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Abstract  

 
Environmental DNA sequencing has rapidly become a widely-used technique for          
investigating a range of questions, particularly related to health and environmental           
monitoring. There has also been a proliferation of bioinformatic tools for analysing            
metagenomic and amplicon datasets, which makes selecting adequate tools a significant           
challenge. A number of benchmark studies have been undertaken; however, these can            
present conflicting results. We have applied a robust Z-score ranking procedure and a             
network meta-analysis method to identify software tools that are generally accurate for            
mapping DNA sequences to taxonomic hierarchies. Based upon these results we have            
identified some tools and computational strategies that produce robust predictions.  
 

Introduction  

 
Metagenomics, meta-barcoding and related high-throughput environmental DNA (eDNA) or         
microbiome sequencing approaches have accelerated the discovery of small and large scale            
interactions between ecosystems and their biota. The application of these methods has            
advanced our understanding of microbiomes, disease, ecosystem function, security and food           
safety [1–3]. The classification of DNA sequences can be broadly divided into amplicon             
(barcoding) and genome-wide (metagenome) approaches. The amplicon, or barcoding,         
-based approaches target genomic marker sequences such as ribosomal RNA genes [4–7]            
(16S, 18S, mitochondrial 12S), RNase P RNA [8], or internal transcribed spacers (ITS)             
between ribosomal RNA genes [9]. These regions are amplified from extracted DNA by             
PCR, and the resulting DNA libraries are sequenced. In contrast, genome-wide, or            
metagenome, -based approaches sequence the entire pool of DNA extracted from a sample             
with no preferential targeting for particular markers or taxonomic clades. Both approaches            
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have limitations that influence downstream analyses. For example, amplicon target regions           
may have unusual DNA features (e.g. large insertions or diverged primer annealing sites),             
and consequently these DNA markers may fail to be amplified by PCR [10]. While the               
metagenome-based methods are not vulnerable to primer bias, they may fail to detect             
genetic signal from low- abundance taxa if the sequencing does not have sufficient depth, or               
may under-detect sequences with a high G+C bias [11,12]. 
 
High-throughput sequencing (HTS) results can be analysed using a number of different            
strategies (Supplementary Figure 1) [13–16]. The fundamental goal of many of these studies             
is to assign taxonomy to sequences as specifically as possible, and in some cases to cluster                
highly-similar sequences into “operational taxonomic units” (OTUs) [17]. For greater         
accuracy in taxonomic assignment, metagenome and amplicon sequences may be          
assembled into longer “contigs” using any of the available sequence assembly tools [18,19].             
The reference-based methods (also called “targeted gene assembly”) make use of           
conserved sequences to constrain sequence assemblies. These have a number of reported            
advantages including reducing chimeric sequences, and improving the speed and accuracy          
of assembly relative to de novo  methods [20–23].  
 
Environmental DNA sequences are generally mapped to a reference database of sequences            
labelled with a hierarchical taxonomic classification. The level of divergence, distribution and            
coverage of mapped taxonomic assignments allows an estimate to be made of where the              
sequence belongs in the established taxonomy . This is commonly performed using the             
lowest common ancestor approach (LCA) [24]. Some tools, however, avoid this           
computationally-intensive sequence similarity estimation, and instead use alignment-free        
approaches based upon sequence composition statistics (e.g. nucleotide or k-mer          
frequencies) to estimate taxonomic relationships [25].  
 
In this study we identified seven published evaluations, of tools that estimate taxonomic             
origin from DNA sequences [26–32]. Of these, four evaluations met our criteria for a neutral               
comparison study [33] (see Supplementary Table 1). These are summarised in Table 1             
[26,28,30,32] and include accuracy estimates for 25 environmental DNA classification tools.           
We have used network meta-analysis techniques and non-parametric tests to variable and            
sometimes conflicting reports from the different evaluation studies, resulting in a short list of              
methods that have been consistently reported to produce accurate interpretations of           
metagenomics results. This study reports one of the first meta-analyses of neutral            
comparison studies, fulfilling the requirement for an apex study in the evidence pyramid for             
benchmarking [34]. 
 
