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Abstract16

Current approaches to interpreting 16S rDNA amplicon data are hampered by several factors. Among17

these are database inaccuracy or incompleteness, sequencing error, and biased DNA/RNA extraction. Existing18

16S rRNA databases source the majority of sequences from deposited amplicon sequences, draft genomes,19

and complete genomes. Most of the draft genomes available are assembled from short reads. However,20

repeated ribosomal regions are notoriously difficult to assemble well from short reads, and as a consequence21

the short-read-assembled 16S rDNA region may be an amalgamation of different loci within the genome.22

This complicates high-resolution community analysis, as a draft genome’s 16S rDNA sequence may be a23

chimera of multiple loci; in such cases, the draft-derived sequences in a database may not represent a 16S24

rRNA sequence as it occurs in biology. We present Focus16, a pipeline for improving 16S rRNA databases25

by mining NCBI’s Sequence Read Archive for whole-genome sequencing runs that could be reassembled26

to yield additional 16S rRNA sequences. Using riboSeed (a genome assembly tool for correcting rDNA27

misassembly), Focus16 provides a way to augment 16S rRNA databases with high-quality re-assembled28

sequences. In this study, we augmented the widely-used SILVA 16S rRNA database with the novel sequences29

disclosed by Focus16 and re-processed amplicon sequences from several benchmarking datasets with DADA2.30

Using this augmented SILVA database increased the number of amplicon sequence variants that could be31
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assigned taxonomic annotations. Further, fine-scale classification was improved by revealing ambiguities. We32

observed, for example, that amplicon sequence variants (ASVs) may be assigned to a specific genus where33

Focus16-correction would indicate that the ASV is represented in two or more genera. Thus, we demonstrate34

that improvements can be made to taxonomic classification by incorporating these carefully re-assembled 16S35

rRNA sequences, and we invite the community to expand our work to augment existing 16S rRNA reference36

databases such as SILVA, GreenGenes, and RDP.37

Introduction38

The use of genetic markers for microbial classification has seen explosive growth over the past decade (Liu et39

al. 2012; Boers, Jansen, and Hays 2019). The 16S rRNA gene is the standard utilised in the assessment of40

prokaryotic community composition by amplicon sequencing (Fukuda et al. 2016). 16S rRNA has been used41

for community analysis in diverse environments such as the gut microbiota of cattle and pigs (Avila-Jaime,42

Kawas, and Garcia-Mazcorro 2018), soil (Santamaria, Parrado, and López 2018), marine environments (Dang43

and Lovell 2000), and the human gut (Jovel et al. 2016). The success of this method hinges on the presence of44

the 16S rRNA gene in all domains and its relatively slow rate of base substitution; thus the rDNA regions can be45

targeted with primers but the amplicon sequences exhibit enough diversity that organisms can be differentiated46

at the genus or species level (Woese and Fox 1977; Woo et al. 2008).47

Microbial genomes have a range of 16S rRNA gene copy numbers (GCNs), from the many Mycobacteria with48

a single copy to Photobacterium damselae Phdp Wu-121 with 21 copies (Větrovský and Baldrian 2013; Stoddard49

et al. 2015; Acinas et al. 2004). There may be variability between each 16S rDNA copy within an organism (Sun50

et al. 2013); this can negatively impact 16S rRNA classification in two ways. First, in taxa with low variability,51

diversity estimates can be skewed by overestimating taxa with higher GCN and underestimating those with low52

GCN. A trivial example would be a community of two organisms – one with five rDNA copies, one with a single53

copy; an even sequencing of the community would show a one-to-five abundance ratio. Second, some organisms54

have sufficient sequence variability between copies that they may be assigned different taxonomic classifications;55

indeed, certain extremophiles have been reported to possess very high 16S rRNA copy heterogeneity, up to 9.3%56

sequence variation in some species (Sun et al. 2013); this is well beyond the 97% or 99% clustering thresholds57

commonly used for community analysis, and clearly beyond the zero-radius OTU boundary (Edgar 2018).58

These intergenomic rDNA repeats complicate community analysis, but each instance of the 16S rRNA59

contains valuable information. An ideal community analysis framework would utilize a database incorporating60

this information to both correct for copy number variation between organisms in a community, and correctly61

relate 16S rRNA variants to each organism.62

Amongst the most widely used 16S rRNA databases for bacteria and archaea are Greengenes (DeSantis et al.63

2006), SILVA (Quast et al. 2012), and the Ribosomal Database Project (RDP) (Cole et al. 2005). Each contains64

16S rRNA sequences derived from multiple major international nucleotide sequence databases, principally EMBL/65

DDBJ and Genbank. The databases differ in their approach to sequence classification. The RDP database uses66
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the RDP classifier to assign taxonomy to 16S rRNA sequences (Wang et al. 2007). SILVA and Greengenes67

inherit a sequence’s taxonomic assignment from the source database (such as NCBI or EBI). SILVA provides a68

non-redundant database version in which no taxonomic classification contains sequences with greater than 99%69

pairwise identity (Quast et al. 2012). Although each database performs sequence quality checks, only Greengenes70

actively checks for chimeric sequence, which can negatively affect 16S taxonomic assignment (DeSantis et al.71

2006).72

The National Centre for Biotechnology Information (NCBI) provides multiple databases, including the73

Sequence Read Archive (SRA) (Kodama, Shumway, and Leinonen 2011) for raw high-throughput sequencing74

data, and the Genome database as an umbrella for draft and complete genomes. Not all genome sequences75

in the NCBI Genome database have publicly available raw data in the SRA, and only 10% of genomes in the76

database are closed or complete (Waters et al. 2018). Tabulating the accession types of the SILVA 132 database77

shows that 9.5% of sequences come from draft genome assemblies; the vast majority (87%) are obtained as78

amplicon sequences (usually Sanger sequenced), and the remaining 2% come from complete genomes. While79

Sanger-sequenced amplicons are generally very accurate, a common weakness of draft assemblies from short-read80

sequencing is incorrect assembly of repeated rDNA regions of a genome, which may be collapsed/merged into81

a single rDNA. The resulting 16S rRNA sequence could in turn be incorporated into SILVA, GreenGenes, or82

RDP. This compromises the quality of 16S rRNA databases, and such sequences should be treated with caution.83

