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Abstract 22 

The world is rapidly urbanising, inviting mounting concern that urban environments will experience 23 

increased zoonotic disease risk. Urban animals could have more frequent contact with humans, and 24 

therefore may transmit more zoonotic parasites; however, these animals have a specific set of 25 

underlying traits that may determine their parasite burdens while predisposing them to urban living, 26 

and they may be subject to more intense research effort, both of which could complicate our ability to 27 

reliably identify the role of urbanisation in driving zoonotic risk. Here, we test whether urban 28 

mammal species host more known zoonotic parasites, investigating the potential underlying drivers 29 

while accounting for a correlated suite of phenotypic, taxonomic, and geographic predictors. We 30 

found that urban-adapted mammals have more documented parasites, and more zoonotic parasites 31 

specifically: despite comprising only 157 of the 2792 investigated species (6%), urban mammals 32 

provided 39% of known host-parasite combinations and showed consistently higher viral discovery 33 

rates throughout the last century. However, contrary to predictions, much of the observed effect was 34 

attributable to research effort rather than to urban adaptation status itself, and urban-adapted species in 35 

fact hosted fewer zoonoses than expected given their total observed parasite richness. We conclude 36 

that extended historical contact with humans has had a limited impact on the number of observed 37 

zoonotic parasites in urban-adapted mammals; instead, their greater observed zoonotic richness likely 38 

reflects sampling bias arising from proximity to humans, which supports a near-universal underlying 39 
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pattern of conflation between zoonotic risk, research effort, and synanthropy. These findings 40 

underscore the need to resolve the ecological mechanisms underlying links between anthropogenic 41 

change, sampling bias, and observed wildlife disease dynamics. 42 

Authorship Statement 43 

GFA and DJB conceived the study, and GFA analysed the data and wrote the manuscript. All other 44 
authors offered thoughts on the analysis and commented on the manuscript. 45 

Data and Code Availability  46 

The code used here is available at github.com/gfalbery/UrbanOutputters. The CLOVER dataset is 47 
available at github.com/viralemergence/clover.  48 

Acknowledgements 49 

This work was supported by funding to the Viral Emergence Research Initiative (VERENA) 50 
consortium, including NSF BII 2021909.  51 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.01.02.425084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.02.425084
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 52 

As the rate of infectious disease emergence continues to rise, it is becoming increasingly important to 53 

identify and understand the drivers of zoonotic risk in wild animals (Jones et al. 2008; Keesing et al. 54 

2010; Morse et al. 2012). Humans are rapidly altering patterns of wildlife disease through a 55 

combination of climate change and land conversion, both of which are expected to drive increased 56 

spillover (i.e., interspecific transmission of parasites from animals into humans (Jones et al. 2008; 57 

Keesing et al. 2010; Loh et al. 2015; Hassell et al. 2017; Carlson et al. 2020a; Cohen et al. 2020; 58 

Gibb et al. 2020)). Urban environments in particular are expected to facilitate the emergence of 59 

zoonotic pathogens in wildlife (Keesing et al. 2010; Hassell et al. 2017; Becker et al. 2018; Murray et 60 

al. 2019; Werner & Nunn 2020), through a combination of impaired immune systems fed by 61 

anthropogenic resources (Becker et al. 2015, 2018) and greater pollution (Becker et al. 2020a) as well 62 

as increased proximity of wild animals to humans (Hassell et al. 2017; Albery & Becker 2021). This 63 

combination of factors is likely to become even more problematic in the future as the world’s 64 

population continues to rapidly grow and urbanize (Seto et al. 2012; Chen et al. 2020; Gao & O’Neill 65 

2020).  66 

Previous meta-analyses have uncovered elevated stressors and greater parasite burdens or parasite 67 

diversity in urban animals, with the general expectation that the urban environment weakens host 68 

immune responses (Murray et al. 2019; Gibb et al. 2020; Werner & Nunn 2020). However, these 69 

studies usually comprise relatively few examples spread across a small selection of animal species, 70 

reducing their ability to generally address the question of how urbanisation affects zoonotic disease 71 

risk. Moreover, the results of such analyses have been equivocal, with both positive, negative, and 72 

neutral effects of urban living on dimensions of wildlife disease (Murray et al. 2019; Gibb et al. 2020; 73 

Werner & Nunn 2020). Testing whether urban-adapted mammal species exhibit greater zoonotic risk 74 

in a broad-scale, pan-mammalian analysis could provide more general answers to this question, 75 

informing the design of parasite sampling regimes and efforts to mitigate zoonotic disease risk in 76 

humans. 77 

A recent pan-mammalian study used a literature review to build a database of mammal species’ urban 78 

adaptation status (i.e., their ability to live off urban resources (Santini et al. 2019)), which they then 79 

linked with species-level phenotypic traits. Although different traits were important for different 80 

mammalian orders, species with larger litters were generally more likely to be urban-adapted. This 81 

relationship could explain the common observation that fast-lived host species (i.e., those that favour 82 

reproduction over survival) tend to disproportionately source zoonotic parasites (Keesing et al. 2010; 83 

Ostfeld et al. 2014; Albery & Becker 2021). Complicating matters, a given species’ observed parasite 84 

diversity depends inherently on the effort that has been directed towards examining it (Olival et al. 85 

