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Abstract

Systems serology measurements provide a comprehensive view of humoral immunity by pro!ling both
the antigen-binding and Fc properties of antibodies. Identifying patterns in these measurements will
help to guide vaccine and therapeutic antibody development, and improve our understanding of
disorders. Furthermore, consistent patterns across diseases may re"ect conserved regulatory
mechanisms; recognizing these may help to combine modalities such as vaccines, antibody-based
interventions, and other immunotherapies to maximize protection. A common feature of systems
serology studies is structured biophysical pro!ling across disease-relevant antigen targets, properties
of antibodies’ interaction with the immune system, and serological samples. These are typically
produced alongside additional measurements that are not antigen-speci!c. Here, we report a new
form of tensor factorization, total tensor-matrix factorization (TMTF), which can greatly reduce these
data into consistently observed patterns by recognizing the structure of these data. We use a previous
study of HIV-infected subjects as an example. TMTF outperforms standard methods like principal
components analysis in the extent of reduction possible. Data reduction, in turn, improves the
prediction of immune functional responses, classi!cation of subjects based on their HIV control status,
and interpretation of these resulting models. Interpretability is improved speci!cally by applying
further data reduction, separation of the Fc from antigen-binding e#ects, and recognizing consistent
patterns across individual measurements. Therefore, we propose that TMTF will be an e#ective general
strategy for exploring and using systems serology.

Summary points

Structured decomposition provides substantial data reduction without loss of information.
Predictions based on decomposed factors are accurate and robust to missing measurements.
Decomposition structure improves the interpretability of modeling results.
Decomposed factors represent meaningful patterns in the HIV humoral response.

Introduction

Whether during a natural infection, therapeutic vaccination, or an exogenously administered antibody
therapy, antibody-mediated protection is a central component of the immune system. While the
unique property of antibodies is conceptually simple—they undergo a$nity enrichment toward
speci!c antigens—the mechanisms of resulting protection are mediated through a network of
interactions.1 Therapies are often optimized based upon the titer or neutralizing capacity of the
antibodies they deliver. However, many of the mechanisms for antibody-mediated protection occur
through secondary interactions with the immune system via an antibody’s fragment-crystallizable (Fc)
region. While more challenging to quantify and identify as the mechanism of protective immunity,
these immune system responses, such as antibody-dependent cellular cytotoxicity (ADCC),2,3

complement deposition (ADCD),4 cellular phagocytosis,5 and respiratory burst6 are known to be just
as or more important in many diseases.

A suite of recent technologies promises to broaden our view of antibody-mediated protection as the
microarray did for gene expression. Systems serology aims to broadly pro!le the humoral immune
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response by quantifying both the antigen-binding and immune interaction of antibodies in parallel.7 In
these assays, antibodies are !rst separated based on their binding to a panel of disease-relevant
antigens.8 Next, the binding of those immobilized antibodies to a panel of immune receptors is
quanti!ed. Other molecular properties of the disease-speci!c antibody fraction that a#ect immune
engagement, such as glycosylation, may be quanti!ed in parallel in an antigen-speci!c or -generic
manner.8,9 By accounting for the two necessary events for e#ector response—antigen binding and
immune receptor engagement—these measurements have proven to be highly predictive of e#ector
cell-elicited responses and overall antibody-elicited immune protection.10

Though systems serology provides a major advancement in our ability to analyze the antibody-elicited
immune response, analysis of these data is in a nascent stage. Standard machine learning methods,
such as regularized regression, principal components analysis, and partial least squares regression
have been e#ective in identifying highly predictive immune correlates of protection.11,12 However,
identifying how speci!c molecular changes give rise to protection remains challenging. First, because
many of the measurements are overlapping in the molecules they quantify, or measure co-dependent
processes, much of the data is highly inter-correlated.13,14 Particularly when analyzing polyclonal
antibody responses such as those which arise in vaccination or natural infection, protection may arise
through single or combinations of molecular species and features within the antibody response,
through either individual or combinations of antigens.15,16 Ultimately, improvements in our ability to
identify patterns in these data, and how they relate to protection, should span the contribution of
individual molecular changes to overall immune protection with mechanistic detail. To date, no
methods have provided a means to holistically visualize the variation in serology measurements.

