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Abstract 

SARS-CoV-2 infection of the respiratory system can evolve to a multi-system disease. 

Excessive levels of proinflammatory cytokines, known as a ‘cytokine storm’ are 

associated with high mortality rates especially in the elderly and in patients with age-

related morbidities. Senescent cells, characterized by secretion of such cytokines 

(Senescence Associated Secretory Phenotype - SASP), are known to occur in this context 

as well as upon a variety of stressogenic insults. Applying both: i) a novel “in house” 

antibody against the spike protein of SARS-CoV-2 and ii) a unique senescence detecting 

methodology, we identified for the first time in lung tissue from COVID-19 patients 

alveolar cells acquiring senescent features harboring also SARS-CoV-2. Moreover, using 

the same detection workflow we demonstrated the inflammatory properties of these 

cells. Our findings justify the application of senotherapeutics for the treatment or 

prevention of COVID-19 patients.  
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Introduction 

       Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), primarily affects the respiratory system but can 

evolve to a multi-system disease with excessive levels of proinflammatory cytokines, 

described as a ‘cytokine storm’ (1). High mortality rates have been observed in the 

elderly and in patients with age-related morbidities (2). Understanding the underlying 

pathophysiological mechanisms is important in developing more effective therapies. 

 Cellular senescence is a fundamental mechanism characterised by generally 

irreversible cell-cycle arrest, altered metabolism, macromolecular damage and 

proinflammatory features termed Senescence Associated Secretory Phenotype (SASP) 

(3). The evidence linking viral infection to cellular senescence is sparse, although 

oncogenes, -which may trigger senescence- were initially discovered in viruses (4, 5). 

Viral infection has been associated with DNA damage and cell fusion, well-known 

inducers of senescence (4, 6), and elicits release of pro-inflammatory mediators that may 

promote senescence via paracrine mechanisms (5). Therefore, senescence may act as a 

cellular defense mechanism against viral infection and increased prevalence of 

senescence could occur in infected and surrounding cells. Given the significance of 

systemic inflammation in the outcome of COVID-19, we have studied whether SARS-CoV-

2 may be associated with cellular senescence in infected lung cells and the SASP 

phenotype (5).     
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Methods 

Patient samples: Formalin-Fixed-Paraffin-Embedded lung tissues from ten COVID-19 

patients (mean±SD: 72.4±16yr; 7 males) confirmed by molecular testing, and ten age-

matched non-COVID-19 lung tissues samples from previously published cohort (71.8 ± 15 

yr, 5 males) were analyzed (7). All protocols were approved by the Commission cantonale 

d'éthique de la recherche, Lausanne (CERVD) Ref 2020-01257 and the Bio-Ethics 

Committee of Athens Medical School. 

Immunocytochemistry: Immunohistochemistry was performed using: the anti-SARS-CoV-

2 mAb (G2), which was produced and validated in house; anti-ACE-2 (Abcam); anti-

Thyroid-Transcription-Factor(TTF)-1 (Dako); anti-CD68 (Dako); anti-p16INK4A (Santa Cruz); 

IL-1β (Abcam) and IL-6 (R&D systems), as described (8). The Novolink Polymer Detection 

System (Leica Biosystems) was used for development of the signal and hematoxylin for 

counterstaining. SenTraGorTM(GL13) and double stainings were performed as published 

(8). 

Quantification: Cells were considered positive with G2 staining irrespective of the 

staining intensity. A previously described semi-quantitative IHC evaluation was adopted 

(9). Electron microscopy was performed using a FEI Morgagni 268 transmission electron 

microscope equipped with Olympus Morada digital camera. 
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Results  

We initially developed monoclonal antibodies against the spike protein for the detection 

of SARS-CoV-2, and the antibody with the highest affinity (G2) was used.  The specificity 

of G2 mAb was validated in formalin fixed paraffin lung tissues from COVID-19 patients 

by: i) omitting it and ii) performing competition with the corresponding spike anti-

peptide (Figure 1A). Absence of G2 immunoreactivity was observed in a large cohort of 

non-COVID-19 lung tissues (Figure 1A,vii) (7). SARS-CoV-2 was detected in alveolar type-II 

(AT2) pneumocytes (TTF-1 positive, CD-68 negative) of all COVID-19 patients, with values 

ranging from <5/4mm2 to >50/4mm2(data not shown). The SARS-CoV-2 infected AT2 cells 

were occasionally of large size with a brown moderate to strong, diffuse or granular 

cytoplasmic signal (Figure 1Ai,iii,v). Topologically, they either covered the alveolar walls 

and protruded into the airspaces from the edges of the alveolar septa or appeared within 

the alveolar spaces isolated (denuded or syncytial) or in clusters (hyperplasia) (Figure 

1Ai,iii,v). Electron microscopy analysis in representative cases confirmed the presence of 

the virus within AT2 cells (Figure 1Bi,ii). High magnification revealed virions in the 

proximity of the endoplasmic reticulum suggesting their assembly and budding, as well as 

virions residing in cytoplasmic vesicles indicating their transfer and release into the 

extracellular space (Figure 1Biii,iv,v).  

 Subsequently, we asked whether the G2-positive cells exerted features of cellular 

senescence. Applying the recently reported guideline workflow for senescence detection, 

we observed both in serial sections and through co-staining, a proportion of G2-positive 

AT2 cells (range 8 to 17%) displaying strong reactivity to SenTraGor, a marker of 

senescence (Figure 2A,Bi,2C,D) (3, 8). Senescent phenotype was further verified with co-
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staining for p16INK4A, a marker of stress-related senescence (Figure 2Bii)(3). Occasionally 

these cells tended to cluster (Figure 2Ai-vi) and in serial sections were found to co-

express the ACE2 (Figure 2Aiii,vi), a finding supportive of SARS-CoV-2 infection mediated 

by ACE2 (1). 