2017; Gutiérrez et al. 2019; Teitelbaum et al. 2019; Mollentze & Streicker 2020). Such research effort 86 

is heterogeneously distributed in space (Allen et al. 2017; Olival et al. 2017; Jorge & Poulin 2018) 87 
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and across mammal species, particularly with regards to life history (Albery & Becker 2021) and 88 

taxonomy (Olival et al. 2017; Mollentze & Streicker 2020). As such, sampling bias could be 89 

important in mediating observed trends among urbanisation, life history, and zoonotic parasite 90 

diversity. In particular, urban mammal species may have more zoonoses as a proportion of their 91 

known parasite richness, because historic contact with humans has allowed more parasites to spill 92 

over into humans and be observed. Although it has been shown that human-adjacent animals have 93 

both more parasite species and more zoonoses (Gibb et al. 2020), it is unclear yet whether human 94 

contact has filtered them to produce disproportionately more observed zoonoses in urban species. 95 

Here, we take a macroecological approach to investigate (i) whether urban-affiliated mammal species 96 

have more zoonotic parasites and (ii) whether they harbour more zoonotic parasites than expected 97 

given their overall parasite diversity. We anticipated that species capable of adapting to urban settings 98 

would host a higher diversity of known parasites, owing to greater susceptibility and more intense 99 

sampling effort, and that a disproportionately high number of these parasites would be known to be 100 

zoonotic as a result of their greater historical contact with humans. We further expected that urban 101 

adaptation status would account for some variation in the effects of life history traits on parasite 102 

richness, implying that fast-lived species more often transmit zoonotic parasites because they are 103 

more likely to inhabit urban environments in close proximity to humans (Albery & Becker 2021). 104 

Results 105 

We ran a series of generalised linear mixed models (GLMMs) that broadly supported our prediction 106 

that urban-adapted mammals would have greater parasite richness. Our first model set examined 107 

parasite richness as a response variable, revealing that urban mammals have more known parasites 108 

(Figure 1A, SI1), and more zoonoses specifically (Figure 1B, SI2). This urban bias diminished 109 

substantially in magnitude when we added citation counts as an explanatory variable representing 110 

research effort (Figure 1C); in the case of overall parasite richness, adding citation counts rendered 111 

the effect of urban adaptation non-significant (P=0.07). Citation number was strongly positively 112 

associated with urban status, overall parasite richness, and overall zoonotic richness (Figure 1C, 2), as 113 

well as being significant for all parasite subgroups (Figure SI4-5). We elaborated on these models by 114 

accounting for spatial patterns in parasite richness and sampling effort using a centroid-based SPDE 115 

effect. These effects improved model fit substantially (ΔDIC>150), and increased the magnitude and 116 

significance of the urban adaptation effects (Figure 1C; P=0.018 and 0.006). As such, we conclude 117 

that urban species have slightly higher parasite diversities when sampling effort and geographic 118 

heterogeneity are accounted for.  119 

To provide further insight into how histories of sampling may have shaped current patterns of 120 

observed pathogen richness across urban-adapted and non-urban species, we used our dataset to 121 

descriptively visualise historical pathogen discovery rates and publication effort trends (1930-2015), 122 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.01.02.425084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.02.425084
http://creativecommons.org/licenses/by-nc-nd/4.0/


following a recent study of mammalian viral discovery (Gibb et al. 2021). We find that fewer annual 123 

discoveries generally occur in urban species; however, because there are so few urban-adapted species 124 

(157 out of 2792), these species have been, on average, more intensely studied and with a higher 125 

parasite richness since the mid-1960s (Figure SI7). Notably, differences in mean parasite richness 126 

between urban-adapted and non-urban species have continued to widen in the intervening years as the 127 

discrepancy in sampling effort has continued to grow (Figure SI7). This finding suggests that higher 128 

observed parasite richness in urban-adapted species is largely driven by long-term, accumulated 129 

differences in sampling effort. 130 

We constructed a path analysis, which showed that urban adaptation was not associated with greater 131 

zoonotic richness when accounting for a direct effect of parasite richness; in fact, the estimated effect 132 

was slightly negative (Figure 3; P=0.024). In contrast, the indirect effect of urban adaptation on 133 

zoonotic diversity acting through parasite diversity was positive, substantial, and significant (effect 134 

+0.401; 95% credibility interval 0.116-0.749; P=0.004; Figure 3). Taken together, these results imply 135 

that positive effects of urban adaptation on zoonotic diversity act largely through greater overall 136 

known parasite diversity, rather than by disproportionately elevating zoonotic parasite richness 137 

specifically. We performed multiple further analyses to examine several dimensions of urban 138 

adaptation and sampling bias that could affect our results. There was no improvement in model fit 139 

when urban status interacted with host order, suggesting that the effect of urban adaptation on parasite 140 

diversity and zoonotic risk did not vary between mammal orders (ΔDIC<5 relative to the base model). 141 

We built a generalised additive mixed model (GAMM) to next examine whether citation numbers had 142 

different effects for urban and non-urban species, but found no support for the interaction (ΔDIC<5). 143 