Overview of environmental DNA classification evaluations  
 
Independent benchmarking of bioinformatic software provides a valuable resource for          
determining the relative performance of software tools, particularly for problems with an            
overabundance of tools. Some established principles for reliable benchmarks are: 1. The            
main focus of the study should be the evaluation and not the introduction of a new method;                 
2. The authors should be reasonably neutral (i.e. not involved in the development of              
methods included in an evaluation); and 3. The test data, evaluation and methods should be               
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selected in a rational way [33]. The criteria 1 and 2 are straightforward to determine, but               
criteria 3 is the more difficult to evaluate as it includes identifying challenging datasets, and               
appropriate metrics for accurate accuracy reporting [35–37]. Based upon literature reviews           
and citation analyses, we have identified seven published evaluations of environmental DNA            
analysis, we have assessed these against the above three principles and four of these              
studies meet the inclusion criteria (assessed in Supplementary Table 1) [26,28,30,32].           
These studies are summarised in Table 1.  
 
In the following sections we discuss issues with collecting trusted datasets, including the             
selection of positive and negative control data that avoid datasets upon which methods may              
have been over-trained. We describe measures of accuracy for predictions and describe the             
characteristics of ideal benchmarks, with examples of published benchmarks that meet           
these criteria.  
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Paper  Positive controls Negative 
controls 

Reference 
exclusion 
method 

Metrics 

Almeida et al.   
(2018) [32] 

12 in silico mock    
communities from 208   
different genera. 

- 2% of  
positions 
“randomly 
mutated” 

Sequence 
Level (Sen.,  
F-measure) 
 

Bazinet et al.   
(2012) [26] 

Four published in silico    
mock communities from 742    
taxa [38–41]  

- - Sequence 
Level (Sen.,  
PPV) 

Lindgreen et  
al.  (2016) [28] 

Six in silico mock    
communities from 417   
different genera. 

Shuffled 
sequences 

Simulated 
evolution 

Sequence 
Level (Sen.,  
Spec., PPV,  
NPV, MCC) 

Siegwald et  
al.  (2017) [30] 

36 in silico mock    
communities from 125   
bacterial genomes. 

- - Sequence 
Level (Sen,  
PPV, 
F-measure) 

 
Table 1: A summary of the main features of the four software evaluations used for this               
study, including the positive controls employed (the sources of sequences from organisms            
with known taxonomic placements, whether negative control sequences were used, the           
approaches for excluding reference sequences from the positive control sequences, and the            
metrics that were collected for tool evaluation. The accuracy measures are defined in Table              
2, the abbreviations used above are Matthews Correlation Coefficient (MCC), Negative           
Predictive Value (NPV), Positive Predictive Value (PPV), Sensitivity (Sen), Specificity (Spec). 

 
 
 
Positive and negative control dataset selection  
The selection of datasets for evaluating software can be a significant challenge due to the               
need for these to be independent of past training datasets, reliable, well-curated, robust and              
representative of the large population of all possible datasets [34]. Positive control datasets            
can be divided into two different strategies, namely the in vitro and in silico approaches for               
generating mock communities.  
In vitro methods involve generating microbial consortia in predetermined ratios of microbial            
strains, extracting the consortium DNA, sequencing and analysing these using standard           
metagenomics pipelines [42,43]. Non-reference sequences can also be included to this mix            
as a form of negative control. The accuracy of the genome assembly, genome partitioning              
(binning) and read depth proportional to consortium makeup can then be used to confirm              
software accuracy. In principle, every metagenome experiment could employ in vitro positive            
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and negative controls by “spiking” known amounts of DNA from known sources, as has been               
widely used for gene expression analysis [44] and increasingly for metagenomics [45–47].  
In silico methods use selected publicly-available genome sequences. Simulated         
metagenome sequences are can be derived from these [48–51]. It is important to note that               
ideally-simulated sequences are derived from species that are not present in established            
reference databases, as this is a more realistic simulation of most environmental DNA             
surveys. A number of different strategies have been used to control for this [27,28,31].              
Peabody et al. used “clade exclusion”, in which sequences used for an evaluation are              
removed from reference databases for each software tool [27]. Lindgreen et al. used             
“simulated evolution” to generate simulated sequences of varying evolutionary distances          
from reference sequences [28], similarly Almeida et al simulated random mutations for 2% of              
nucleotides in each sequence [32]. Sczyrba et al. restricted their analysis to sequences             
sampled from recently-deposited genomes, increasing the chance that these are not           
included in any reference databases [31]. These strategies are illustrated in Figure 1.  
Another important consideration is the use of negative controls. These can be randomised             
sequences [28], or from sequence not expected to be found in reference databases [29].              
The resulting negative-control sequences can be used to determine false-positive rates for            
different tools. We have summarised the positive and negative control datasets from various             
published software evaluations in Table 1, along with other features of different evaluations             
of DNA classification software.  
 

