiple lattice types for each of them increases. Importantly, the present 

scoring helps recognizing upper and lower limits of the structural variability of the functionally folded 

polypeptides. 

For exploring another global tendency of score variability, the x-axis of the summary plot can 

represent any parameters other than the average resolution; such parameters can be the length of 

polypeptide, percentage of  alpha-, and beta-folds. Domain scores can also be examined including 

many “partial entries” that have not been used in the present study. 

 

The progress plot 

Another data tool, useful for interpreting the average score of a protein, is the “progress plot” (Fig. 4). 

This plot is used to examine how the average score (the y-value of each point in Fig. 3) converges 

and/or changes upon the addition of structure (PDB entry). In this work, only one chain per entry was 

used for a protein in order to avoid possible bias from including, for example, symmetry-averaged very 

similar structures. Thus, the number of chains (indicated by the x-axis in Fig. 4) is identical to the 

number of X-ray entries, for a continuously modeled protein, used for analysis with defined initial and 

final residues. The order of chain addition (from the left to the right, along the x-axis in Fig. 4) 

corresponds to the historical progress, in most cases, because we analyzed data in a filename-sorted 

manner, which appears to match the recent PDB style of archiving. Thus, the initial score, at the 

number of chains = 3, indicates the degree of variation among the first three name-sorted structures for 

a protein; the values obtained for 300 proteins vary from less than 50 for calm1 to over 1000 for nampt 

(nicotinamide phosphoribosyltransferase). 

Here we show four examples of the progress plot; two of these (cyp2a6 and top1) represent seemingly 

non-specific variations, and the other two (b4galt1 and rangap1) show distinct structural states. In Fig. 

4 a~d, these proteins are arranged in the order of higher score to lower score [309.5, 215.6, 99.0, and 

44.0 for b4galt1, cyp2a6, top1, and rangap1, respectively, at the final (right end) value]. 

These plots will help elucidate how the average score of a protein converges and/or varies. The data on 

cyp2a6 (cytochrome P450 2A6) and top1 (DNA topoisomerase 1) were well- fitted with single 

exponentials. Such exponential convergence, upon the addition of structures, can be simulated using 
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random distances, varying from the observed average to the maximum and the minimum, among the 

experimental values for each Cα pair. When we performed this calculation for hist1h2ab, using the 

average/maximum/minimum data from 48 structures, the average score nearly converged with less 

than 10 structures, whereas the actual progress plot for this protein exhibited more irregular and 

moderate convergence (Supporting Fig. 4a). Therefore, random sampling of the possible largest 

distance range can result in the convergence of the average score with several structures in a 

single-exponential approach. 

The significant and discrete score changes (Fig. 4a, d), found in b4galt1 

(beta-1,4-galactosyltransferase 1) at the number of chains from 13 to 14, and rangap1 (Ran 

GTPase-activating protein 1) at the number of chains from 5 to 6, can be explained by the inclusion of 

structures solved in complex with the respective binding partners (lactoalbumin for b4galt1 and 

SUMO-1 for rangap118); this correspondence was made by referencing the “entry table”, which was 

prepared for each protein and summarized the details of all entries (title, space group, lattice constants, 

etc.) used for DSA. An example of the entry table for b4galt1 is shown in Supporting Table 2, and the 

remaining tables for 299 proteins will be made available from our web site (gses.jp) 

Additional interesting results were obtained from a comparison of three carbonic anhydrases analyzed 

in this study (Table 1). Ca1 and ca13 exhibited monotonous convergence that was similar to each 

other, resulting in the current score of 133.3 with 24 structures and 159.0 with 13 structures, 

respectively (Supporting Fig. 4b, d). In contrast, ca2 initially converged to the score of over 200; this 

score reached the level of ca1 and ca13 only after exceeding ~65 entries (Supporting Fig. 4c). Again, 

from the entry table, it is possible that the difference between ca1/ca13 and ca2 may arise from how 

lattice variations are involved in each of the structure sets. The first ~60 entries of ca2 data are solved 

in an identical space group with similar lattice constants19, whereas the data sets for ca1 and ca13 are 

each composed of more than three types of lattices. This example shows not only that homologous 

proteins converge to reasonably similar scores but that convergence can be reached experimentally 

with several structures. We found many other proteins, for which nearly full structural divergence has 

been explored, represented by low scores with an even fewer number of chains. A recent and clear 

example of such a case is cannabinoid receptor 1 (cnr1), a rhodopsin-like GPCR, which exhibited a 

score of 58.9, calculated with a data set containing only four chains and reflecting the fact that the set 

includes both inactivated and activated forms20,21,22. 