Similarly, multivariate models revealed concordance between estimates for the effect of urban 144 

adaptation across parasite subtypes and implied that the urban effects were not being driven by 145 

specific groups of parasites. Finally, we used zero-inflated GLMMs to account for mammal species 146 

with no recorded parasites, demonstrating strong urban biases for the count component (i.e., the 147 

number of parasites a mammal species hosted) as well as the inflation component (i.e., whether the 148 

mammal species had greater than zero known parasites; Figure SI6). This finding implies that our 149 

results are not being disproportionately driven by excess zeroes produced by the inclusion of 150 

pseudoabsences (i.e., species without any evidence of parasites). 151 

A GLMM with different spatial fields for urban and non-urban species was not an improvement over 152 

the overall SPDE model (ΔDIC=14.35 relative to the SPDE model). This implies that the bias towards 153 

greater parasite richness in urban species is relatively evenly distributed across the globe, rather than 154 

being focussed in certain areas. These findings imply that our results were robust to geographic 155 

variation in parasite richness, and revealed strong spatial patterns (Figure 4C). We also found a 156 

substantial positive estimate for the fixed effect of absolute latitude, revealing greater known parasite 157 

diversities in temperate regions (Figure 4B). We also observed substantial between-continent 158 
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variation in parasite diversity (Figure 4B): North America was associated with the greatest parasite 159 

diversity, followed by Africa, then Eurasia, South America, and Oceania.  160 

Lastly, we also uncovered support for a range of other important species traits driving parasite 161 

richness (Figure 4A). Most notably, faster life history was associated with greater (zoonotic) parasite 162 

diversity, according to PC1 (Figure 4A). However, in the path analysis model, the effect of life history 163 

on zoonotic richness was supplanted by the inclusion of overall parasite richness (Figure SI3). This 164 

finding reveals that, as with urban adaptation status, life history is associated with greater overall 165 

parasite richness rather than zoonotic richness specifically. There was substantial between-order 166 

variation in zoonotic and overall diversity (Figure SI4-5), but adding a continuous phylogenetic 167 

similarity effect did not improve on the order-level effects (ΔDIC<5). Diet diversity was positively 168 

associated with zoonotic richness, but not overall parasite richness (Figure 4A). Phylogenetic distance 169 

from humans was negatively associated with zoonotic richness overall (Figure 4A), with zoonotic 170 

richness of viruses and helminths, and with overall richness of viruses and helminths; however, 171 

phylogenetic distance from humans was positively associated with overall richness of arthropods 172 

(Figure SI4-5). Greater range area was associated with increased (zoonotic) parasite richness overall 173 

(Figure 4A) and for many parasite subsets (Figure SI4-5). Finally, domesticated species had more 174 

zoonotic helminths and protozoa (Figure SI5) but did not differ in overall parasite richness from non-175 

domesticated mammal species (Figure 4A, SI4). 176 

Discussion 177 

Using a global pan-mammalian dataset of host species’ traits and parasite associations, we found that 178 

urban-adapted mammal species have more known parasites, and in turn more zoonotic parasites, 179 

arising largely from research effort. This finding builds on recent work showing that wild animals 180 

with at least one known zoonotic parasite tend to inhabit human-managed landscapes (Gibb et al. 181 

2020), but we used a much broader dataset of urban-adapted mammals and applied a strict definition 182 

of urban adaptation based on long-term resource use and fitness in urban landscapes (Santini et al. 183 

2019), while accounting for a correlated suite of phenotypic traits, research effort, and geographic 184 

biases, including range size and phylogenetic relatedness to humans. Additionally, we were surprised 185 

to find that urban mammals’ zoonotic richness was in fact lower than expected given their observed 186 

parasite richness. Our findings therefore do not support our main prediction that urban-adapted 187 

species host more known zoonotic parasites because they have had more historical contact with 188 

humans, creating more opportunities for the spillover of potentially-zoonotic parasites (Albery & 189 

Becker 2021). Rather, urban species appear to have been preferentially sampled for non-zoonotic 190 

parasites, likely as a result of their proximity to humans and ease of sampling – that is, mammals in 191 

urban contexts might be more often spontaneously examined for parasites, while mammals in non-192 

urban contexts are more likely to be examined specifically when they are suspected sources of 193 
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zoonotic parasites. The reason for urban mammals’ greater overall parasite richness remains 194 

uncertain, and many questions still linger about the drivers of zoonotic diversity in urban wildlife. 195 

Most pressingly, why has human-wildlife contact not driven greater zoonotic diversity in urban 196 

species?  197 

Sampling bias is one of few universal phenomena in ecological research (Estes et al. 2018; Hughes et 198 

al. 2020), and understanding these biases is integral to designing interventions and predicting the 199 

consequences of global change. Our models revealed that urban-adapted species have been more 200 

thoroughly sampled for parasites than non-urban species, but in roughly similar patterns. Known 201 

urban status is highly geographically heterogeneous (Santini et al. 2019) and in a similar pattern to 202 

disease surveillance (Allen et al. 2017; Olival et al. 2017; Jorge & Poulin 2018), which we expected 203 

to be driving our perceived urban adaptation effect. The spatial patterns of parasite richness that we 204 

discovered mirror previously reported biases towards temperate, high-income countries (Titley et al. 205 

2017; Hughes et al. 2020), and were particularly high in North America, while being particularly low 206 

in South America, confirming that parasite biodiversity is substantially undersampled in the tropics 207 

(Jorge & Poulin 2018). This reflects the pattern of urban mammal diversity, which peaks at high 208 

latitudes and is low in South America, Southeast Asia, and sub-Saharan Africa (Santini et al. 2019). 209 