 
Figure 1: Three different strategies for generating positive control sequencing datasets, i.e.            
genome/barcoding datasets of known taxonomic placement that are absent from existing           
reference databases. These are: “clade exclusion”, where positive control sequences are           
selectively removed from reference databases [27]; “simulated evolution”, where models of           
sequence evolution are used to generate sequences of defined divergence times from any             
ancestral sequence or location on a phylogenetic tree e.g. [52,53]; and “new genome             
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sequences” are genome sequences that have been deposited in sequence archives prior to             
the generation of any reference sequence database used by analysis tools [31].  

 
 
Metrics used for software benchmarking. 
The metrics used to evaluate software play an important role in determining the fit for               
different tasks. For example, if a study is particularly interested in identifying rare species in               
samples, then a method with a high true-positive rate (also called sensitivity or recall) may               
be preferable. Conversely, for some studies, false positive findings may be particularly            
detrimental, in which case a good true positive rate may be sacrificed in exchange for a                
lowering the false positive rate. Some commonly used measures of accuracy, including            
sensitivity (recall/true positive accuracy), specificity (true negative accuracy) and F-measure          
(the trade-off between recall and precision) are summarised in Table 2.  
The definitions of “true positive”, “false positive”, “true negative” and “false negative” (TP, FP,              
TN and FN respectively) are also an important consideration. There are two main ways this               
has been approached, namely per-sequence assignment and per-taxon assignment.         
Estimates of per-sequence accuracy values can be made by determining whether individual            
sequences were correctly assigned to a particular taxonomic rank [27,28,30]. Alternatively,           
per-taxon accuracies can be determined by comparing reference and predicted taxonomic           
distributions [31]. The per-taxon approach may lead to erroneous accuracy estimates as            
sequences may be incorrectly assigned to included taxa. Cyclic-errors can then cancel,            
leading to inflated accuracy estimates. However, per-sequence information can be          
problematic to extract from tools that only report profiles.  
 
Successfully recapturing the frequencies of different taxonomic groups as a measure of            
community diversity is a major aim for environmental DNA analysis projects. There have             
been a variety of approaches for quantifying the accuracy of this information. Pearson’s             
correlation coefficient [26], L1-norm [31], the sum of absolute log-ratios [28], the log-modulus             
[29] and the Chao 1 error [30] have each been used. This lack of consensus has made                 
comparing these results a challenge.  
 
The amount of variation between the published benchmarks, including varying taxonomies,           
taxonomic levels and whether sequences or taxa were used for evaluations can also impede              
comparisons between methods and the computation of accuracy metrics. To illustrate this            
we have summarised the variation of F-measures (a measure of accuracy) between the four              
benchmarks we are considering in this work (Figure 2).  
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ensitivityS = TP
TP+FN  

(a.k.a. recall, true positive rate) 
pecif icityS = TN

TN+FP  
(a.k.a. true negative   
rate) 

PVP = TP
TP+FP  

(a.k.a. positive  
predictive value,  
precision, sometimes  
mis-labelled 
“specificity”) 

 measure  F = Sensitivity+PPV
2 Sensitivity PPV* * = 2TP

2TP+FP+FN

(a.k.a. F1 score) 

ccuracyA = TP+TN
TP+TN+FP+FN  PRF = FP

FP+TN   
(a.k.a false positive   
rate) 

 
Table 2: Some commonly used measures of “accuracy” for software predictions. These are             
dependent upon counts of true positives (TP), false positives (FP), true negatives (TN) and              
false negatives (FN) which can be computed from comparisons between predictions and            
ground-truths [54].  