While systems serology measurements include a variety of di#erent assays to quantify humoral
response, a common overall structure exists to the data. The vast majority of the measurements
quantify the extent to which an antibody bridges all pairs of target antigen and receptor panels, across
a set of individuals.7 These measurements, therefore, can be thought of as a three-dimensional
dataset, where every number in this cube of data represents a single measurement (Fig. 1A/B). Then,
separately from these measurements, some antigen-generic properties of the humoral response, such
as overall antibody glycosylation, may be assessed.9,17 With data of three or more dimensions, a
family of methods called tensor factorization provides a generalization of matrix decomposition
methods like principal components analysis (PCA).18 These methods are especially e#ective at data
reduction when measurements have meaningful multi-dimensional features, such as time-course
measurements.19 Like PCA, tensor decomposition methods, when appropriately matched to the
structure of data, help to visualize its variation, reduce noise, impute missing values, and reduce
dimensionality.20

In this work, we use the structure of systems serology measurements to improve its visualization, infer
missing values, and predict functional immune features. As an example, we analyze a study wherein
systems serology measurements were shown to predict both functional immune responses and
disease status within HIV-infected subjects.12 We !rst develop a new tensor factorization approach—
total matrix-tensor factorization (TMTF)—to decompose these measurements into consistent patterns
across subjects, immunologic features, and antigen targets. Inspecting these factors reveals
interpretable patterns in the humoral response, and these pattern’s abundance across subjects
predicts functional immune responses and subjects’ HIV infection state. Importantly, TMTF signi!cantly
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improves the interpretability of these predictions compared to methods that do not recognize the
structure of these data. This approach, therefore, provides a very general data-driven strategy for
improving systems serology analysis.

Results

Systems serology measurements can be drastically reduced without loss of information

We !rst sought to determine whether the structure of systems serology measurements could inform
better data reduction strategies (Fig. 1). To integrate antigen-speci!c and -generic measurements, we
developed a new form of tensor decomposition we will refer to as total matrix-tensor factorization
(TMTF) (Fig. 1C). By concatenating both the unfolded tensor and matrix during the alternating least
squares (ALS) solve for the subject dimension, we maximize the variance explained across both
datasets (Fig. 1D, see methods). This is in contrast to coupled matrix-tensor factorization, which only
explains the variance shared between the datasets21 (Fig. 1D).
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Figure 1:  Systems serology measurements have a consistent multi-dimensional structure. A) General description of the
data. Antibodies are !rst separated based on their binding to a panel of disease-relevant antigens. Next, the binding of those
immobilized antibodies to a panel of immune receptors is quanti!ed. Other molecular properties of the disease-speci!c
antibody fraction that a#ect immune engagement, such as glycosylation, may be quanti!ed in parallel in an antigen-speci!c or -
generic manner. These measurements have been shown to predict both disease status (see methods) and immune functional
properties—ADCD, ADCC, antibody-dependent neutrophil phagocytosis (ADNP), and natural killer cell activation measured by
IFNγ, CD107a, and MIP1β expression. B) Overall structure of the data. Antigen-speci!c measurements can be arranged in a
three-dimensional tensor wherein one dimension each indicates subject, antigen, and receptor. In parallel, antigen-generic
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measurements such as quanti!cation of glycan composition can be arranged in a matrix with each subject along one dimension,
and each glycan feature along the other. While the tensor and matrix di#er in their dimensionality, they share a common subject
dimension. C) The data is reduced by identifying additively-separable components represented by the outer product of vectors
along each dimension. The subjects dimension is shared across both the tensor and matrix reconstruction. D) Venn diagram of
the variance explained by each factorization method. Canonical polyadic (CP) decomposition can explain the variation present
within either the antigen-speci!c tensor or glycan matrix on their own.20 CMTF allows one to explain the shared variation
between the matrix and tensor.21 In contrast, here we wish to explain the total variation across both the tensor and matrix. This
is accomplished with TMTF (see methods).