Genome assemblies from short reads are prone to errors in rDNA regions, as the length of the repeated region84

exceeds read lengths. PCR spanning the rDNA region, followed by Sanger sequencing, or the use of long-read85

technologies such as PacBio or Nanopore sequencing, can resolve these multiple copies but, as the majority of86

the data generated over the last two decades comes from short read sequences, fixing collapsed regions remains a87

valuable goal (Land et al. 2015; Wagner et al. 2016).88

The correct re-assembly of multiple rDNA regions of draft genomes can be achieved using riboSeed, which89

uses a reference genome to help assemble the rDNA regions of a draft genome (Waters et al. 2018). riboSeed90

exploits the observation that the flanking regions of the rDNA region are highly conserved within a taxon91

yet variable between rDNA copies in the same genome, by using targeted subassembly to correctly place each92

re-assembled copy of multi-locus rDNA repeats. The knock-on effect of assembling multi-copy rDNA operons is93

acquiring highly-accurate 16S rRNA sequences, which can be incorporated into 16S rRNA databases.94

Here, we present the results of using such an approach to augment existing 16S rRNA databases with95

newly-assembled sequences from the SRA data corresponding to pre-existing draft genomes. The additional96

sequences provide greater coverage of ASVs in publicly-available datasets, aiding efforts to understand microbial97

communities.98
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Methods99

The Focus16 Pipeline100

We developed Focus16: a pipeline to augment existing 16S rRNA databases by mining the SRA database101

for candidate whole-genome sequencing studies for re-assembly. Candidate SRAs are identified, downloaded,102

subjected to automated quality control, re-assembled with riboSeed to resolve the rDNA operons, given a103

taxonomic assignment with Kraken, and formatted for addition to existing databases. Kraken2 assigns taxonomy104

using exact matches to a lowest common ancestor for k-mers from the whole genome assembly, mitigating the105

risk of misclassification compared to using a 16S rRNA classifier alone.106

The pipeline is shown as a flowchart (Figure 1). Details of third-party tools used in Focus16 can be found in107

the Supplementary Methods section “Third-party software.”108

Given a genus or “Genus species” binomial, the pipeline progresses as follows:109

1. Candidate reference genomes are either provided or are identified and downloaded from RefSeq by matching110

the provided organism name.111

2. Barrnap (Seemann 2020) is used to screen these complete genomes by estimating the 16S rRNA count.112

Reference genomes with a single 16S rRNA are discarded. This catches two cases:113

a. An organism may only have a single 16S rRNA. In this case riboSeed assembly will not improve on114

existing draft genomes.115

b. A draft genome may have been incorrectly attributed the classification of “complete,” and present as116

having a single rRNA sequence when it in fact has more than one. Any such errant reference genomes117

are therefore discarded, and the remaining references are available for use in the pipeline.118

3. A Mash (Ondov et al. 2016) sketch is generated from the references passing the filtering in step 2.119

4. sraFind (https://github.com/nickp60/sraFind) is used to identify all whole-genome sequencing SRA120

accessions for the organism of interest; these are downloaded with fastq-dump or fasterq-dump (“Sra-Tools”121

2019). Steps 4a-4e are applied to each SRA.122

a. Identify closest reference genome. For a given SRA, the most compatible reference genome is123

determined via plentyofbugs (Waters 2019), which performs an initial assembly with the fast and124

highly-accurate assembler SKESA (Souvorov, Agarwala, and Lipman 2018) using a subsample of125

1M reads. Mash is used to identify the closest match between the preliminary assembly and all the126

reference genomes from step 1. If no close match above a user-defined threshold (defaulting to a Mash127

distance of 0.1, roughly corresponding to a within-genus match (Ondov et al. 2016)) is identified, the128

SRA is skipped; otherwise, the closest match is retained for use as a reference genome.129
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b. Classify Assembly. Kraken2 (Wood, Lu, and Langmead 2019) is used to assign taxonomic classifi-130

cation to the preliminary SKESA assembly. The highest-ranked binomial name is recorded, and the131

full Kraken2 report is stored in the output folder for inspection.132

c. Pre-Assembly Quality Control. Reads are run through several quality control steps. The average133

length of the reads is checked; an SRA that contains reads of very low length (i.e. an average less than134

65bp) is rejected, as very short reads cannot be used effectively by riboSeed to differentiate rDNA135

flanking regions. Reads are then quality trimmed with Sickle (Joshi and Fass 2011) using default136

parameters. fastp (Chen et al. 2018) is used to identify and remove any remaining adapter sequences.137

For paired-end runs, unpaired reads are rejected.138

d. Downsample. Read coverage is assessed using either a user-provided estimate of genome length139

or the length of the reference genome. If read coverage exceeds a user-specified threshold (defaults140

to 50x coverage, as further coverage can artificially support sequencing errors; see (Bankevich et al.141

2012)), trimmed reads are down-sampled to reach the desired coverage with seqtk (Li 2020).142

e. De fere novo Assembly. The SRA reads (or downsampled reads from 4d) are then assembled using143

riboSeed, using the reference genome determined in (2a) as a template genome. Subassemblies are144

performed with SPAdes (Bankevich et al. 2012); the default parameters of 3 rounds of seeding and145

1kbp flanking regions are used.146

5. 16S rDNA sequences are extracted and formatted.147

a. Barrnap is run on either the subassemblies (“fast” mode) or the final assembly (“full” mode).148

b. Taxonomy assigned by Kraken2 in step 4b is used to label extracted sequences.149

c. Sequences are written to a fasta file that matches the format used by the SILVA database.150

In our analysis, we filtered to retain only full-length sequences by removing any 16S rRNA under 1358bp151

(under the 1st quartile of the sequence lengths in SILVA). Additionally, we removed any 16S rRNA for which152

Kraken2’s report showed inconclusive domain-level taxonomic assignment: assemblies were excluded if a single153

domain was not assigned to over 70% of contigs. This was done to remove potentially-contaminated datasets154

(see Supplementary Methods section “Identifying poor taxonomic assignments,” Figures S4 and S5).155

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425045doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.01.425045
http://creativecommons.org/licenses/by/4.0/


Figure 1: Flowchart of the pipeline that resolves multi-copy 16S loci from sequenced genomes with reads in
SRA (as implemented in Focus16). Candidate reference genomes are downloaded from RefSeq. Reads for each
SRA are downloaded and Kraken2 is used to assign taxonomy. Corresponding reference genomes and SRA read
sets are identified (using SKESA and Mash), and a new assembly constructed from these using riboSeed to
resolve 16S rDNAs. The assembled 16S rRNA regions are then taken forward for phylogenetic reconstruction, or
to supplement existing reference databases. Numbers refer to stages outlined in the text; gray lines signify to
taxonomic information, and black lines signify to sequence information.