 
 

Methods 

 
Literature search: In order to identify benchmarks of metagenomic and amplicon software            
methods, an initial list of publications was curated. Further literature searches and trawling of              
citation databases (chiefly Google Scholar) identified a comprehensive list of seven           
evaluations (Table 1), in which “F-measures” were either directly reported, or could be             
computed from supplementary materials. These seven studies were then evaluated against           
the three principles of benchmarking [33], with four studies meeting all three principles and              
were included in the subsequent analyses (see Supplementary Table 1 for details).  
 
A list of published environmental DNA classification software was curated manually. This            
made use of a community-driven project led by Jonathan Jacobs [55]. The citation statistics              
for each software publication were manually collected from Google Scholar (in July 2017).             
These values were used to generate Figure 2. 
 
Data extraction: Accuracy metrics were collected from published datasets using a mixture            
of manual collection from supplementary materials and automated harvesting of data from            
online repositories. For a number of the benchmarks, a number of non-independent            
accuracy estimates were taken, for example different parameters, reference databases or           
taxonomic levels were used for the evaluations. We have combined all non-independent            
accuracy measurements using a median value. Leaving only single accuracy measures for            
each tool and benchmark dataset combination. The data, scripts and results are available             
from: https://github.com/Gardner-BinfLab/meta-analysis-eDNA-software 
 
Data analysis: Each benchmark manuscript reports one or more F-measures for each            
software method. Due to the high variance of F-measures between studies (see Figure 2C              
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and Supplementary Figure 3 for a comparison), we renormalised the F-measures using the             
following formula: 

obust Z score R =  mad(X)
x  − median(X)i  

Where the “mad ” function is the median absolute deviation, “X ” is a vector containing all the                
F-measures for a publication and “xi” is each F-measure for a particular software tool.              
Robust Z-scores can then be combined to provide an overall ranking of methods that is               
independent of the methodological and data differences between studies (Figure 3). The            
95% confidence intervals for median robust Z-scores shown in Figure 3 were generated             
using 1,000 bootstrap resamplings from the distribution of values for each method, extreme            
(F={0,1}) values seeded into each X in order to capture the full range of potential               
F-measures.  
 
Network meta-analysis was used to provide a second method that accounts for differences             
between studies. We used the “netmeta” and “meta” software packages to perform the             
analysis. As outlined in Chapter 8 of the textbook “Meta-Analysis with R”, [56] the metacont               
function with Hedges' G was used to standardise mean differences and estimate fixed and              
random effects for each method within each benchmark. The ‘netmeta’ function was then             
used to conduct a pairwise meta-analysis of treatments (tools) across studies. This is based              
on a graph-theoretical analysis that has been shown to be equivalent to a frequentists              
network meta-analysis [57]. The ‘forest’ function was used on the resulting values to             
generate Figure 4A. 
 
Review of Results  
We have mined independent estimates of sensitivity, positive predictive values (PPV) and            
F-measures for 25 environmental DNA classification tools, from three published software           
evaluations. A matrix showing presence-or-absence of software tools in each publication is            
illustrated in Figure 3A. Comparing the list of 25 environmental DNA classification tools to a               
publicly available list of environmental DNA classification tools based upon literature mining            
and crowd-sourcing, we found that 29% (25/88) of all published tools have been evaluated in               
the four of seven studies we have identified as neutral comparison studies (details in              
Supplementary Table 1) [33]. The unevaluated methods generally fall into the very recently             
published (and therefore have not been evaluated yet) or may no longer be available,              