 

All-alpha proteins 

To gain further insights from the main plot of each protein, and from comparison among proteins, we 

examined all-alpha proteins and the short distance range (Fig. 5). In addition to 27 proteins annotated 
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in PDB as having all-alpha folds of the SCOP category23, 5 GPCRs were included in 300 proteins 

shown in Fig. 3. In the distance range from 3 to 8 Å, two features were obvious.  

The first feature, which is common to all proteins, regardless of the type of fold, is a nearly straight 

vertical array of data points at ~3.8 Å, originating mostly from adjacent Cα pairs. In addition, many 

proteins exhibit a few points at distances shorter than this array, indicating the presence of cis peptide 

linkages. As shown in Fig. 1d (amy2a) and Fig. 5a (gltp, glycolipid transfer protein), the scores of such 

points are frequently lower than those of most Cα pairs constituting the ~3.8 Å array; this suggests 

substantial inconsistency with regard to the cis/trans peptide linkage, mostly involving a proline, for 

the pair position among the structures. Because the assignment of these cis-containing adjacent pairs, 

in the context of 3D structure, is easily accomplished, further detailed global analysis will be useful. 

The second feature is a thicker cluster of data points in the distance range from ~5 to ~7 Å, which is 

clearer in all-alpha proteins; it can be further separated into two clusters as in the case of il4 

(interleukin 4, Fig. 5b). When we look at these data, and those of GPCRs (Fig. 5c), analyzed only for 

the 7TM helices (excluding all interhelical loops and two terminal tails), a vacant region between the 

two features becomes obvious. This observation indicates that any of the interhelical Cα-Cα distances 

rarely exhibit distances at around 4.5 Å. Conversely, we found a consistent interhelical Cα pair in 3 of 

the 4 rhodopsin-like GPCRs (adora2a, adrb2, htr2b) exhibiting the average distance of less than 4.5 Å. 

Because we have been studying the 7TM helical core region of GPCRs, assignment of data points in 

the main plot to the structural part was also easily accomplished. The consistent pair consisted of one 

amino acid from helix I (1.46 by BW numbering24) and the other from helix VII (7.47), indicating a 

common backbone contact in these receptors. The residue at 7.47 is located close to the NPxxY motif, 

which is important in the activation process of rhodopsin-like GPCRs25–27. These results demonstrate 

how we can extract detailed information for a protein, or a set of proteins from the main plot of DSA. 

 

Implications from high scoring pairs.  

Systematic appearance of high scores, in the upper region of the main plot, can be an indication of a 

specifically restrained region and/or direction within a protein. Although the score for a single Cα pair, 

obtained from a set of several structures is not enough for a sufficient level of confidence, we 

frequently observed that a few specific residues and/or regions contribute to the majority of the highest 

scores in a protein. Fig. 6 shows the examples of such observations. In akr1b1, which has been 

analyzed using more than 100 structures, the highest scoring pairs, in the distance range from 10 to 25 

Å are represented by the residues in parts of beta strands occupying the core of the protein (Fig. 6a). 

Because this analysis covers 97.5% of the full-length akr1b1, it is likely that this result represents the 

inherent invariability of this region. Similar results were obtained for akr1b10 using only 19 structures. 
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In the other case, as shown for sod1 (superoxide dismutase 1) analyzed using 59 structures, a 

peripheral part of the 3D structure was highlighted as exhibiting high scores, mainly involving the 

residues in the C-terminal strand (Fig. 6b). Interestingly, this strand was recently implicated as one of 

the aggregation-triggering segments28,29. The result on lyz (lysozyme, Fig. 6c) also highlighted a 

beta-strand, which includes an amyloidogenic mutation site (Ile56) 30,31, as exhibiting high scores. 

The amount of high scoring pairs, clearly distinct from the main cluster, can be scarce depending not 

only on the type of protein but also on the distance range in a protein (Fig. 1). Conversely, a substantial 

amount of beta folds in a protein tends to exhibit an array of data points in the main plot, frequently 

reaching high scores at the distance of ~7 Å (Fig. 1a, d), which corresponds to the distance between 

residue numbers i and i+2 in a strand. Further detailed analysis of high scoring pairs, in short or long 

distance ranges, will be beneficial. 

 

In summary, DSA, and the derived plots and tables described above, will help summarize the progress 

and current status of X-ray studies for a number of proteins and cross comparison among proteins. This 

approach will also provide valuable information, not readily discernible by other methods, on each 

protein and protein family. On the other hand, some proteins described in this study, such as fnta and 

prkaca, have mammalian orthologs that have been more extensively studied by X-ray crystallography. 