However, accounting for this heterogeneity in fact increased the urban bias estimate rather than 210 

decreasing it. Further, there was no significant interaction of urban adaptation with either the spatial 211 

effect or host order, implying minimal geographic and taxonomic bias in these urban-directed 212 

sampling processes. Finally, our temporal analysis revealed that urban and non-urban mammals have 213 

been subjected to similar trends in parasite discovery rate over the last century, with citation counts 214 

and parasite diversity following similar shapes throughout. The only analysis that implied a 215 

qualitatively different sampling trend in urban-adapted mammal species was our path analysis, which 216 

revealed that urban-adapted species have fewer known zoonotic parasites than expected given their 217 

observed parasite richness. Taken together, the evidence suggests that urban species are much better-218 

sampled for parasites than non-urban species, but with a stronger focus on non-zoonotic parasites, and 219 

this urban bias should be considered in future species-level analyses of zoonotic risk. 220 

Even accounting for these layers of bias, our data still retained a positive effect of urban status, 221 

suggesting that either 1) urban mammals are subject to a specific sampling bias that could not be 222 

detected through our analyses, or 2) urban environments increase overall parasite diversity through 223 

effects on host immunity, behaviour, and demography. Although these effects did not 224 

disproportionately increase zoonotic parasite diversity, urban mammals nevertheless host many 225 

zoonotic parasites as a result of their greater overall parasite richness, and therefore understanding this 226 

trend may be important for public health. Anthropogenic pollutants, altered nutrition, and greater host 227 

densities in urban environments have been shown to weaken host immune systems and promote 228 

greater burdens and diversities of parasites when comparing hosts along urban-rural gradients (Becker 229 
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et al. 2018; Murray et al. 2019). Such intraspecific effects should accordingly scale up such that 230 

urban-adapted species have greater parasite richness than species that do not experience such immune 231 

impairments. Similarly, greater host densities and resource concentrations could facilitate elevated 232 

rates of density-dependent parasite transmission within and between species, rendering urban-233 

affiliated species more likely to maintain parasites and resulting in greater observed parasite diversity 234 

(Lloyd-Smith et al. 2005). However, there is some evidence that urban wildlife might exhibit stronger 235 

immunological resistance (Hwang et al. 2018; Strandin et al. 2018; Cummings et al. 2020), which 236 

would be expected to have the opposite effect on parasite diversity, and a previous study found that 237 

some parasite groups are decreased in urban environments rather than increased (Werner & Nunn 238 

2020). Unfortunately, the field is generally lacking in large-scale cross-species analyses of immune 239 

function that would be required to differentiate these possibilities (Albery & Becker 2021; but see 240 

Downs et al. 2020a, b). Ideally, future analyses incorporating life history, habitat preference, 241 

immunity, and parasite diversity may be better able to differentiate the mechanisms underlying these 242 

species’ zoonotic risk (Albery & Becker 2021).  243 

Achieving broad insights into the urban drivers of zoonotic risk may require finer-scale data than we 244 

had access to here. This study was conducted with a minimum compatibility filter: we considered a 245 

species as a host of a given parasite if it was observed with said parasite at any point in the literature, 246 

and richness was calculated as the sum of these associations across parasite subgroups. While studies 247 

of parasite diversity are common in macroecology, this deliberately narrow scope limits inference 248 

about a range of relevant processes including host competence (i.e., species’ ability to transmit 249 

parasites; Becker et al. 2020b), prevalence of the parasite in the host populations, host density, and, 250 

therefore, the rate of spillover (i.e., the number of animal-to-human transmission events per unit of 251 

time). These are all important components of a species’ zoonotic risk, and some hosts undoubtedly 252 

present substantial zoonotic risk despite having relatively low known parasite diversity. For example, 253 

prairie dogs (Cynomys ludovicianus) only have five known parasites in our dataset, yet they are a 254 

widespread and abundant species and may play an important role in epizootic outbreaks of plague 255 

(Yersinia pestis) in North America (Hanson et al. 2007). Given this disparity, it remains unclear how 256 

closely a species’ zoonotic diversity should correlate with the rate of spillover from these species; as 257 

such, we caution that our analysis does not necessarily offer insights into the relative frequency or rate 258 

of spillover events, or the potential severity of zoonotic outbreaks, in urban environments.  259 

Providing a general answer to the question “does urbanisation increase the risk of zoonotic disease” 260 

may require datasets of individual- or population-level infection status, using multiple hosts and 261 

parasites, distributed across a wide range of urbanisation gradients. Higher-resolution datasets such as 262 

these would facilitate untangling of within- and between-species confounders, as well as accounting 263 

for spatiotemporal covariates like urban habitat composition (Gecchele et al. 2020). These data are 264 

increasingly publicly available and are being used in large-scale analyses of disease dynamics (e.g. 265 
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(Cohen et al. 2020; Albery et al. 2021)); as such, these analyses may become increasingly possible in 266 

coming years. Regardless, in these and other analyses, correlated changes in the magnitude and shape 267 

of sampling biases (e.g. towards zoonotic versus non-zoonotic parasites) should be taken into account 268 

when examining links among anthropogenic change, wildlife disease, and zoonotic risk. 269 