To determine the extent of data reduction possible, we examined the reconstruction error upon
decomposition with varying numbers of components (Fig. 2A). As we start with a 181x22x41 tensor
and 181x25 matrix, we start with a dataset of 168,000 values, of which 96,000 or 57% were measured
and therefore not missing. After factorization with 10 components, we are left with four matrices of
181x10, 22x10, 41x10, and 25x10. Therefore, we reduce the dataset to 2.8% of the size (2,690
numbers), while preserving 93% of its variation (Fig. 2A). We compared this to the dimensionality
reduction possible with PCA and the data organized in a "attened matrix form (Fig. 2B). TMTF
consistently led to a similar accuracy on reconstruction with half the resulting factorization size
compared to PCA (Fig. 2B). For example, TMTF led to a normalized unexplained variance of 0.15 at
~1,024 values within the factorization, while PCA required ~2,048 to do the same. This gave us
con!dence that this structured factorization can greatly reduce the data while preserving its
meaningful variation.

Figure 2:  TMTF improves data reduction of systems serology measurements. A) Percent variance reconstructed (R2X)
versus the number of components used in TMTF decomposition. B) TMTF reconstruction error compared to PCA over varying
sizes of the resulting factorization. The unexplained variance is normalized to the starting variance. Note the log scale on the x-
axis.

Factorization accurately imputes missing values
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With con!dence that factorization was identifying consistent patterns within the HIV serology
response, we wondered if our approach might improve missing values imputation. Systems serology
measurements require a panoply of di#erent measurements in combination; especially in such large-
scale e#orts, measurements can be missing for a variety of reasons. Subject samples can be limited,
and so only be available for a small set of measurements. A subset of measurements may be of
particular interest to investigators; for example, surface antigens to a virus may be prioritized for more
detailed Fcγ receptor binding measurements, since they are more likely to be exposed in the
extracellular space. In our example HIV serology data, many antigen-receptor pairs are absent, as are
glycan measurements for half of the subjects. In such a case traditional regression models were limited
to a smaller subset of either the data or the subjects in making predictions.12 TMTF provides the
possibility of eliminating this tradeo# while simultaneously imputing the absent data. E#ective
imputation also enables outlier detection to, for example, identify assays that may have technical
problems. Finally, observing that factorization accurately imputes missing values further supports that
this approach identi!es biologically-meaningful and consistent patterns.

To evaluate whether factorization could accurately impute missing values, we arti!cially introduced
missing values by randomly removing entire receptor-antigen pairs across all subjects. TMTF was then
performed which e#ectively !lled these in, and we then calculated the variance inferred in this left-out
data (Fig. 3A). Factorization imputed these values with similar accuracy to the variance explained within
observed measurements (Fig. 2A), supporting that it is able to identify meaningful patterns even in the
presence of missing measurements. This provides additional evidence that the patterns identi!ed
through factorization are a meaningful and substantial representation of the data.

Figure 3:  TMTF accurately imputes missing values. Percent variance predicted (Q2X) versus the number of components used
for imputation of held out receptor-antigen pairs.

Factor components represent consistent patterns in the HIV humoral immune response
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Systems serology measurements have typically been analyzed by standard regularized prediction
methods, such as elastic net and partial least squares regression, on the measurements
themselves.12,22 These methods are very e#ective at prediction and do provide some interpretation of
the mechanism behind those predictions. At the same time, a per-measurement perspective can hide
that immune responses occur through polyclonal responses across antigens and through regulatory
changes that a#ect multiple receptors. Systems serology measurements further complicate
interpretation due to the combined in"uence of both antigen binding and immune receptor interaction
di#erences.23

In contrast, tensor factorization provides a much more interpretable view of the coordinate changes
along these dimensions (Fig. 4). To visualize the resulting factors, we plotted all of the components
along their subject (Fig. 4A), receptor (Fig. 4B), antigen (Fig. 4C), and glycan (Fig. 4D) factors. Notably,
these factors quantitatively visualize these measurements in their totality, which has not been possible
to date. To interpret the resulting plots, one can examine the values of an individual component along
each plot, as each component represents a separate pattern of variation within the data (additively
separable variation), and each plot represents a separate dimension. The e#ect of each component is
the product of its factors along each dimension, and so we can examine the contribution of each
dimension individually.