Our approach can be extended to the structural compassion of structures from different species as well 

as a comparison of structures between the species. Thus, further extension, improvement, and updating 

of this method will contribute to the community of structural and molecular biology. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/202028doi: bioRxiv preprint 

https://doi.org/10.1101/202028
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 
 

 

Methods 

 

Data selection 

After preliminary analyses of proteins, such as the T4 lysozyme and hras (GTPase HRas), optimizing 

data manipulation procedure, human protein PDB entries were searched and downloaded from August, 

2016 to August, 2017. To survey all the human X-ray entries, we constructed a table based on Custom 

Reports from PDB, which resulted in a list of over 70,000 structures. This table was then sorted by 

UniProt ID8,32 and used to prepare an additional table containing information on the group of 

candidates for DSA, such as the name of the protein, number of amino acids, and X-ray entries per 

unique UniProt ID of the protein; this table was then sorted by the amount of X-ray entries. Thereby, 

we obtained 1,415 proteins with more than four entries each. For the 300 proteins analyzed in this 

study, the order of entries, and the range of the primary sequence of the chain, processed by the 

score-analyzer (see below), were also tabulated (“entry table” described in the main text). The 

selection of 300 proteins (Fig. 3, Supporting Table 1) was random; however, we attempted to cover a 

wide range of the chain length and resolution. 

The 7TM GPCR structures for DSA were obtained from our archive at gses.jp/7tmsp. Each of the 

chains contains 200 amino acids, defined previously33 for reproducible comparison of all receptors 

including non-rhodopsin-like GPCRs. 

 

Distance scoring analysis procedure 

A modified version of a Python script (score-analyzer9, sa_v16) performs the following functions: 

reading a PDB entry, extracting/displaying of the Cα coordinates (choosing one from the alternative 

conformations, if present), calculating and storing distance data per chain for a selected sequence 

range, calculating average scores for making a “progress plot”, extracting and assessing the 

high-scoring populations in a defined set of distance ranges, and plotting and saving graphs and tables. 

Additional functions for GPCRs are implemented to associate the general amino acid position numbers 

(BW numbers)24 with each Cα and to classify the Cα-Cα pairs (e.g., intrahelical or interhelical, Fig. 5c). 

For a protein having a unique UniProt ID and more than four X-ray PDB entries (more than three in the 

case of GPCRs), a sequence range of Cα coordinates was determined by referencing the “Protein 

Feature View of PDB entries mapped to a UniProtKB8 sequence” page in the PDB; all the Cα-Cα 

distances in this range were calculated per chain. For GPCRs, 200-residue 7TM coordinates, archived 

on our web site (gses.jp/7tmsp), were used without any selection of sequence range. Due to the lack of 

polypeptides (because of unmodeled amino acids), not all entries were investigated; percentages of 
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processed entries are shown in Table 1 and Supporting Table 1. All the extracted Cα in a chain were 

inspected using the main window of sa_v16, ensuring that neither break nor duplication was present, 

and that one Cα was extracted per amino acid position in a sequence. The distance data were stored, 

and the procedure was repeated for the entries in a selected set, ensuring again that no inconsistency in 

the positioning of Cα-Cα pairs was present in any of the chains, using the main-table window of sa_v16. 

The “progress plot” against the number of chains (Fig. 1C) was obtained at this stage. Then, the final 

scores for each Cα-Cα pair calculated using all the available entries were plotted against the respective 

average distances (“main plot”), and the specific distance and/or score ranges were examined further 

(Figs. 5, 6). Fitting of the stdev distribution with Gaussian and log-normal curves (Supporting Fig. 1) 

and of the progress plot with exponentials (Fig. 4 and Supporting Fig. 4) was conducted using Igor Pro 

(WaveMetrix). 

Most of the plots were prepared with matplotlib, implemented in sa_v16; other plots were drawn using 

Igor Pro. Protein graphics were prepared using the DS Visualizer (Biovia). 
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Figure captions 

 

Fig. 1 

The main plot obtained from distance scoring analysis (DSA). 

(a) ctsk; (b) prkaca; (c) ddb1; and (d) amy2a. 

 

Fig. 2 

Comparison between model and real main plots of hist1h2ab. 

(a) Model plot with three random stdev sets; (b) model plot with 10 random stdev sets; (c) real main 

plot. 

 

Fig. 3 

The summary plot obtained from DSA of 300 human proteins. 

(a) Proteins analyzed using 4~14 structures; (b) proteins analyzed using 15~26 structures; (c) proteins 

analyzed using 27~638 structures. 

For each panel, proteins with lowest/highest resolutions and scores are marked by arrows, with the 

gene name followed by the number of used structures in parentheses. 

  

Fig. 4 

Progress plot obtained from DSA. 