Methods 270 

Data sources 271 

Phylogeographic data. We used the PanTHERIA dataset (Jones et al. 2009) as a backbone for 272 

mammal taxonomy and phenotypic traits such as body mass. Phylogenetic data were derived from a 273 

mammalian supertree (Fritz et al. 2009), as used for several host-virus ecology studies (e.g. Olival et 274 

al. 2017; Albery et al. 2020; Becker et al. 2020). The tree’s phylogenetic distances between species 275 

were scaled between 0 and 1. Geographic data were taken from the IUCN species ranges (IUCN 276 

2019). For each species, we calculated total range area by adding together the areas for the 25 km 277 

raster cells in which they were present.  278 

To derive a measure of study effort, which often explains substantial variation in parasite diversity 279 

(Olival et al. 2017; Mollentze & Streicker 2020), we conducted systematic PubMed searches to 280 

identify how many publications mentioned a given mammal species, following previous methodology 281 

(Becker et al. 2020b). Domestication status used a sensu lato definition based on whether a species 282 

has ever been partially domesticated, coded as a binary variable. For example, despite being 283 

widespread in the wild, the European red deer (Cervus elaphus) is coded as “Domestic” because it is 284 

often farmed, notably in New Zealand (Mason 1994). Because we were investigating spatial 285 

distributions of species (see above), fully domesticated species that do not exist in the wild (e.g. cattle, 286 

Bos taurus) were generally excluded due to their absence from the IUCN species ranges. To 287 

investigate whether dietary flexibility could affect parasite diversity, following previous methodology 288 

(Santini et al. 2019), we derived diet diversity by calculating a Shannon index from the EltonTraits 289 

database proportional diet contents (Wilman et al. 2014). 290 

Life history data. To investigate how host life history variation affects parasite richness, we used a 291 

previously published, mass-corrected principal components analysis (PCA) of life history variation 292 

across mammal species (Plourde et al. 2017). The first two principal components (PCs) from this 293 

analysis, which explained 86% of variation in six life history traits (Plourde et al. 2017), were used as 294 

explanatory variables in our models. The six life history traits were gestation length, litter size, 295 

neonate body mass, interbirth interval, weaning age, and sexual maturity age. PC1 explains 63% of 296 

the variance in the six traits, representing a generalisable slow-fast life history axis. PC2 explains 23% 297 

of variance in these traits and represents greater investment in gestation time and larger offspring. 298 

Both PCs were available for all mammals in our dataset. We coded the PCs such that increasing 299 

values corresponded to “faster” life history (i.e., favouring greater reproduction over survival). 300 
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Urban adaptation data. We identified each species’ habitat preferences using a published database 301 

of long-term urban adaptation status in mammals (Santini et al. 2019). This dataset was compiled 302 

using literature searches to identify species that were observed inhabiting urban environments; species 303 

are either coded as a “visitor” or a “dweller”, based on whether they rely fully on urban environments 304 

to survive and reproduce (dweller) or whether they continue to rely on non-urban resources (visitor). 305 

This approach distinguishes our analysis from previous studies (e.g. Gibb et al., 2020): we use a strict 306 

definition of “urban-adapted” species, defining them as “mammals that survive, reproduce, and thrive 307 

in urban environments,” rather than basing urban status purely on survey records collected in urban 308 

settings. All species that were in PanTHERIA but were not in the urban adaptation dataset were coded 309 

as “non-urban”. We used urban adaptation as a binary variable, coding species as 0 or 1 depending on 310 

whether it was in the urban adaptation dataset. Overall, 180 species in our dataset were coded as a 1, 311 

denoting that they had been observed living off urban resources. 312 

Host-parasite association data. The recently released CLOVER dataset (Gibb et al. 2021) is the 313 

most comprehensive open-source dataset on the mammal-virus network. Here, we use an expanded 314 

version of this dataset that encompasses all parasites, rather than restricting to viruses, making our 315 

analysis the first analytical study to use these taxonomically broad parasite data. This dataset was 316 

synthesized from four large-scale datasets of host-parasite associations, each collected through a 317 

combination of web scrapes and systematic literature searches (Wardeh et al. 2015; Olival et al. 2017; 318 

Stephens et al. 2017; Shaw et al. 2020). These include the Enhanced Infectious Diseases Database 319 

(EID2; Wardeh et al. 2015); the Host-Pathogen Phylogeny Project (HP3; Olival et al. 2017); the 320 

Global Mammal Parasite Database (GMPD; Stephens et al. 2017); and a large-scale database on 321 

viruses and bacteria and their known hosts (Shaw et al. 2020). These contain a range of parasite 322 

groups, including viruses, bacteria, protozoa, fungi, helminths, and arthropods. In this conjoined 323 

dataset, host-parasite associations were counted according to demonstrated compatibility: that is, if a 324 

host species had ever been discovered infected with a given parasite, it was coded as a 1, and all 325 

undemonstrated associations were assumed absent. In addition to the taxonomic reconciliation 326 

underlying the CLOVER dataset, we cleaned the parasite names with the R package taxize 327 

(Chamberlain & Szöcs 2013), removing parasites that were not identified to species level and 328 

ensuring that no parasites existed under multiple identities. This ensured that no host-parasite 329 

associations were counted twice, resulting in a total 18,967 unique host-parasite associations. 330 

From this conjoined dataset, we derived the following traits for each mammal host species in our 331 

dataset: 1) Total parasite richness: the number of unique parasite species known to infect a given 332 

host species; 2) Zoonotic parasite richness: the number of these parasites that has also been 333 

observed to infect humans in our dataset. All analyses were repeated for overall parasite numbers 334 