Through inspection of each individual component, one can understand the consistent patterns across
the serology measurements. For instance, component 4 explains a pattern of variation speci!cally in
IgG1 (Fig. 4B) and Gag (Fig. 4C). The amount of this Gag-binding IgG1 varies according to each subject’s
component 4 value (Fig. 4A). Finally, variation along this component corresponds to variation in glycan
composition, and most prominently a decrease in G1F and G1 overall (Fig. 4D). As each component is
additively independent, they can be inspected on a component-by-component basis to explore every
pattern of variation within the serology.

The factorization revealed many interesting quantitative patterns. For example, component 5
represents a shift between surface antigen (gp120, gp140) and p24/p51/p66 binding (Fig. 4C), which
would be nearly impossible to identify without separating receptor and antigen e#ects as TMTF does.
We identi!ed that some technical artifact resulted in genotype-speci!c FcγRIIIa measurements that are
more sensitive than the genotype-generic ones (Fig. S2). Both components that we interpreted as
explaining high-a$nity FcγRIIIa and FcγRIIIb binding due to preferential weighting of the less sensitive
measurement (Fig. 4B)—6, 8, and 10—also had strongly negative fucosylation and G0F weights (Fig.
4D). These glycosylation changes are known to hinder FcγRIIIa interaction and therefore ADCC.24 C1q
binding was most heavily weighted along component 5 (Fig. 4B), which also weighted coordinate
galactosylation and fucosylation (Fig. 4D, G2F/G1FB/G1F), which are known to promote this binding.24

These observations support that the TMTF components represent meaningful variation among both
the antigen-speci!c and glycosylation measurements, and that they can be used to clearly derive
mechanistic insight.
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Figure 4:  Factor components represent consistent patterns in the HIV humoral immune response. Decomposed
components along subjects (A), receptors (B), antigens (C), and glycans (D). EC: Elite Controller, TP: Treated Progressor, UP:
Untreated Progressor, VC: Viremic Controller (see methods). All plots are shown on a common color scale. Measurements were
not normalized, and so magnitudes within a component are meaningful. Antigen names indicate both the protein (e.g., gp120,
gp140, gp41, Nef, Gag) and strain (e.g., Mai, BR29).

Structured data decomposition accurately predicts functional measurements and subject
classes

Next, we evaluated whether our reduced factors could predict the functional responses of immune
cells and subject classes. We attempted to predict previous functional data for antibody-dependent
complement deposition (ADCD); cellular cytotoxicity (ADCC); neutrophil phagocytosis (ADNP); and level
of natural killer cell activation determined by expression of IFNγ, CD107a, and MIP1β. Separately, we
predicted broad subject disease statuses: Controller versus Progressor, and Viremic vs Non-Viremic
(see methods). As a baseline of comparison, we reimplemented the immune functionality and subject
predictions previously applied to these data.12 We observed similar performance to that reported (Fig.
5). Di#erences from earlier results could be explained by corrections we made to the cross-validation
strategy to prevent over-!tting (see methods).

We benchmarked the ability of the factorized results to make these same predictions. TMTF represents
the variation among subjects within a subject matrix (Fig. 4A). To make predictions, one needs only
work with these subject factors rather than the hundreds of original variables in the entire dataset.
Furthermore, TMTF provides factorization results for each subject despite the presence of missing
values. We therefore were able integrate the glycan data with the other serology measurements,
allowing us to utilize all data gathered and make observations across the datasets.

Particularly as we observed systematic, non-linear trends between the genotype-speci!c and -generic
measurements across antigens (Fig. S2), we surmised that there might be a non-linear relationship
between our factors and each prediction. Greatly reducing the number of variables to 10 components
allowed us to apply a Gaussian process model to predict each function and subject class, allowing for
non-linear e#ects.25 We separated our quanti!cation of model accuracy based on whether a subject
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was included or excluded previously.12

Broadly, we saw nearly identical performance in predicting immune functional responses (Fig. 5A). This
was also the case for predicting whether subjects were classi!ed as progressors or viremic (Fig. 5B).
Therefore, we concluded that TMTF preserves su$cient information to predict these important
features.