Implementation156

The Focus16 pipeline can be installed from PyPI or from the source hosted on GitHub at https://github.com/157

FEMLab/focus16; all of the dependencies can be easily managed with Conda for reproducibility. The package158

was designed to efficiently handle the downloading and re-assembly of large amounts of short-read data. Users159

can use SRA-tools’s prefetch command for faster downloads of SRA data; the re-assembly status of each SRA is160
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Table 1: Description of the four datasets considered in this study. The number of strains was readily available
for the mock communities; for the Endobiota study, this was determined by a preliminary analysis using DADA2
and SILVA. Asterisk (*) indicates that this is a calculated number, not a value known beforehand.

Name N Strains Reference Description

Balanced 57 Schirmer et al. 2015 Mock community of bacteria and archaea; strains in equal proportions
HMP 21 Kozich et al. 2013 Mock community with common members of the human microbiome
Extremes 27 Callahan et al. 2016 Mock community of bacteria with greatly varying proportions
Endobiota 292* Ata et al. 2019 Study comparing microbiomes of women with and without endometriosis

recorded in an SQLite database. For those with access to a computing cluster running Open Grid Scheduler, the161

time-consuming assembly steps can be distributed as array jobs as needed.162

The first time the pipeline is used, an automated setup procedure is run to download the required databases163

for Kraken2 and sraFind.164

Throughout, diagnostic information is recorded; if an aspect of the pipeline fails, rerunning the same command165

will reuse available intermediate results wherever appropriate.166

Selecting suitable test datasets and identifying genera167

Three mock communities described in the DADA2 manuscript (Callahan et al. 2016) were selected to assess the168

utility of Focus16. These communities, named “Extremes,” “HMP,” and “Balanced,” and comprising 27, 21, and169

57 members respectively (Schirmer et al. 2015; Kozich et al. 2013; Callahan et al. 2016), were sequenced on an170

Illumina MiSeq yielding over 500,000 250bp paired-end reads each.171

To provide an assessment of real-world usage of Focus16, we used the data generated in the EndoBiota study172

(Ata et al. 2019)(PRJEB26800): a survey of microbiomes across three body sites of women with and without173

endometriosis. These datasets are summarized in Table 1.174

Unlike the mock communities, the number of genera present in the Endobiota samples is not known a175

priori. We estimated the abundances of community members by processing the samples through DADA2 in176

a similar manner to how the Balanced, Extremes, and HMP datasets had been analyzed. The analysis script177

DADA2_analysis.Rmd can be found in the supplementary materials repository. Processed data was deposited178

along with the rest of results generated in this work at https://zenodo.org/record/1172783. In short, DADA2179

was used to build error profiles for each of the samples in the study. Reads were then trimmed 30bp on the180

5’ end and 40bp on the 3’ end, quality trimmed after two low-Q bases, and any residual phi-X sequence was181

removed. Merged amplicons were filtered to retain those between 360 and 450 bases. 4.2% of sequences were182

determined to be chimeric and removed. Taxonomy was assigned to the remaining 16S rRNA sequences using183

DADA2’s assignTaxonomy command with the SILVA non-redundant version 132, and species-level taxonomy184

was assigned using DADA2’s addSpecies command as described in their manual.185

In total, 333 unique genera were identified across the four datasets; these were cross-referenced with sraFind186

and RefSeq, filtering to retain only those with both short-read SRAs available and at least one reference genome187

for that genus (Supplementary Figure S2, and Supplementary Table S2). The resulting list of 85 genera was188

used as the input for the pipeline.189
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Assembly mode parameter choice190

Candidate 16S rRNA sequences for a given organism could be extracted from riboSeed’s subassemblies or the191

final de fere novo assembly, we sought to determine which was the best choice for generating sequence to extend192

the reference databases. Generating the subassembled sequences alone is a less computationally-intensive process193

than whole-genome assembly, but the final whole-genome assembly step acts as a further refinement of the194

subassemblies. To find which source is the best for augmenting 16S rRNA databases, we determined the error195

(SNP/indel) rates by comparing complete genomes to the sequences recovered from either de novo re-assembly196

of the complete genome, Focus16’s “fast” mode (sequences from riboSeed’s subassemblies only), and “full” mode197

(sequences from riboSeed’s final de fere novo assembly). The de novo assemblies were accurate but failed to198

recover many individual 16S rDNAs, as is expected due to the repeated nature of these regions. riboSeed’s199

subassemblies have low error rates and successfully reconstruct the most 16S rDNAs (Figure 2), and as such are200

the ones we report below and recommend for augmenting a database.201

Figure 2: Comparing assembly modes for accuracy. SRAs in our dataset that underwent genome completion
were used to identify the most accurate method of 16S rRNA sequence assembly. De novo assembly resulted in
highly accurate 16S rRNA sequences, but was only able to recover 66 sequences. ’–fast’ mode proved to be the
best tradeoff between accuracy and efficiency.