(e.g., total number of zoonoses across all parasite groups) and for specific parasite subgroups (viruses, 335 

bacteria, protozoa, fungi, helminths, and arthropods). 336 
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For each analysis, to facilitate model fitting, we eliminated species for which there were missing data 337 

and then removed all host orders for which there were fewer than 20 species or for which fewer than 338 

1% of species had one or more known parasites. Leaving these taxa in did not notably alter fixed 339 

effects estimates generally but generated unlikely estimates for order-level effects). When combining 340 

the phenotypic, urban adaptation, and parasite datasets, any species with no known parasite 341 

associations was coded as a zero (i.e., a pseudoabsence), under the assumption that species with no 342 

known parasites are still informative of variables associated with low parasite richness (Albery & 343 

Becker 2021). 344 

Models 345 

Base model. To analyse associations between urban adaptation status and parasite richness, we used 346 

Generalised Linear Mixed Models (GLMMs) inferred using Integrated Nested Laplace 347 

Approximation (INLA) (Lindgren et al. 2011; Lindgren & Rue 2015). We used two response 348 

variables with a negative binomial distribution: total parasite richness and zoonotic parasite richness, 349 

where the second value was a subset of the first. Explanatory variables included: Citation number 350 

(log(x+1)-transformed); Host order (7 levels: Artiodactyla, Carnivora, Chiroptera, Lagomorpha, 351 

Primates, Rodentia, Soricomorpha); Urban adaptation status (binary; non-urban/urban); range area 352 

(continuous, log-transformed, defined above); Phylogenetic distance from humans (continuous, scaled 353 

0-1); Body mass (continuous, log-transformed); Domestication status (binary); and two life history 354 

principal components (PC1 and PC2; continuous, taken from Plourde et al. 2017). We also applied 355 

these models to each parasite subset to assess the generality of our parameter estimates. To examine 356 

how much of the observed urban effects were attributable to research effort, we  357 

Urban:citation GAMs. Because urban status and citation number were highly correlated and showed 358 

very different distributions, we fitted a generalised additive model (GAM) that was otherwise 359 

identical to our GLMMs, but with a smoothed term for citations that included an interaction with 360 

urban status. 361 

Urban-order interaction model. We then compared the base model with one including an 362 

interaction between host order and urban adaptation status to investigate whether the effect of urban 363 

adaptation varied taxonomically. We used the Deviance Information Criterion (DIC) to measure 364 

model fit, with a threshold change (ΔDIC) under 5 denoting competitive models.  365 

Phylogenetic model. For each model, we fitted a phylogenetic similarity effect in place of the host 366 

order effect to estimate how phylogenetic relatedness between species contributed to similarity in 367 

parasite richness. We used DIC to identify whether this effect improved model fit in the same way as 368 

the interaction model. 369 
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Multivariate models. To investigate whether urban adaptation status had different effects for the 370 

richness of different parasite types, we fitted two multi-response models using the MCMCglmm 371 

package (Hadfield 2010): one for overall richness and one for zoonotic richness. These models used 372 

each of the six parasite groups as response variables and included the same fixed effects, with 373 

different (but correlated) slopes for each response. Comparing the model’s estimates for the effect of 374 

urban adaptation for each parasite allowed us to ask whether specific parasite groups are significantly 375 

more likely to be associated with urban adaptation status than others. 376 

Zero-inflated models. To investigate whether pseudoabsences were disproportionately altering our 377 

results, we ran zero-inflated models of parasite and zoonotic richness again using MCMCglmm to 378 

control for processes that specifically generate zero-counts. These models generate two estimates for 379 

each explanatory variable: 1) the effect on the probability that a species’ parasite count is greater than 380 

zero (“zero-inflation”) and 2) the effect on parasite count greater than zero when accounting for this 381 

effect (“Poisson”). Importantly, the Poisson component of this model generates some zeroes itself, 382 

which improves upon similar models (e.g. hurdle models) in which all zeroes must be produced by the 383 

inflation term. This model allows us to identify whether, for example, urban species are simply more 384 

likely to have one or more known parasites, rather than having a greater overall known parasite 385 

richness, and whether our choice to code mammals with no known parasites as zero-counts would 386 

influence the results.  387 

Historical rates of parasite discovery. To investigate how differences between urban and non-urban 388 

wild mammals have accumulated over time, we analysed historical rates of parasite discovery and 389 

citation effort (from PubMed) between 1930 and 2020, following the methodology described in Gibb 390 

et al. 2021. Briefly, each unique host-parasite association was assigned a “discovery date” (the year of 391 

the earliest reported association in our dataset, based on either publication year, accession year or 392 

sampling year depending on the original data source; see Gibb et al. (2021) for details). We accessed 393 

yearly counts of citations from the PubMed database per host species using the `rentrez` package 394 

(Winter 2017). We visualised annual trends in novel parasite discovery and novel host-parasite 395 

association discovery in both urban and non-urban mammal species. We then fitted generalised 396 

additive models with a nonlinear effect of year (specified as a penalised thin-plate regression spline) 397 

to estimate the annual species-level mean publications, cumulative publications, parasites discovered 398 

and cumulative parasite richness, fitting separate models for urban-adapted (n=146) and non-urban 399 