(a) b4galt1; (b) cyp2a6; (c) top1; and (d) rangap1. 

For cyp2a6 and top1, exponential fittings are overlaid with dotted curves. 

 

Fig. 5 

The main plot of all-alpha proteins focusing on short-distance range. 

(a) gltp; (b) il4; (c) adrb2. 

Inset: whole view of the main plot 

For adrb2, intrahelical and interhelical Cα pairs are colored in red and blue dots, respectively. 

 

Fig. 6 

The main plot highlighting systematic appearance of high-scoring pairs. 

(a) akr1b1; (b) sod1; (c) lyz. 

All the residues contributing to the red dots in the main plot are graphically shown in the inset as red 

part of the ribbon. The PDB ID of the inset is (a) 4YU1; (b) 5U9M (chain A); (c) 208L. 
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Table 1 

The summary of 30 proteins described in the main text among 300 human proteins analyzed by DSA. 

Each full-length value, used for calculation of length (%), contains both the signal and activation 

peptide parts, if they are present. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 16, 2017. ; https://doi.org/10.1101/202028doi: bioRxiv preprint 

https://doi.org/10.1101/202028
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 
 

Fig. 5 
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Fig. 6 
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Table 1 

Gene Protein U niP rot Entries Entries(%) Length Length(%) Resolution(Å) Score

AKR 1B1 Aldose reductase P 15121 128 95.5 307 97.5 1.42 143.7

AKR 1B10 Aldo-keto reductase fam ily 1 m em ber B10 O 60218 19 100 316 100 1.83 196.6

AM Y2A Pancreatic alpha-am ylase P 04746 46 100 495 96.9 1.9 171.2

B2M Beta-2-m icroglobulin P 61769 536 85.6 99 83.2 2.16 49.6

B4GALT1 Beta-1,4-galactosyltransferase 1 P 15291 14 82.4 272 68.3 2.14 309.5

BCK DHA 2-oxoisovalerate dehydrogenase subunit alpha P 12694 22 91.7 280 62.9 1.85 268.9

BCK DHB 2-oxoisovalerate dehydrogenase subunit beta P 21953 24 100 326 83.2 1.85 391.1

CA1 Carbonic anhydrase 1 P 00915 24 100 256 98.5 1.96 133.3

CA2 Carbonic anhydrase 2 P 00918 638 98.8 255 98.1 1.68 149.2

CA13 Carbonic anhydrase 13 Q 8N1Q 1 13 100 257 98.1 1.72 159

CALM 1 Calm odulin P 0DP 25 46 58.2 140 94.6 2.3 16.4

CTSB Cathepsin B P 07858 11 100 203 59.9 2.39 84.3

CTSK Cathepsin K P 43235 50 96.2 209 97.2 2.09 113.9

CTSS Cathepsin S P 25774 31 100 217 65.6 1.88 159.4

CYP2A6 Cytochrom e P450 2A6 P 11509 11 100 463 93.7 2.09 215.6

DDB 1 DNA  dam age-binding protein 1 Q 16531 16 45.7 771 67.7 3.01 50.7

FN TA Protein farnesyltransferase/geranylgeranyltransferase type-1 subunit alpha P 49354 14 100 313 82.8 2.03 349.4

FN TB Protein farnesyltransferase subunit beta P 49356 13 92.9 407 93.1 1.97 435.9

GLTP Glycolipid transfer protein Q 9NZD2 14 63.6 200 95.7 1.96 93.9

HIST1H 2ABHistone H 2A type 1-B /E P 04908 48 94.1 103 79.2 2.78 146.6

NAG A Alpha-N-acetylgalactosam inidase P 17050 7 100 387 94.2 1.83 427.6

PRK ACA cA M P-dependent protein kinase catalytic subunit alpha P 17612 28 84.8 302 86.3 1.98 101.6

RAN GAP1 Ran GTP ase-activating protein 1 P 46060 13 100 156 26.6 2.33 44

RBP 2 Retinol-binding protein 2 P 50120 26 100 133 99.3 1.55 48.4

SO D1 Superoxide dism utase [Cu-Zn] P 00441 59 69.4 151 98.1 1.88 89.4

TO P 1 DNA  topoisom erase 1 P 11387 14 93.3 412 53.9 2.75 99

ADO RA 2A Adenosine receptor A2a P 29274 30 100 200 48.5 2.64 58.8

ADR B2 Beta-2 adrenergic receptor P 07550 17 85 200 48 3.14 65.1

CNR 1 Cannabinoid receptor 1 P 21554 4 100 200 42.4 2.79 58.9

HTR2B 5-hydroxytryptam ine receptor 2B P 41595 4 100 200 41.6 2.85 107.7
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