functional, or provide results in a suitable format for evaluation (see Figure 2A). Several              
software tools have been very widely cited (Figure 2B), yet caution must be used when               
considering citation statistics, as the number of citations is not correlated with accuracy             
(Figure 2D) [28,58]. For example, the tools that are published early are more likely to be                
widely cited, or it may be that some articles are not necessarily cited for the software tool.                 
For example, the MEGAN1 manuscript is often cited for one of the first implementations of               
the lowest-common-ancestor (LCA) algorithm for assigning read-similarities to taxonomy         
[24]. 
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Figure 2: A: More than 80 environmental DNA classification tools have been published in              
the last 10 years [55]. A fraction of these (29%) have been independently evaluated. B: The                
number of citations for each software tool versus the year it was published. Software tools               
that have been evaluated are coloured and labelled (using colour combinations consistent            
with evaluation paper(s), see right). Those that have not been evaluated, yet have been              
cited >100 times are labelled in black. C: Box-whisker plots illustrating the distributions of              
accuracy estimates based upon reported F-measures using values from 4 different           
evaluation manuscripts [26,28,30,32]. D: The relationship between publication citation         
counts and the corresponding tool accuracy estimate, as measured by a normalised            
F-measure (see Methods for details).  

 
 
After manually extracting sensitivity, PPV and F-measures (or computing these) from the            
tables and/or supplementary materials for each publication [26,28,30,32], we have          
considered the within-publication distribution of accuracy measures (see Figure 2C,          
Supplementary Figure 2 & Supplementary Figure 3). These figures indicate that each            
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publication has differences in F-measure distributions. These can be skewed and           
multimodal, and different measures of centrality and variance. Therefore, a correction needs            
to be used to account for between-benchmark variation. 
 
Firstly, we use a non-parametric approach for comparing corrected accuracy measures. We            
converted each F-measure to a “robust Z-score” (see Methods). A median Z-score was             
computed for each software tool, and used to rank tools. A 95% confidence interval was also                
computed for each median Z-score using a bootstrapping procedure. The results are            
presented in Figure 3B (within-benchmark distributions are shown in Supplementary Figure           
3A and B). 
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Figure 3: A: a matrix indicating metagenome analysis tools in alphabetical order (named on 
the right axis) versus a published benchmark on the bottom axis. The circle size is 
proportional to the number of F-measure estimates from each benchmark. B: a ranked list of 
environmental DNA classification tools. The median F-measure for each tool is indicated with 
a thick black vertical line. Bootstrapping each distribution (seeded with the extremes from the 
interval) 1000 times, was used to determine a 95% confidence interval for each median. 
These are indicated with thin vertical black lines. Each F-measure for each tool is indicated 
with a coloured point, colour indicates the manuscript where the value was sourced. 
Coloured vertical lines indicate the median F-measure for each benchmark for each tool.  

 
 
The second approach we have used is a network meta-analysis to compare the different              
results. This approach is becoming widely used in the medical literature, predominantly as a              
means to compare estimates of drug efficacy from multiple studies that include different             
cohorts, sample sizes and experimental designs [59–63]. This approach can incorporate           
both direct and indirect effects, and incorporates diverse intersecting sets of evidence. This             
means that indirect comparisons can be used to rank treatments (or software tool accuracy)              
even when a direct comparison has not been made.  
We have used the “netmeta” software utility (implemented in R) [64] to investigate the              
relative performance of each of the 25 software tools for which we have data, using the                
F-measure as a proxy for accuracy. A random-effects model and a rank-based approach             
were used for assessing the relative accuracy of different software tools. The resulting forest              
plot is shown in Figure 4A.  
 
The two distinct approaches for comparing the accuracies from diverse software evaluation            
datasets resulted in remarkably consistent software rankings in this set of results. The             
Pearson’s correlation coefficient between robust Z-scores and network meta-analysis         
odds-ratios is 0.95 (P-value=1.4x10-11), see Supplementary Figure 6. 
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Figure 4: A. A forest plot of a network analysis, indicating the estimated accuracy range for                
each tool. The plot shows the relative F-measure with a 95% confidence interval for each               
software tool. The tools are sorted based upon relative performance, from high to low. Tools               
with significantly higher F-statistics have a 95% confidence interval that does not cover the              
null odds-ratio of 1.  
B. A network representation of the software tools, published evaluations, ranks for each tool               

and the median F-measure. The edge-widths indicate the rank of a tool within a publication               
(based upon median, within-publication, rank). The edge-colours indicate the different          
publications, and node-sizes indicate median F-measure (based upon all publications). An           
edge is drawn between tools that are ranked consecutively within a publication. 