Running Focus16202

Focus16 was run in a conda environment (see supplementary repository file “Focus16_env.txt”). Due to203

computational limitations (namely storage available on the high-performance computing cluster as well as the204

RAM required for genome assembly), we limited the scope of the analysis to a maximum of 50 randomly selected205

SRAs for each of the 85 genera. These are listed in the supplementary file sras.tab The number of candidate206

reference genomes to be considered for each genus was capped at 200; the median number of genomes per genus207
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was 9 (see Figure S3). The only genus with more than 200 reference genomes available was Bordetella. A208

maximum Mash distance was set to 0.1 (Ondov et al. 2016) between a preliminary assembly and a reference209

genome, as this was shown to be the maximum distance between the reference and sequenced isolate that210

riboSeed performs well with (see Waters et al. (2018) Figure 5). Run scripts are available in supplementary211

data; the reference genomes considered can be found in Supplementary file reference_genomes.tab.212

Benchmarking Re-assembled 16S rRNA against Complete Genome 16S rRNA se-213

quences214

sraFind was used to identify which SRA accessions corresponded to complete NCBI genomes for the genera215

considered in this study. These were matched with SILVA sequences sourced from complete genomes (see216

supplementary data “Provenance of strains”). Pairwise alignments were generated between the riboSeed 16S217

rRNA sequences and the SILVA sequences using the Biostrings package (Pagès et al. 2020) in “overlap” mode (a218

global alignment with free ends) with a simple scoring matrix (matches=1, mismatches=0); the highest-scoring219

alignment for each given reference 16S rRNA was used to identify misassemblies relative to the complete genome’s220

16S rRNA sequence. Alignments shorter than 1400bp were rejected.221

Benchmarking Re-assembled 16S rRNA against Draft 16S rRNA sequences222

Similar to the comparison to complete genomes above, we identified the SILVA sequences sourced from draft223

genome assemblies (see supplementary data “Provenance of strains”). Pairwise alignments were generated between224

the riboSeed 16S rRNA sequences and the SILVA sequences using the Biostrings package (Pagès et al. 2020) in225

“overlap” mode (a global alignment with free ends) with a simple scoring matrix (matches=1, mismatches=0);226

the highest-scoring alignment for each given reference 16S rRNA was used to identify missassemblies relative to227

the complete genome’s 16S rRNA sequence. Alignments shorter than 1400bp were rejected.228

Assessing Taxonomic Assignment229

The DADA2 pipeline was used to process each of the four datasets in Table 1. The resulting sequence tables were230

combined, and we assigned taxonomy with the naive Bayes classifier implemented in DADA2. This classified231

sequences at the genus level, and DADA2’s “assignSpecies” command was used to assign species-level taxonomy;232

we enabled the “allowMultiple” parameter to view ambiguities in the assignment. This analysis was used to233

compare assignment with SILVA 132 alone and assignment with SILVA 132 augmented with sequences generated234

by Focus16. All scripts can be found in supplementary materials.235
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Results236

Benchmarking Re-assembly Accuracy237

riboSeed has been shown to generate high-quality reconstructions of each rDNA region when benchmarked238

against hybrid assemblies (Waters et al. 2018). Using sraFind, we identified which sequences in SILVA originated239

from closed, complete genomes; those genome with short-read SRAs were used to benchmark the accuracy of240

the 16S rRNA sequences re-assembled with the Focus16 pipeline (as described in Methods section ) against the241

sequence in SILVA. In our dataset, 61 of these SRA/complete genome pairs were present.242

Figure 3: Assembly errors per kilobase calculated between each Focus16 sequence and the reference genome as
counts (A) and cumulatively (B). In the genera considered, 285 16S rRNA sequences from 61 complete genomes
were present in SILVA; riboSeed recovered 271 of these. 146 of these 16S rRNA alleles were identical between
riboSeed and complete genome (grey bars).

Comparing the re-assembled 16S rRNA sequences to the 16S rRNA sequences from complete genomes shows243

a low error rate, with 53% of sequences being perfect reconstructions and 95% of sequences having fewer than 5244

errors per Kbp (Figure 3). This confirms that Focus16’s best-case accuracy yields perfect reconstructions of the245

rDNA region; those cases for which reconstruction was imperfect rarely have more than 10 errors (an error rate246

rarely exceeding 0.7%), and 99% of sequences had fewer than 10 errors per Kbp. This suggests that sequences247

could be used to augment existing databases; the benefits and consequences of this are presented in the discussion.248

The error rates for amplicon data in SILVA are difficult to determine; under optimal conditions Sanger sequencing249

has very low error rates (Shendure and Ji 2008); however when multiple sequences are inadvertently sequenced250

at the same time (i.e. multiple copies from a single organism), the trace will reflect the differences as short,251

imperfect, or overlapping peaks. As the trace/quality data for amplicon sequences are not typically available, it252

is impossible to determine the accuracy of such sequences.253

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425045doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.01.425045
http://creativecommons.org/licenses/by/4.0/


Comparing re-assembled 16S rRNA to draft 16S rRNA254

Figure 4: Representative SNP alignments comparing 16S rRNA sequences from original draft assemblies to the
re-assembled sequences. Alignments were generated with DECIPHER and all columns matching the consensus
were removed; original alignment length and column numbers for each SNP are shown under the sequence names.
Names starting with an SRA accession such as ERR and SRR are the re-assembled sequences. The following
types of relationships occur: all alleles recovered in original and re-assembled (A,B), sole original sequence misses
a single (C) or multiple SNPs (D), disagreement between sole original and re-assembled alleles (E), original
sequences appears to be amalgamation of alleles (FG), a deletion is present in original allele (H), re-assembly
fails to reconstruct an allele (I).

As repeated rDNA operons are difficult to resolve with short read sequences, draft genome assemblies can (and255

often do) contain a single assembled rDNA region with elevated read coverage. This can be problematic for256

genus or 16S rRNA classification as the 16S rRNA recovered may not just correspond to one of several 16S rRNA257

copies, but it can be a consensus “summary”/“collapsed” 16S rRNA resulting from imperfect assembly of the258

repeated region. We provide a few examples of such alignments in Figure 4 (see all alignments in supplementary259

repository folder figures/draft_alignments/).260

In such cases, without the capacity to verify the regions with Sanger or long-read sequencing, determining261

which sequences are the missassemblies and which should be regarded as true is an impossible task.262

Augmenting SILVA with results from Focus16263

Recovering Sequences from Re-assembly264

Focus16 was used to build an extended database for the three mock datasets described in the DADA2 paper265

and a real-world dataset from the Endobiota study. From the 85 genera considered, Focus16 processed 2387266
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SRAs, and recovered 16S rRNA sequences from 1392 SRAs. The average execution time for a given SRA was267

approximately 23 minutes. Several factors can contribute to failing to recover 16S rRNA sequences from a given268

SRA, and among these are a too-distant reference genome, low rDNA flanking diversity, low read length, or high269

read error rates. In total, we recovered 5854 16S rRNA sequences, of which 3008 were unique.270