Figure 5:  Structured data decomposition more accurately predicts functional measurements and subject classes. (A)
Accuracy of prediction (de!ned as the Pearson correlation coe$cient) for di#erent functional response measurements. (B)
Prediction accuracy for subject viral and controller status.

Immune function correlates match biological mechanisms

Inspecting our predictive models revealed mechanistic insights that correspond to the known biology
of each immune functional response. ADCD was predicted almost exclusively using component 5 (Fig.
6A). Component 5 carried the strongest weight among components for C1q binding and so likely
indicates classical pathway activation.26 It also showed positive weighting of LCA, PNA, and SNA
binding, indicative of lectin-pathway complement activation (Fig. 4B).26 The regression model in the
original study also identi!ed C1q binding as important,12 but was unable to capture the relationship to
the lectins or the shift between surface antigen and p24/p51/p66 binding (Fig. 4C). This further insight
is made possible by the ability of TMTF to separate out individual factors in the serology data.

Similarly, our model provides new, clearer observations of relationships between the factorized results
and ADCC. ADCC was most prominently predicted through component 2, and secondarily 4 and 6 (Fig.
6A). Component 2 represents broad antigen binding across both gp120 and gp140, along with
di#erences between the genotype-speci!c and -generic receptor measurements (Fig. 4B/C). As
discussed above, we believe this is due to a di#erence in sensitivity of the two assays. Broadly, the
receptor pro!le seems to only weight the more sensitive measurements (Fig. S2). We believe this
component represents greater antigen binding overall, picked up by even the less sensitive assays,
which also explains the positive correlation with all glycoforms (Fig. 4D). Component 6 again has broad
binding across surface antigens but weights the genotype-generic FcγRIIIa and FcγRIIIb measurements
more—we expect this represents high-a$nity or high-avidity surface binding.
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Antibody-dependent neutrophil-mediated phagocytosis (ADNP) was most prominently explained by
components 6, and (negatively) 8 (Fig. 6A). These highlight two mechanisms of driving neutrophil
phagocytosis—via lectin engagement (components 6 and 8) and/or FcγR binding (component 6). As
described above, we interpret component 6 to indicate high-a$nity or high-avidity receptor binding
across surface antigens.

All three cytokines, used as measures of NK cell activation, only depended upon component 6 and
(negatively) 8 (Fig. 6A). We should expect similar models across these cytokines as their amounts are
highly correlated across subjects and were all measured as surrogates of NK cell activation.12 The
greater dependence on component 6 compared to ADCC is consistent with our expectations for the
determinants of each signal; ADCC might be driven by high amounts of FcγRIIIa engagement from a
mix of high- and low-a$nity/avidity interactions, while NK cell activation provides a quantitative
activation measurement that is best promoted through exclusively high-a$nity/avidity engagement.
Overall, our model interpretation supports that the TMTF-decomposed factors identify patterns that
are relevant to immune functional responses.

Figure 6:  Model component e!ects. Model component e#ects for each function (A) and subject class (B) prediction.
Component e#ects are quanti!ed using the variable weights for a linear model, and the inverse RBF kernel length scale for a
Gaussian process model.27 For the Gaussian process component e#ects, the component e#ect is also multiplied by the sign of
the corresponding linear model to show whether that variable has an overall positive or negative e#ect. The component e#ects
are shown scaled to the largest magnitude within each model.

HIV progression and viremia are predicted by speci"c, multi-antigen responses

The clinical properties of a disease likely involve coordinated immune functions. As a result, being able
to reason about a small number of consistent immunological patterns might be especially helpful for
interpreting predictive models. Therefore, we took a similar approach for evaluating the variable
dependence for predictions of subject progression and viremic status.
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Remarkably, progression was exclusively explained by just components 5 and, to a lesser degree, 1 and
7 (Fig. 6B). In fact, a model using only component 5 was just as predictive as one with all components
available. Component 5 corresponds to increased amounts of p24 binding across strains. Abundance
of p24 antigen and its antibody titer has been proposed as an e#ective marker of HIV progression,28

and predictive of death,29 although much of this is via correlation with viral RNA and CD4+ counts.30

This component also displays negative weighting across gp120 and gp140 antigens, likely re"ecting a
decrease in antibody titers overall, which has separately been found to predict progression.31

Therefore, while features of p24 abundance or antibody titers may have an incomplete and complex
relationship with progression, a p24/gp120 ratio may be more predictive.