(n=1365) species in our host-parasite dataset. We visualised fitted trends in these metrics to examine 400 

how differences in yearly and cumulative publication effort and parasite discovery rates have varied 401 

between urban and non-urban species (Figure SI7).  402 

Path analysis. To investigate whether urban mammals had a disproportionately high zoonotic 403 

richness when accounting for overall parasite richness, we fitted a path analysis (Shipley 2009) with 404 
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zoonotic richness as the ultimate response variable, log(overall richness +1) as an explanatory 405 

variable, and every other explanatory variable described above. We took 1000 random draws from the 406 

posterior distributions of 1) the effect of urban affiliate status on overall parasite diversity; 2) the 407 

effect of urban affiliate status on zoonotic richness; and 3) the effect of overall richness on zoonotic 408 

richness. This approach allowed us to identify whether urban adaptation had a significant positive 409 

effect on zoonotic richness when accounting for its effect on parasite richness as a whole, informing 410 

us as to whether a disproportionate number of urban mammals’ known parasites are known zoonoses. 411 

Spatial model. Observed parasite diversity in mammals is highly spatially heterogeneous at a global 412 

level (Allen et al. 2017; Olival et al. 2017; Carlson et al. 2020b), while the diversity of known urban-413 

adapted species is heavily biased towards North America and Eurasia (Santini et al. 2019). Both are 414 

driven by a combination of geographic variation in sampling effort as well as biotic and abiotic 415 

factors. To control for these spatial heterogeneities, we fitted spatial explanatory variables using three 416 

approaches. First, we 1) used a stochastic partial differential equation (SPDE) effect in INLA 417 

(Lindgren et al. 2011; Lindgren & Rue 2015). This effect used species’ geographic centroids in their 418 

IUCN ranges to control for spatial autocorrelation in the response variable according to Matern 419 

correlation, where species that were closer in space would be predicted to have similar numbers of 420 

known parasites as a result of sampling bias and biological factors. We first fitted one spatial field to 421 

the whole dataset to look for overall spatial structuring, and we then allowed this spatial effect to vary 422 

for urban and non-urban species to investigate whether the distribution of known richness varies 423 

between these hosts. We also 2) incorporated species’ presence on each of five continents (Eurasia, 424 

Africa, North America, South America, and Oceania) as binary variables and 3) added absolute 425 

latitude (i.e. distance from the equator). For the latter two approaches, we also fitted an interaction 426 

with urban adaptation to investigate whether the effect of urban adaptation status varied across space.  427 

 428 

  429 
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Figure 1: Urban-adapted mammals have more known parasites (A, C) and zoonoses specifically (B, 430 
D). In A-B, each point represents a mammal species, stratified by species that can capitalize on urban 431 
environments and those that do not. The Y axis represents the species’ known parasite diversity, on a 432 
log10 scale. Black dots and error bars represent raw group means and standard errors, respectively. 433 
Panels C-D present the urban adaptation effect for overall richness (C) and zoonotic richness (D), 434 

across multiple model formulations. The “base” models include all fixed effects but citation number; 435 
the following model includes citation number; and the third includes both citation number and a 436 

spatially distributed SPDE random effect. Points represent the mean of the posterior effect estimate 437 
distribution from the GLMMs; error bars represent the 95% credibility intervals. Numbers above the 438 

error bars display the P values, with asterisks denoting levels of significance (*<0.05; **<0.01; 439 
***<0.001). 440 

 441 
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Figure 2: Citation numbers are higher in urban species (A), and drive observed parasite richness (B) 443 
and observed zoonotic parasite richness (C). Each point represents a species. R and P values are 444 

derived according to Spearman’s rank correlations. In panel A, black dots and error bars represent raw 445 
group means and standard errors, respectively. See Figure 1 for the slope estimates from the GLMMs 446 

for panels B-C. 447 

 448 
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Figure 3: Path analysis revealed that urban-adapted mammals do not have more zoonoses than 451 
expected given their overall parasite diversity. Arrows denote hypothesised causal relationships. Red 452 
lines represent positive effects and blue lines represent negative effects. Other variables were included 453 
in the component linear models, but are not displayed in this figure for clarity. Labels display the 454 
model effect estimates on the log link scale, with 95% credibility intervals in brackets, and P values 455 
based on proportional overlap with 0. 456 

 457 
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Figure 4: Model fixed effect estimates and spatial effects. (A) Fixed effects from the GLMMs for 462 
overall parasite richness and zoonotic richness, excluding order-level effects. These models included 463 
an SPDE random effect to control for spatial autocorrelation. (B) Fixed effect estimates from the non-464 
spatial GLMMs for overall parasite richness and zoonotic richness. In A-B, points represent the mean 465 
of the posterior effect estimate distribution from the GLMMs; error bars represent the 95% credibility 466 
intervals. Asterisks denote estimates that were significantly different from zero. Order-level effects 467 
have been left out for clarity; see the Figures SI4-5 for full model effect estimates. (C) Spatial 468 
distribution of the SPDE random effect, identifying hot- and coldspots of parasite richness when non-469 
spatial fixed effects (all effects except latitude and continent) are taken into account. Darker colours 470 
correspond to greater parasite richness. 471 
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Supplement: Urban-adapted mammal 604 

species have more known pathogens 605 

 606 

SIFigure 1: The effect of urban affiliation on diversity of pathogen subsets. Each point 607 

represents a mammal species, stratified by species that can capitalize on urban 608 

environments (1) and those that do not (0). The Y axis represents the species’ known 609 

pathogen diversity. Black dots and error bars represent raw group means and standard 610 

errors, respectively. Displayed at the top of each panel are effect sizes for the between-611 

group difference, 95% credibility intervals (in brackets), and P values, taken from our 612 