Recovery of unique sequences271

Ideally, Focus16 would be applied to every eligible SRA currently available, and periodically rerun as more272

high-quality reference genomes are generated with long-read technologies; in this pilot study, we assessed the273

increase in unique sequences gained by augmenting SILVA with only the 85 genera found across these four274

datasets. For thoroughly-sequenced genera such as Escherichia, Pseudomonas, or Bacillus, the increases in275

unique sequences are small. However, other taxa showed marked increases in the genus-level 16S rRNA sequence276

diversity (Figure 5).277
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Figure 5: Summary of Focus16 outcomes for reassembling SRA datasets. Green circles indicate SRAs that yielded
16S rRNA sequences, while blue diamonds indicate SRAs failing to yield re-assembled 16S rRNA sequences.
Pink triangles show SRAs that were rejected due to limitations in the diversity of available reference genomes,
and inverted green triangles show SRAs rejected due to read length, insufficient coverage, poor read quality, etc.
A few errors occurred, usually when the SRAs metadata conflicted with the associated sequencing data and
caused download errors or errors from reads with incorrect pairing. In these cases, the datasets were discarded.

Assessing Taxonomic Assignment278

DADA2 was used to identify ASVs from four datasets (Table 1), resulting in a total of 4098 ASVs (109 sequences279

from the “HMP” dataset, 26 from the “Extreme” dataset, 94 from the “balanced” dataset, and the rest from280

the EndoBiota study). We then compared the taxonomic results of classification using the SILVA 132 database281

either as-is, or augmented with novel 16S identified with Focus16.282

Of the 4098 sequences, Focus16 changed the taxonomic assignment of 20 strains (see Table 2, or Supplementary283
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file STABLE_different_assignment.tab for the actual sequences). Changes could happen in three ways: a284

previously unclassified ASV gained classification, a previously-assigned ASV gained more species- (or genus-)285

level details, or a previously-classified ASV was given a different classification. In our dataset, three unclassified286

strains gained annotations (Table 2 rows 5, 10, and 11) . The remaining 17 had more detail added to the genus287

or species level; usually, this meant that with SILVA alone a single species classification was given, but with the288

augmented database, it was indicated that the ASV was ambiguous and could belong to more than one species289

(Table 2 rows 4,6,8,9,12,13,14 ) or genus (Table 2 rows 1,2,7, 15-20) level. No previously-assigned ASVs were290

assigned a completely different annotation.291

If this pilot study is perfectly representative, users could expect an improved taxonomic assignment for about292

0.5% of ASVs; two factors must be considered before extrapolating that value beyond this study. First, we were293

limited in the number of SRAs per genus that could be processed (Supplementary Figure 1 shows the number of294

SRAs per genus). Second, and perhaps more importantly, the majority of genera in this study are associated295

with human microbiomes, an area which has already seen an extensive amount of focus in terms of amplicon296

sequencing, whole-genome sequencing, and genome completion efforts. Other environments have not had this297

benefit, and perhaps have more room for improvement.298

Figure 6: Percentage increase in unique sequences (and number of added unique sequences), by genus. The
addition of the sequences recovered by Focus16 increases the number of unique sequences for the given taxa; the
greatest increases are found in "under-sequenced" taxa and/or taxa with less well-conserved rRNA sequences.

14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425045doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.01.425045
http://creativecommons.org/licenses/by/4.0/


Table 2: Of the 4098 ASVs aggregated across the four datasets considered, the augmented database modified
taxonomic assignment of 20 sequences. Cells reading ’NA NA’ indicate that no genus or species could be assigned.
Cells reading NA speciesA/speciesB indicate that the lowest common ancestor for a sequence could not be
determined at the genus level; in such cases DADA2 gives the designation NA rather than listing possible genera
as is done at species level.

SILVA SILVA + Focus16

1 Peptoniphilus asaccharolyticus/ grossensis/
harei

NA asaccharolyticus/ grossensis/ harei/
massiliensis

2 Peptoniphilus harei NA harei/ mediterraneensis
3 NA asburiae/ cancerogenus/ cloacae/

hormaechei/ ludwigii/ pneumoniae/
quasipneumoniae/ xiangfangensis

NA asburiae/ bugandensis/ cancerogenus/
cloacae/ hormaechei/ ludwigii/ pneumoniae/
quasipneumoniae/ xiangfangensis

4 Enterobacter asburiae/ cloacae/ hormaechei/
ludwigii/ mori/ soli/ tabaci/ xiangfangensis

Enterobacter asburiae/ bugandensis/ cloacae/
hormaechei/ ludwigii/ mori/ soli/ tabaci/
xiangfangensis

5 NA NA Rothia mucilaginosa

6 Blautia massiliensis Blautia hansenii/ massiliensis
7 Phascolarctobacterium faecium NA faecium/ fermentans
8 Veillonella dispar Veillonella dispar/ parvula
9 Gemella haemolysans/ sanguinis/ taiwanensis Gemella haemolysans/ morbillorum/

sanguinis/ taiwanensis
10 NA NA Haemophilus parainfluenzae

11 NA NA Haemophilus parainfluenzae
12 Bacteroides uniformis Bacteroides helcogenes/ uniformis
13 Alistipes massiliensis Alistipes massiliensis/ shahii
14 Alistipes obesi Alistipes finegoldii/ obesi/ shahii
15 Cloacibacterium normanense NA normanense/ taklimakanense

16 Phascolarctobacterium faecium NA faecium/ fermentans
17 Listeria innocua/ ivanovii/ marthii/

monocytogenes/ phage/ seeligeri/ welshimeri
NA epidermidis/ innocua/ ivanovii/ marthii/
monocytogenes/ phage/ seeligeri/ welshimeri

18 Listeria innocua/ ivanovii/ marthii/
monocytogenes/ phage/ seeligeri/ welshimeri

NA epidermidis/ innocua/ ivanovii/ marthii/
monocytogenes/ phage/ seeligeri/ welshimeri

19 Rhodobacter johrii/ megalophilus/ ovatus/
sphaeroides

NA johrii/ megalophilus/ ovatus/ sphaeroides/
sulfidophilum

20 Rhodobacter johrii/ megalophilus/ ovatus/
sphaeroides

NA johrii/ megalophilus/ ovatus/ sphaeroides/
sulfidophilum
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Discussion299