Viremia was related to a broader set of components, most prominently 5 and (negatively) 6 (Fig. 6B).
Given the importance of component 6 in predicting nearly all of the functional measurements (Fig. 6A),
its importance in predicting viremia is to be expected. Component 5 likely serves to separate subjects
based on their progression status as a proxy for antiretroviral therapy e#ect. That is, elite controllers,
or those who control their infection without anti-retroviral therapy (ART), are likely to be
immunologically distinct from treated progressors, who are not viremic due to ART. In all, a small
number of consistent patterns accurately predict subjects’ HIV infection status. This is in stark contrast
to previous approaches, where optimal models required 30–50 variables, and predictions rely on a
complex collection of positive and negative associations with antigen and receptor measurements.12

Discussion

We show here that structured data decomposition can improve our view of systems serology
measurements. Speci!cally, this approach recognizes that measurements and their variation take
place across distinct and separable dimensions—namely antigen binding and immune receptor
engagement. Using this property, we identify that these measurements can be reduced more
e$ciently (Fig. 2), can be made robust to missing values (Fig. 3), and that properties of the immune
system and infection can be accurately predicted (Fig. 5). Most critically, this form of dimensionality
reduction provides a clearer interpretation of the resulting models (Fig. 4, 6), as it accounts for the
high degree of inter-correlation across each dimension.

The key advancement of TMTF is separating the contribution of antigen from immune receptor
binding. This separation enables the improved data reduction by avoiding repetition of the antigens for
each receptor measurement or vice-versa in the factors (Fig. 2). Separation is also what allowed us to
identify that just 8–10 consistent patterns exist within HIV subject’s serology (Fig. 4). Remarkably, even
a multi-factorial change in the relationship between HIV and the immune response, like progression,
could be accurately captured by a single pattern within the serology measurements (Fig. 4B, 6B). While
each functional measurement was predicted through a combination of factors, component 6
contributed to nearly every prediction (Fig. 4B). This suggests that these functions are tuned through
both shared and individualized regulatory changes. One limitation of the current immune functional
assessments and glycan measurements is that they are not antigen-speci!c; future re!nements to
these measurements may reveal more precise regulation,4 particularly as glycans are known to be
tuned in an antigen-speci!c manner.32,33

Advancements in the decomposition approach will continue to improve the predictions, interpretation,
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and robustness of systems serology data. While each antigen is treated similarly along one dimension,
antigenic sites and strains could be separated into distinct dimensions before decomposition. This
could lead to further data reduction (e.g. both strains of p24 and gp41 antigens share an identical
signature; Fig. 4C), and simplify comparisons between strains. Interestingly, many of the subject
components were highly correlated, indicating that components mostly separated due to di#erences in
explaining the antigen and receptor dimensions (Fig. 4). As the subjects dimension results in the
largest factor matrix (Fig. 4A), nested PCA or other factorization of it could easily reduce the data
another two-fold. One current challenge is that some e#ect—possibly a technical artifact such as
dilution di#erences—leads to non-linearities between receptors in the FcγR binding measurements
(Fig. S2). Tensor generalizations of non-linear data reduction methods, like kernel-based factorization
or autoencoders, could help to account for these patterns.34 To the extent that these di#erent factors
re"ect di#erences in the avidity versus a$nity of binding, factorization using a mechanistic binding
model may help to separate these contributions.35 Conversely, TMTF is sure to have wider applications
in other comprehensive molecular pro!ling experiments. Many datasets exist where measurements
are made across varying dimensionality, such as with and without a temporal axis, and one wishes to
!nd conserved patterns across the entirety of the data. As one example, TMTF could be used to look
for patterns across paired time-course and endpoint single-cell measurements.36