GLMMs including other explanatory variables. 613 

 614 
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 615 

SIFigure 2: The effect of urban affiliation on zoonotic diversity of pathogen subsets. Each 616 

point represents a mammal species, stratified by species that can capitalize on urban 617 

environments (1) and those that do not (0). The Y axis represents the species’ known 618 

pathogen diversity. Black dots and error bars represent raw group means and standard 619 

errors, respectively. 620 
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 621 

SIFigure 3: Model effects for all fixed effects retained in the path analysis models for overall 622 

zoonotic diversity, for both base and spatial model formulations. Points represent the mean 623 

of the posterior effect estimate distribution; error bars represent the 95% credibility intervals. 624 

Model effects are displayed on the link scale. Explanatory variables are described in the 625 

methods. hOrder = host order; LogCites = log(citation number + 1); DomesticBinary1 = 626 

domestic species; HumanDistance = phylogenetic distance from humans; LogArea = 627 

log(area of IUCN range) in KM2; DietDiversity = diet diversity; LogMass = log(body mass) in 628 

kg; PC1 = first principal component of life history traits PCA; PC2 = second principal 629 

component of life history traits PCA; UrbanBinary1 = Urban adapted species; LogRichness = 630 

log(overall parasite richness + 1). 631 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.01.02.425084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.02.425084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 632 

SIFigure 4: Model effects for all fixed effects in the spatial models of parasite diversity. 633 

Points represent the mean of the posterior effect estimate distribution; error bars represent 634 

the 95% credibility intervals. Different colours represent different parasite groups, including 635 

overall parasites and a range of subgroups. Model effects are displayed on the link scale. 636 

Explanatory variables are described in the methods. hOrder = host order; LogCites = 637 

log(citation number + 1); DomesticBinary1 = domestic species; HumanDistance = 638 

phylogenetic distance from humans; LogArea = log(area of IUCN range) in KM2; 639 

DietDiversity = diet diversity; LogMass = log(body mass) in kg; PC1 = first principal 640 

component of life history traits PCA; PC2 = second principal component of life history traits 641 

PCA; UrbanBinary1 = Urban adapted species. 642 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.01.02.425084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.02.425084
http://creativecommons.org/licenses/by-nc-nd/4.0/


 643 

SIFigure 5: Model effects for all fixed effects in the spatial models of zoonotic parasite 644 

diversity. Points represent the mean of the posterior effect estimate distribution; error bars 645 

represent the 95% credibility intervals. Different colours represent different parasite groups, 646 

including overall parasites and a range of subgroups. Model effects are displayed on the link 647 

scale. Explanatory variables are described in the methods. hOrder = host order; LogCites = 648 

log(citation number + 1); DomesticBinary1 = domestic species; HumanDistance = 649 

phylogenetic distance from humans; LogArea = log(area of IUCN range) in KM2; 650 

DietDiversity = diet diversity; LogMass = log(body mass) in kg; PC1 = first principal 651 

component of life history traits PCA; PC2 = second principal component of life history traits 652 

PCA; UrbanBinary1 = Urban adapted species. 653 

 654 

 655 
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 656 

SIFigure 6: Model effects for all fixed effects in the zero-inflated models for overall parasite 657 

diversity (left) and zoonotic parasite diversity (right), for both the count components (top) and 658 

the zero-inflation component (bottom). Points represent the mean of the posterior effect 659 

estimate distribution; error bars represent the 95% credibility intervals. NB the inflation 660 

estimates represent the probability that a given species has zero known parasites, so can be 661 

interpreted as the inverse of the count estimates. Model effects are displayed on the link 662 

scale. Explanatory variables are described in the methods. LogCites = log(citation number + 663 

1); DomesticBinary1 = domestic species; HumanDistance = phylogenetic distance from 664 

humans; LogArea = log(area of IUCN range) in KM2; DietDiversity = diet diversity; LogMass 665 

= log(body mass) in kg; PC1 = first principal component of life history traits PCA; PC2 = 666 
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second principal component of life history traits PCA; UrbanBinary1 = Urban adapted 667 

species. 668 

 669 

 670 

 671 

SIFigure 7: Historical trends in parasite discovery and publication effort across urban-672 
adapted and non-urban mammals. Top row shows the annual number of novel 673 
parasites (left) discovered in either non-urban (blue) or urban (green) mammal 674 
cohorts, with a novel discovery defined as the first time a particular parasite was 675 

discovered in any species within that group, and the annual number of novel host-676 
parasite associations (right) discovered among urban and non-urban mammals. The 677 

middle row shows modelled trends in mean species-level annual PubMed-derived 678 
publication counts (left panel) and cumulative publications (right panel) across all urban 679 
(n=146) and non-urban host species, estimated via generalised additive models with a 680 

nonlinear effect of year (see Methods). The bottom row shows modelled trends in 681 
mean species level parasite discovery (parasites per year; left panel) and cumulative 682 

parasite richness (right panel) across all urban and non-urban host species. 683 

 684 

 685 
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