Focus16 orchestrates the re-assembly of whole-genome sequencing datasets in SRA to recover 16S rRNA sequences300

that may be missing from the existing reference databases. Using riboSeed, Focus16 re-assembles draft genomes301

that currently contribute a single (often collapsed) 16S rRNA to resolve distinct instances of the 16S rRNA302

operon. We show that this increases the sequence diversity (number of unique sequences) of the 16S rRNA303

databases, and that the increased diversity results in measurable improvements to taxonomic assignment.304

Focus16 improved fine-scale taxonomic assignment in two ways: by assigning previously unclassified sequences,305

and by revealing “overeager” species assignment when a 16S rDNA sequence could have come from two or more306

species. While at face value this appears to reduce the precision of taxonomic assignment, it reveals cases where307

species-level assignment was inappropriate. Based on the improved taxonomic assignment in this pilot study of308

85 genera, we believe a wide-scale application of Focus16 could benefit the community.309

A natural concern about the approach presented here is the danger of “poisoning” the database with sequences310

that may or may not be 100% accurate. This is valid concern, but one we believe to be outweighed by the311

potential of offsetting the known problems with existing 16S rRNA databases. Those 16S rRNA sequences in312

SILVA originating from amplicons lack to the taxonomic confidence that comes with whole-genome sequencing.313

Sequences from draft whole-genome assemblies have known issues with rDNA missassembly; in the best case,314

only one accurate 16S rRNA is represented; in the worst case, the one assembled 16S rRNA sequence may315

be an amalgamation of the different copies. Until long-read sequencing efforts sufficiently explore the same316

microbial genomic diversity currently covered by current 16S rRNA databases, these issues must be considered317

when attempting community analysis via 16S rRNA sequencing. A conservative approach to utilizing sequences318

recovered with the methodology presented here may be to incorporate a measure of taxonomic assignment319

confidence, where references sequences originating from long reads, amplicons, draft assemblies, and focus16320

reassemblies could be weighted appropriately.321

However, there are three main limitations facing the large-scale application of Focus16: the first is the322

bandwidth, computational power, memory, and storage required to re-assemble the 98,329 SRAs (as of October323

2019) that were used to generate draft genomes. Given sufficient storage and unfettered access to a medium/large324

computing cluster such as one supporting a university or research institute (say 150 compute nodes), the task325

could be completed within two weeks1, and the task could be accomplished in even less time with a sufficiently326

large cloud computing budget; however with modest hardware (8 cores, 20GB RAM), this would take about 4327

years in “–fast” mode. These estimates are ignoring the 112,695 draft genomes for which no reads were ever328

released, which leads to the second limitation: data availability. Releasing draft genomes without the reads used329

to generate them hampers efforts such as this one to expand beyond the purpose of the original study.330

The third limitation of this approach is the availability of high-quality closed genomes to use as references.331

With the increased adoption of long read technologies, we envisage that this limitation will decrease with time;332

re-running the pipeline as new, complete reference genomes are generated will allow for ongoing improvements333

1This estimation is based on an rough average processing time of 23 minutes per run, but this is highly dependent on download
speed, read/write speed, genome size, and sequencing depth.
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to the databases. Eventually, a point will come when Focus16 will no longer be needed as all candidate SRAs334

have been sufficiently utilized.335

Further limitations exist within Focus16 and within riboSeed. The success of riboSeed’s de fere novo assembly336

hinges on the similarity of the reference to the sequenced isolate, the differentiating power of the rDNA flanking337

regions, read length, and other factors. This is one reason why not all SRAs yielded perfect rDNAs. Additionally,338

riboSeed does not currently support mate-paired libraries; these are much less widely used than the typical339

single-end or paired-end libraries used in short-read sequencing.340

Despite these limitations, we have shown that Focus16 can contribute towards better molecular ecology341

analysis; augmenting SILVA with the sequences re-assembled from the 85 genera considered here led to a small342

increase in the number of unique sequences in the database. Using the augmented database for taxonomic343

assignment revealed some limitations of low-level taxonomic assignment, and led to the classification of additional344

ASVs. We invite the community to consider augmenting existing databases (such as NCBI’s 16S RefSeq Microbial345

database, SILVA, RDP, and GreenGenes) with the approach outlined here.346

Competing interests347

The authors declare that they have no competing interests.348

Funding349

This work was financially supported by Science Foundation Ireland (Awards 14/IA/2371 and 16/RC/3889) and350

through a joint studentship between The James Hutton Institute and the National University of Ireland, Galway.351

Acknowledgements352

Many thanks to Christopher Quince for the helpful conversations on the topic.353

Data Accessibility354

The code for Focus16 can be found at https://github.com/FEMLab/focus16; the code for all the analyses355

presented in this work can be found at https://github.com/FEMLab/focus16_manuscript. All data used is356

archived at Zenodo accession 10.5281/zenodo.3956433.357

Author Contributions358

Author contributions according to the CRediT taxonomy (Allen, O’Connell, and Kiermer 2019) are listed359

alphabetically as follows: Conceptualization: LP, NW ; Methodology: FA, BN, LP, NW; Software and Data360

Curation: BN, NW; Validation: BN, LP, NW; Formal analysis: BN, LP, NW; Investigation: BN, NW; Resources;361

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425045doi: bioRxiv preprint 

https://github.com/FEMLab/focus16
https://github.com/FEMLab/focus16_manuscript
https://doi.org/10.1101/2021.01.01.425045
http://creativecommons.org/licenses/by/4.0/


FA, VOF, LP; Writing - Original Draft: BN, NW; Writing - Review & Editing: FA, FB, VOF, AH, BN, LP,362

NW; Visualization: BN, LP, NW; Supervision: FA, FB, VOF, AH, LP, NW; Project administration FA, VOF,363

NW; Funding acquisition: FA, FB, VOF, LP, NW.364

References365

Acinas, Silvia G, Luisa A Marcelino, Vanja Klepac-Ceraj, and Martin F Polz. 2004. “Divergence and Redundancy366

of 16s rRNA Sequences in Genomes with Multiple Rrn Operons.” Journal of Bacteriology 186 (9): 2629–35.367

Allen, Liz, Alison O’Connell, and Veronique Kiermer. 2019. “How Can We Ensure Visibility and Diversity368

in Research Contributions? How the Contributor Role Taxonomy (CRediT) Is Helping the Shift from369

Authorship to Contributorship.” Learned Publishing 32 (1): 71–74. https://doi.org/10.1002/leap.1210.370