More e#ective dimensionality reduction in turn enables new ways of viewing antibody-mediated
protection. As mentioned above, systems serology in a way provides a view of antibody-mediated
immunity akin to the microarray for gene expression data. The analogy reveals a few modeling
advancements that will help leverage this data. One valuable property of TMTF is that it separates the
immune receptor and antigen-binding patterns within the data. This will enable surveys for common Fc
response patterns across diseases because these di#erent datasets would still share this axis. This
“transfer learning” could therefore help to identify common patterns of immune dysregulation. With
more extensive pro!ling of the various glycosylation and isotype Fc forms, it would be possible to !x
the receptor axis of the decomposition, to match new measurements to speci!c known immunologic
patterns. These pattern-matching approaches would be much like gene set enrichment analysis for
expression data.37 Finally, the binding interactions of antibodies, while they produce combinatorial
complexity, are a simple set of antigen and receptor binding. Ultimately, one should be able to apply
multivalent binding models to mechanistically model the interactions within serum.35,38 Such a
mechanistic view would not only allow us to exactly identify mechanisms of antibody-mediated
protection, but help to guide more advanced multi-modality therapeutic interventions, like monoclonal
inhibitors or enhancers of antibody response that cooperate with the cocktail of endogenous
antibodies.

Advancements outside systems serology will ultimately work alongside these measurements to expand
our view of immunity. Much like how systems serology has served to pro!le antibody-mediated
protection, pro!ling methods are helping to characterize T cell-mediated immunity.39 These
technologies, alongside more traditional technologies to pro!le cytokine response, gene expression,
and other molecular features, promise to provide a truly comprehensive view of immunity. Integrating
these data will require dimensionality reduction techniques that recognize the structure of these data
alone and in combination. Factorization methods will be a natural solution to this challenge, due to
their scalability, "exibility, and interpretability.20
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Methods

All analysis was implemented in Python v3.8 and can be found at https://github.com/meyer-
lab/systemsSerology.

Subject cohort, antibody puri"cation, e!ector function assays, and glycan analysis

All experimental measurements were used unmodi!ed from prior work.12 The only exception is the
gp140 antigen from the HVBc2 strain. This was found to be scaled much larger than the other antigens,
and so was multiplied by 0.000001 to put it on a similar scale to other antigens. A small number of
receptor binding measurements were found to have very large negative values. These were taken to be
outliers and clipped to 0.0. HIV subjects were classi!ed into four categories: untreated progressors,
who failed to control viremia without combined anti-retroviral therapy (cART), treated progressors,
who similarly failed to control viremia without cART but were on it for the study measurements,
viremic controllers, who possessed a viral load between 50 and 2,000 RNA copies/mL without cART,
and elite controllers, who had less than 50 copies/mL without cART. These were then grouped into two
classi!cations: controllers (EC and VC) versus progressors (UP and TP); and viremic (UP and VC) versus
non-viremic (TP and EC).

Total Matrix-Tensor Factorization

We decomposed the systems serology measurements into a reduced series of Kruskal-formatted
factors. Tensor operations were de!ned using Tensorly.40 To capture the structure of the data, where
the majority of measurements were made for speci!c antigens, but gp120-associated antibody
glycosylation was measured in an antigen-generic form, we separated these two types of data into a
separate 3-mode tensor and matrix, with shared subject-dimension factors:

where , , and  are vectors indicating variation along the subject, receptor, and antigen
dimensions, respectively.  is a vector indicating variation along glycan forms within the glycan matrix.

Decomposition was performed through an alternating least squares (ALS) scheme.18 Each least
squares step was performed separately for each slice along a given mode, with missing values
removed. While this made each iteration step much slower, convergence was much faster as a
consequence of requiring fewer iterations. Missing values did not strictly follow a tensor slice pattern,
and so alternative approaches such as a sampling Khatri-Rao product were disregarded as they would
still require iterative !lling.41 This strategy required many more iterations due to a high fraction of
missing values (43%). The ALS iterations were repeated until the improvement in R2X over the last ten
iterations was less than .

Xantigen ≈
R∑

r=1

ar ∘ br ∘ cr

Xglycosylation ≈
R∑

r=1

ar ∘ dr

ar br cr

dr

1 × 10−7
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To enforce shared factors along the subject dimension, the antigen tensor and glycan matrix were
concatenated after tensor unfolding. The Khatri-Rao product of the receptor and antigen factors was
similarly concatenated to the glycan factors. The least-squares solution on this axis therefore solved for
minimizing the squared error across both data compendiums. The other dimensions were solved using
a standard ALS approach.