 
 

Conclusions 

 
The analysis of environmental sequencing data remains a challenging task despite many            
years of research and many software tools for assisting with this task. In order to identify                
accurate methods for addressing this problem a number of benchmarking studies have been             
published [26–32]. However, these studies have not shown a consistent or clearly optimal             
approach.  
We have reviewed and evaluated the existing published benchmarks using a network            
meta-analysis and a non-parametric approach. These methods have identified a small           
number of tools that are consistently predicted to perform well. Our aim here is to make                
non-arbitrary software recommendations that are based upon robust criteria rather than how            
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widely-adopted a tool is or the reputation of software developers, which are common proxies              
for how accurate a software tool is for environmental DNA analyses [58].  
 
Based upon this meta-analysis, the k-mer based approaches, CLARK [65], Kraken [66] and             
One Codex [67] consistently rank well in both the non-parametric, robust Z-score evaluation             
and the network meta-analysis. The confidence intervals for both evaluations were           
comparatively small, so these estimates are likely to be reliable. In particular, the network              
meta-analysis analysis showed that these tools are significantly more accurate than the            
alternatives (i.e. the 95% confidence intervals exclude the the odds-ratio of 1).  
 
There were also a number of widely-used tools, MG-RAST [68], MEGAN [69] and QIIME 2               
[70] that are both comparatively user-friendly and have respectable accuracy (Z>0 and            
narrow confidence intervals, see Figure 3B and Supplementary Figure 5). However, the new             
QIIME 2 tool has only been evaluated in one benchmark [32], and so this result should be                 
viewed with caution until further independent evaluations are undertaken. Therefore has a            
large confidence interval on the accuracy estimate based upon robust Z-scores (Figure 3) or              
ranked below high-performing methods with the network meta-analysis (Figure 4). The tools            
Genometa [71], GOTTCHA [72], LMAT [73], mothur [74] and taxator−tk [75], while not             
meeting the stringent accuracy thresholds we have used above were also consistently            
ranked well by both approaches.  
 
The NBC tool [76] ranked highly in both the robust Z-score and network analysis, however               
the confidence intervals on both accuracy estimates were comparably large. Presumably,           
this was due to its inclusion in a single, early benchmark study [26] and exclusion from all                 
subsequent benchmarks. To investigate this further, the authors of this study attempted to            
run NBC themselves, but found that it failed to run (core dump) on test input data. It is                  
possible that with some debugging, this method could compare favourably with modern            
approaches.  
 
These results can by no means be considered the definitive answer to how to analyse               
environmental DNA datasets since tools will continue to be refined and results are based on               
broad averages over multiple conditions. Therefore, some tools may be more suited for more              
specific problems than those assessed in these results (e.g. human gut microbiome).            
Furthermore, we have not addressed the issue of scale -- i.e., do these tools have sufficient                
speed to operate on the increasingly large-scale datasets that new sequencing methods are             
capable of producing? 
 
Our analysis has not identified an underlying cause for inconsistencies between           
benchmarks. We found a core set of software tools that have been evaluated in most               
benchmarks. These are CLARK, Kraken, MEGAN, and MetaPhyler, but the relative ranking            
of these tools differed greatly between some benchmarks. We did find that restricting the              
included benchmarks to those that satisfy the criteria for a “neutral comparison study” [33],              
improved the consistency of evaluations considerably. This may point to differences in the             
results obtained by “expert users” (e.g. tool developers) compared and those of “amateur             
users” (e.g. bioinformaticians or microbiologists).  
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Finally, the results presented in Supplementary Figure 4 indicate that most metagenome            
analysis tools have a high positive-predictive value (PPV). This implies that false-positive            
matches between environmental DNA sequences and reference databases are not the main            
source of error for these analyses. However, sensitivity estimates can be low and generally              
cover a broad range of values. This implies that false-negatives are the main source of error                
for environmental analysis. This shows that matching divergent environmental DNA and           
reference database nucleotide sequences remains a significant research challenge in need           
of further development.  
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Supplementary Figures and Results 

 