Ata, Baris, Sule Yildiz, Engin Turkgeldi, Vicente Pérez Brocal, Ener Cagri Dinleyici, Andrés Moya, and371

Bulent Urman. 2019. “The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota372

Between Women with Stage 3/4 Endometriosis and Healthy Controls.” Scientific Reports 9 (1): 1–9.373

https://doi.org/10.1038/s41598-019-39700-6.374

Avila-Jaime, B, JR Kawas, and JF Garcia-Mazcorro. 2018. “Prediction of Functional Metagenomic Composition375

Using Archived 16s rDNA Sequence Data from the Gut Microbiota of Livestock.” Livestock Science 213:376

28–34.377

Bankevich, Anton, Sergey Nurk, Dmitry Antipov, Alexey A Gurevich, Mikhail Dvorkin, Alexander S Kulikov,378

Valery M Lesin, et al. 2012. “SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell379

Sequencing.” Journal of Computational Biology 19 (5): 455–77. https://doi.org/10.1089/cmb.2012.0021.380

Boers, Stefan A., Ruud Jansen, and John P. Hays. 2019. “Understanding and Overcoming the Pitfalls and381

Biases of Next-Generation Sequencing (NGS) Methods for Use in the Routine Clinical Microbiological382

Diagnostic Laboratory.” European Journal of Clinical Microbiology & Infectious Diseases 38 (6): 1059–70.383

https://doi.org/10.1007/s10096-019-03520-3.384

Callahan, Benjamin J., Paul J. McMurdie, Michael J. Rosen, Andrew W. Han, Amy Jo A. Johnson, and Susan P.385

Holmes. 2016. “Dada2: High-Resolution Sample Inference from Illumina Amplicon Data.” Nature Methods386

13 (7): 581–83. https://doi.org/10.1038/nmeth.3869.387

Chen, Shifu, Yanqing Zhou, Yaru Chen, and Jia Gu. 2018. “Fastp: An Ultra-Fast All-in-One FASTQ388

Preprocessor.” Bioinformatics 34 (17): i884–90. https://doi.org/10.1093/bioinformatics/bty560.389

Cole, James R, Benli Chai, Ryan J Farris, Qiong Wang, SA Kulam, Donna M McGarrell, George M Garrity, and390

James M Tiedje. 2005. “The Ribosomal Database Project (RDP-II): Sequences and Tools for High-Throughput391

rRNA Analysis.” Nucleic Acids Research 33 (suppl_1): D294–96.392

Dang, Hongyue, and Charles R Lovell. 2000. “Bacterial Primary Colonization and Early Succession on Surfaces393

in Marine Waters as Determined by Amplified rRNA Gene Restriction Analysis and Sequence Analysis of394

16s rRNA Genes.” Appl. Environ. Microbiol. 66 (2): 467–75.395

18

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425045doi: bioRxiv preprint 

https://doi.org/10.1002/leap.1210
https://doi.org/10.1038/s41598-019-39700-6
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1007/s10096-019-03520-3
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1101/2021.01.01.425045
http://creativecommons.org/licenses/by/4.0/


DeSantis, Todd Z, Philip Hugenholtz, Neils Larsen, Mark Rojas, Eoin L Brodie, Keith Keller, Thomas Huber,396

Daniel Dalevi, Ping Hu, and Gary L Andersen. 2006. “Greengenes, a Chimera-Checked 16s rRNA Gene397

Database and Workbench Compatible with ARB.” Appl. Environ. Microbiol. 72 (7): 5069–72.398

Edgar, Robert C. 2018. “Updating the 97% Identity Threshold for 16s Ribosomal RNA OTUs.” Bioinformatics399

34 (14): 2371–75. https://doi.org/10.1093/bioinformatics/bty113.400

Fukuda, Kazumasa, Midori Ogawa, Hatsumi Taniguchi, and Mitsumasa Saito. 2016. “Molecular Approaches401

to Studying Microbial Communities: Targeting the 16s Ribosomal RNA Gene.” Journal of UOEH 38 (3):402

223–32.403

Joshi, NA, and JN Fass. 2011. “Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ404

Files (Version 1.33).”405

Jovel, Juan, Jordan Patterson, Weiwei Wang, Naomi Hotte, Sandra O’Keefe, Troy Mitchel, Troy Perry, et406

al. 2016. “Characterization of the Gut Microbiome Using 16s or Shotgun Metagenomics.” Frontiers in407

Microbiology 7 (April). https://doi.org/10.3389/fmicb.2016.00459.408

Kodama, Yuichi, Martin Shumway, and Rasko Leinonen. 2011. “The Sequence Read Archive: Explosive Growth409

of Sequencing Data.” Nucleic Acids Research 40 (D1): D54–56.410

Kozich, James J., Sarah L. Westcott, Nielson T. Baxter, Sarah K. Highlander, and Patrick D. Schloss. 2013.411

“Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence412

Data on the MiSeq Illumina Sequencing Platform.” Applied and Environmental Microbiology 79 (17): 5112–20.413

https://doi.org/10.1128/AEM.01043-13.414

Land, Miriam, Loren Hauser, Se-Ran Jun, Intawat Nookaew, Michael R Leuze, Tae-Hyuk Ahn, Tatiana Karpinets,415

et al. 2015. “Insights from 20 Years of Bacterial Genome Sequencing.” Functional & Integrative Genomics 15416

(2): 141–61.417

Li, Heng. 2020. “Seqtk.” https://github.com/lh3/seqtk.418

Liu, Weilong, Lv Li, Md Asaduzzaman Khan, and Feizhou Zhu. 2012. “Popular Molecular Markers in Bacteria.”419

Molecular Genetics, Microbiology and Virology 27 (3): 103–7.420

Ondov, Brian D., Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H. Bergman, Sergey Koren,421

Adam M. Phillippy, et al. 2016. “Mash: Fast Genome and Metagenome Distance Estimation Using MinHash.”422

Genome Biology 17 (1): 132. https://doi.org/10.1186/s13059-016-0997-x.423

Pagès, H., P. Aboyoun, R. Gentleman, and S. DebRoy. 2020. “Biostrings: Efficient Manipulation of Biological424

Strings.” Bioconductor version: Release (3.10). https://doi.org/10.18129/B9.bioc.Biostrings.425