Reconstruction Fidelity

To calculate the !delity of our factorization results, we calculated the percent variance explained. First,
the total variance was calculated by summing the variance in both the antigen-speci!c tensor and
glycan matrix:

Any missing values were ignored in the variance calculation throughout. Then, the remaining variance
after taking the di#erence between the original data and its reconstruction was calculated:

An analogous equation was used for the glycan matrix. Finally, the fraction of variance explained was
calculated:

Where indicated, this quantity was calculated for values left out to assess the !delity of imputation. In
these cases this quantity was only calculated on those left out values, and indicated as Q2X.

Cross-Validation

We employed a 10-fold cross-validation strategy to evaluate each prediction model. Cross-validation
was strati!ed by class for classi!cation. Unlike in earlier work,12 all subjects were randomly shu%ed
before cross-validation to prevent the in"uence of subject ordering in the dataset. We found that
sharing the cross-validation fold structure between hyperparameter selection and model
benchmarking led to consistent over!tting. For the factorization-based predictions, the better
performing of either a linear or Gaussian process model was used. The linear model only showed
superior performance when predicting ADCD.

Logistic Regression / Elastic Net

Logistic regression and elastic net were performed using LogisticRegressionCV  and 
ElasticNetCV  implemented within scikit-learn .42 Both methods used 10-fold cross-validation

to select the regularization strength with smallest cross-validation error, and a fraction of l1
regularization equal to 0.8 to match previous results.12 Logistic regression used the SAGA solver.43

Elastic net regression was set to normalize the data before model assembly.

Gaussian Process Regression / Classi"cation

Gaussian process regression or classi!cation was performed where indicated using the
implementation within scikit-learn .42 Regression was performed with output scaling. In both
cases, an anisotropic radial basis function kernel was used with a constant scaling factor and additive

vtotal = ∥∥Xantigen∥∥ + ∥∥Xglycosylation∥∥

vr,antigen = ∥∥Xantigen − X̂antigen∥∥

R2X = 1 −
vr,antigen + vr,glycosylation

vtotal

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.03.425138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.03.425138
http://creativecommons.org/licenses/by-nc-nd/4.0/


white noise. The kernel’s parameters were left unbounded.

Principal Components Analysis

Principal components analysis was performed using the implementation within the Python package 
statsmodels  and the SVD-based solver. Missing values were handled by an expectation-

maximization approach, wherein they were !lled in with the imputed value. This !lling step was
performed up to 100 iterations until convergence as determined by a tolerance of .

Missingness Imputation

To evaluate the ability of factorization to impute missing data, we introduced new missing values by
removing chords from the antigen-speci!c tensor, and then looking at the variance explained on
reconstruction (Q2X). More speci!cally, !fteen randomly selected receptor-antigen pairs were entirely
removed and marked as missing across all subjects. TMTF decomposition was performed as described
above, and then these left out data were compared to the reconstructed values. This process was
repeated for the same chords across varying numbers of components.
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Supplementary Figures

Figure S1:  Predicted versus actual values of factorization-based regression models. Each point represents one subject and
values represent antibody e#ector function assay values.12 Accuracy was calculated using the Pearson correlation coe$cient.
The red line represents the line of best !t.
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Figure S2:  Comparing receptor genotype measurements across shared antigens shows consistent non-linear
relationships. Plots comparing the binding among the FcγRIIa (a–c), FcγRIIIa (d–f), and FcγRIIIb (g–i) receptors, across all shared
antigens and subjects. The red line shows the least-squares regression of a power curve. While one would expect sample-by-
sample di#erences due to receptor a$nity, the most prominent pattern is a consistent non-linear relationship. Also, the non-
genotpe-speci!c receptor was the most divergent in measurement in every case. This suggests some consistent, technical
artifact between the generic and genotype-resolved measurements.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.03.425138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.03.425138
http://creativecommons.org/licenses/by-nc-nd/4.0/