 We next tested whether the senescent pneumocytes exert features of SASP. We 

found in serial sections and co-staining analysis (Figure 2E-F), expression of both IL-1β 

and IL-6, which were absent in non-COVID19 cases (Figure 2G). This observation provides 

the foremost verification for expression of SASP factors by senescent cells in an ex-vivo 

setting. As both cytokines are key components of the "cytokine storm", this implicates 

cellular senescence via SASP in the poor clinical outcome of COVID-19 patients who are 

elderly and suffering from age-related diseases.   
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Discussion 

To the best of our knowledge, we provide the first evidence of cellular senescence and 

expression of SASP components in SARS-CoV-2 infected human lung cells. Moreover, we 

demonstrate that in the COVID-19 setting, senescence alters the properties and function 

of a respiratory cell compartment, rendering its constituents capable for producing 

cytokines that can readily be released into the systemic circulation. Whether senescence 

pre-exists at the time of infection, making cells more susceptible to infection with the 

virus, or whether senescence is triggered as an antiviral response, remain unanswered 

questions. Putatively, both scenarios could co-exist. Regarding the first scenario at the 

time of infection the burden of senescent cells is anticipated high in the elderly and in 

individuals with age-related diseases, rendering them vulnerable to develop a pro-

inflammatory phenotype. Notably, in our COVID-19 cohort the percentages of senescent 

cells were higher in patients over 73 years-old vs younger patients (Mann-Whitney test: 

p<0.05). Regarding the second scenario, senescence might be an antiviral response 

against SARS-CoV-2 and infected senescent cells could induce paracrine senescence in 

nearby cells, thus increasing the senescence load. Irrespective of the origin, both 

scenarios are related to SASP secretion that seems at least in part a source or even a 

trigger of the pro-inflammatory cytokines, commonly observed in the blood of COVID-19 

patients.  

 Overall, the reported findings justify the application and promising findings of 

recent studies using senotherapeutics (senolytics, SASP modulators/inhibitors) for 

treatment or prevention of COVID-19 patients (10).  
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Figure Legends 

 

Figure 1: A. Immunohistochemistry (IHC) staining in COVID-19 lung tissue, showing 

cytoplasmic SARS-CoV-2 spike protein (brown color) with hematoxylin counterstain in 

alveolar type II (AT2) cells (DAB IHC) (i,iii,v). Images from corresponding control 

experiments in COVID-19 lung tissue. Inclusion of the corresponding anti-peptide (S 

protein) in the primary antibody solution results in negative staining in serial sections 

(ii,iv,vi). Original magnification: 400x, Insets 630x. B. Semi-thin section of the epoxy-

embedded deparaffinized lung autopsy (i). The Black box depicts a representative 

binucleated AT2 cell observed under electron microscope as shown in ii. Toluidine blue O 

staining. Original magnification: 200x. Electron micrograph of a binucleated enlarged 

pneumocyte showing round to oval nuclei and vacuolated appearance of the cytoplasm 

(ii). A drawing of the cytoplasmic and nuclear area of the cell in figure B, focusing to the 

steps of virions assembly and transferring to vesicles as shown at higher magnification 

(iii). Higher magnification of the cytoplasmic area demarcated by the box in ii, showing 

virions (red arrows) in the proximity of RER, as well as in vacuoles (iv,v,vi). Cubic 

membrane structures arranged in an ordered fashion were rarely observed in the 

cytoplasm of infected cells (*red asterisk). Scale bars: Bii: 1μm; Biv-vi: 200nm. 

Abbreviations: N: nucleus; n: nucleolus, RER: rough endoplasmic reticulum. 

 

Figure 2: A. Representative images of G2 (i), SenTraGor (ii) and ACE-2 (iii) staining in 

serial sections of COVID-19 lung tissue. B. Representative results from double-staining 

experiments showing cytoplasmic localization of viral spike protein in cells that are 
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concurrently positive with SenTraGor (senescent) (i), and nuclear p16INK4A expression in 

cells that are concurrently positive with SenTraGor (ii). B(i) left inset depicts an AT2 cell 

solely exhibiting cytoplasmic immunopositivity for the viral Spike protein. C. 

Representative images of G2 (i), SenTraGor (ii) and ACE-2 (iii) staining in serial sections of 

non COVID-19 “normal” lung parenchyma in the vicinity of a tumor (n=10, aged matched 

with cases presented in Fig 2A). Range of SenTraGor labeling indices: 1-2%. 

Morphologically, senescent AT2 cells in non COVID-19 tissue exhibit a decreased size in 

relation to those in COVID-19 cases. D. Graph depicting differences in SenTraGor staining 

between non-COVID19 and COVID19 cases, ***p<0.001 (Mann-Whitney U test).  E. 

Representative images of Interleukin 1β (IL-1β) (i), SenTragor (ii) and Interleukin-6 (IL-6) 

(iii) in serial sections of COVID-19 lung tissue. F. Representative results from double-

staining experiments showing cytoplasmic localization of IL-1β in cells that are 

concurrently positive with SenTraGor (i), and IL-6 expression in cells that are concurrently 

positive with SenTraGor (ii). G. Representative images of IL-1β (i), SenTraGor (ii) and IL-6 

(iii) in serial sections of non-COVID-19 lung tissue (see also C). Original magnification: 

400x, Insets 630x; Hematoxylin and nuclear fast red counterstain (Bi and F); DAB IHC – 

brown color; In co-staining SenTraGor was visualized with the BCIP/NBT chromogenic 

hybrid Histo-IHC reaction (dark blue perinuclear and cytoplasmic colour). 
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