Quast, Christian, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo Yarza, Jörg Peplies, and426

Frank Oliver Glöckner. 2012. “The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing427

and Web-Based Tools.” Nucleic Acids Research 41 (D1): D590–96.428

Santamaria, Johanna, Carmen Alicia Parrado, and Liliana López. 2018. “Soil Microbial Community Structure429

and Diversity in Cut Flower Cultures Under Conventional and Ecological Management.” Revista Brasileira430

de Ciência Do Solo 42.431

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425045doi: bioRxiv preprint 

https://doi.org/10.1093/bioinformatics/bty113
https://doi.org/10.3389/fmicb.2016.00459
https://doi.org/10.1128/AEM.01043-13
https://github.com/lh3/seqtk
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.18129/B9.bioc.Biostrings
https://doi.org/10.1101/2021.01.01.425045
http://creativecommons.org/licenses/by/4.0/


Schirmer, Melanie, Umer Z. Ijaz, Rosalinda D’Amore, Neil Hall, William T. Sloan, and Christopher Quince.432

2015. “Insight into Biases and Sequencing Errors for Amplicon Sequencing with the Illumina MiSeq Platform.”433

Nucleic Acids Research 43 (6): e37–37. https://doi.org/10.1093/nar/gku1341.434

Seemann, Torsten. 2020. “Barrnap: Bacterial Ribosomal RNA Predictor.”435

Shendure, Jay, and Hanlee Ji. 2008. “Next-Generation DNA Sequencing.” Nature Biotechnology 26 (10): 1135–45.436

https://doi.org/10.1038/nbt1486.437

Souvorov, Alexandre, Richa Agarwala, and David J. Lipman. 2018. “SKESA: Strategic k-Mer Extension for438

Scrupulous Assemblies.” Genome Biology 19 (1): 153. https://doi.org/10.1186/s13059-018-1540-z.439

“Sra-Tools.” 2019. NCBI - National Center for Biotechnology Information/NLM/NIH. https://github.com/440

ncbi/sra-tools.441

Stoddard, Steven F., Byron J. Smith, Robert Hein, Benjamin R. K. Roller, and Thomas M. Schmidt. 2015.442

“rrnDB: Improved Tools for Interpreting rRNA Gene Abundance in Bacteria and Archaea and a New443

Foundation for Future Development.” Nucleic Acids Research 43 (Database issue): D593–598. https:444

//doi.org/10.1093/nar/gku1201.445

Sun, Dong-Lei, Xuan Jiang, Qinglong L Wu, and Ning-Yi Zhou. 2013. “Intragenomic Heterogeneity of 16s rRNA446

Genes Causes Overestimation of Prokaryotic Diversity.” Appl. Environ. Microbiol. 79 (19): 5962–69.447

Větrovský, Tomáš, and Petr Baldrian. 2013. “The Variability of the 16S rRNA Gene in Bacterial Genomes448

and Its Consequences for Bacterial Community Analyses.” PLoS ONE 8 (2). https://doi.org/10.1371/449

journal.pone.0057923.450

Wagner, Josef, Paul Coupland, Hilary P. Browne, Trevor D. Lawley, Suzanna C. Francis, and Julian Parkhill.451

2016. “Evaluation of PacBio Sequencing for Full-Length Bacterial 16S rRNA Gene Classification.” BMC452

Microbiology 16 (1): 274. https://doi.org/10.1186/s12866-016-0891-4.453

Wang, Qiong, George M Garrity, James M Tiedje, and James R Cole. 2007. “Naive Bayesian Classifier for Rapid454

Assignment of rRNA Sequences into the New Bacterial Taxonomy.” Appl. Environ. Microbiol. 73 (16):455

5261–67.456

Waters, Nicholas. 2019. “Plentyofbugs.” Zenodo. https://doi.org/10.5281/zenodo.3457383.457

Waters, Nicholas, Florence Abram, Fiona Brennan, Ashleigh Holmes, and Leighton Pritchard. 2018. “riboSeed:458

Leveraging Prokaryotic Genomic Architecture to Assemble Across Ribosomal Regions.” Nucleic Acids459

Research 46 (11): e68–68.460

Woese, C R, and G E Fox. 1977. “Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms.”461

Proceedings of the National Academy of Sciences of the United States of America 74 (11): 5088–90.462

Woo, PCY, SKP Lau, JLL Teng, H Tse, and K-Y Yuen. 2008. “Then and Now: Use of 16s rDNA Gene463

Sequencing for Bacterial Identification and Discovery of Novel Bacteria in Clinical Microbiology Laboratories.”464

Clinical Microbiology and Infection 14 (10): 908–34.465

Wood, Derrick E., Jennifer Lu, and Ben Langmead. 2019. “Improved Metagenomic Analysis with Kraken 2.”466

Genome Biology 20 (1): 257. https://doi.org/10.1186/s13059-019-1891-0.467

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.01.425045doi: bioRxiv preprint 

https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1038/nbt1486
https://doi.org/10.1186/s13059-018-1540-z
https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
https://github.com/ncbi/sra-tools
https://doi.org/10.1093/nar/gku1201
https://doi.org/10.1093/nar/gku1201
https://doi.org/10.1093/nar/gku1201
https://doi.org/10.1371/journal.pone.0057923
https://doi.org/10.1371/journal.pone.0057923
https://doi.org/10.1371/journal.pone.0057923
https://doi.org/10.1186/s12866-016-0891-4
https://doi.org/10.5281/zenodo.3457383
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.1101/2021.01.01.425045
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	The Focus16 Pipeline
	Implementation

	Selecting suitable test datasets and identifying genera
	Assembly mode parameter choice
	Running Focus16
	Benchmarking Re-assembled 16S rRNA against Complete Genome 16S rRNA sequences
	Benchmarking Re-assembled 16S rRNA against Draft 16S rRNA sequences
	Assessing Taxonomic Assignment

	Results
	Benchmarking Re-assembly Accuracy
	Comparing re-assembled 16S rRNA to draft 16S rRNA
	Augmenting SILVA with results from Focus16
	Recovering Sequences from Re-assembly
	Recovery of unique sequences

	Assessing Taxonomic Assignment

	Discussion
	Competing interests
	Funding
	Acknowledgements
	Data Accessibility
	Author Contributions
	References