 
Supplementary Figure 1: A high-level summary of the main eDNA data production and             
analysis pathways. The main split is between amplicon or marker-gene based approaches            
and the shotgun metagenomics strategies. These sequences can be further processed and            
used to generate Operational Taxonomic Units (OTUs), Amplicon Sequence Variants          
(ASVs), and/or mapped onto reference databases for taxonomic and/or functional          
assignments. The tools referenced in the figure include QIIME [77], Mothur [74], DADA2             
[78], PICRUSt [79], MEGAN [24], PhyloPythiaS [25], Taxator-tk [75], Prokka [80],           
MetaGeneMark [81], GLIMMER-MG [82], FragGeneScan [83], Kraken [66], CLARK [65],          
PhymmBL [84], MetaPhlAn [85], One Codex [67], MEGAN-CE [69], HUMAnN [86] and            
MEtaCV [87].  
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Supplementary Figure 2: The distribution of Sensitivity and PPV estimates for each of the              
six benchmark publications.  

 
 
 
 

  

 
Supplementary Figure 3: A. The distributions of F-measure estimates for each of the six              
benchmark publications. B. The distributions of robust Z-scores for F-measure estimates for            
each of the six benchmark publications. 
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Supplementary Figure 4: Ranked lists of eDNA analysis tools, based upon median            
Sensitivity, PPV and F measures. Coloured points indicate and estimated accuracy measure            
from one of six benchmark publications. Median values are indicated by a vertical bar (black               
for the overall median value, coloured bars for the median value from a publication).              
Bootstrap derived 95% confidence intervals for the Sensitivity, PPV or F-measure are            
indicated with a thin black lines for each method.  
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Supplementary Figure 5: Estimated effect size (Robust Z-scores or Odds ratios) versus the             
confidence intervals. These plots show an alternative view of the forest-plots from Figure 3B              
& Figure 4A. The small sets of tools with comparatively high estimated accuracy and small               
confidence intervals have been indicated with grey boxes.  
 

 

 
Supplementary Figure 6: Comparison of Robust Z-scores and odds ratios from the network             
meta-analysis. The Pearson’s correlation coefficient between the two approaches for ranking           
software tools is 0.91 (P-value=4.9x10-10). 
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Paper  Principle 1: study 
focus is an 
evaluation 

Principle 2: authors 
should be 
reasonably neutral 

Principle 3: test 
data, evaluation and 
metrics should be 
rational 

Almeida et al.   
(2018)  

Yes Yes Yes 

Bazinet et al.  (2012)  Yes Yes Yes 

Lindgreen et al.   
(2016)  

Yes Yes Yes 

McIntyre et al.   
(2017)  

Yes No* Yes 

Peabody et al.   
(2015)  

Yes Yes No*** 

Sczyrba et al.   
(2017)  

Yes No** Yes 

Siegwald et al.   
(2017)  

Yes Yes Yes 

 
Supplementary Table 1: There are 3 main principles for benchmarking that authors should 
try to adhere to as suggested by [33]. Principle 1, the main focus of the study should be an 
evaluation. This criteria was evaluated manually be the authors of this study. Principle 2, 
benchmark authors should be reasonably neutral i.e. not involved in the development of 
methods included in the evaluation. This was evaluated below, by collecting method 
references provided by benchmark authors, these were tabulated and evaluated manually 
for overlap between authorship lists for the benchmarks and methods. Principle 3, the test 
data, evaluation and methods should be selected in a rational way. We assessed the 
number of taxa used and the evaluation metrics reported for each study. If either of these 
were too low or likely to be biased (e.g. only reporting sensitivity), then principle 3 was not 
met. 
 
*The benchmark co-authors S Lonardi and R Ounit are co-authors of the methods CLARK              
and CLARK-S, GL Rosen is a co-author of the method NBC. All three were benchmarked in                
this study.  
**12 or the 67 CAMI benchmark authors are also co-authors for 7 of the 14 methods that                 
were benchmarked in this study.  
***Subsequent analysis of the results from this manuscript highlight that the 11 taxa used in               
this evaluation is too few for robust accuracy estimates. Furthermore, 1 of the taxa has been                
renamed in subsequent taxonomies, making some of the accuracy estimates lower than            
these are in practise [88].  
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Clade exclusion

Simulated evolution New genome sequences

Positive control genome (sampled)
Reference database genome
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