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Abstract 

Background: Schizophrenia affects around 1% of the global population. Functional connectivity 

extracted from resting-state functional magnetic resonance imaging (rs-fMRI) has previously been 

used to study schizophrenia and has great potential to provide novel insights into the disorder. Some 

studies have shown abnormal functional connectivity in the default mode network of individuals with 

schizophrenia, and more recent studies have shown abnormal dynamic functional connectivity (dFC) 

in individuals with schizophrenia. However, DMN dFC and the link between abnormal DMN dFC and 

symptom severity have not been well characterized.    

Method: Resting-state fMRI data from subjects with schizophrenia (SZ) and healthy controls (HC) 

across two datasets were analyzed independently. We captured seven maximally independent 

subnodes in the DMN by applying group independent component analysis and estimated dFC 

between subnode time courses using a sliding window approach. A clustering method separated the 

dFCs into five reoccurring brain states. A feature selection method modeled the difference between 

SZs and HCs using the state-specific FC features. Finally, we used the transition probability of a hidden 

Markov model to characterize the link between symptom severity and dFC in SZ subjects. 

Results: We found decreases in the connectivity of the anterior cingulate cortex (ACC) and increases 

in the connectivity between the precuneus (PCu) and the posterior cingulate cortex (PCC) (i.e., 

PCu/PCC) of SZ subjects. In SZ, the transition probability from a state with weaker PCu/PCC and 

stronger ACC connectivity to a state with stronger PCu/PCC and weaker ACC connectivity increased 

with symptom severity. 

Conclusions: To our knowledge, this was the first study to investigate DMN dFC and its link to 

schizophrenia symptom severity. We identified reproducible neural states in a data-driven manner 
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and demonstrated that the strength of connectivity within those states differed between SZs and 

HCs. Additionally, we identified a relationship between SZ symptom severity and the dynamics of 

DMN functional connectivity. We validated our results across two datasets. These results support the 

potential of dFC for use as a biomarker of schizophrenia and shed new light upon the relationship 

between schizophrenia and DMN dynamics. 

1 Introduction 

In recent years, static functional connectivity (sFC) obtained from resting-state functional magnetic 

resonance imaging (rs-fMRI) time series has revealed a great deal of knowledge about brain 

dysconnectivity in schizophrenia (Lynall et al., 2010; Skåtun et al., 2017). Among intrinsic brain 

networks, the default mode network (DMN) – including the anterior cingulate cortex (ACC), posterior 

cingulate cortex (PCC), precuneus (PCu), medial prefrontal cortex (mPFC), ventral ACC, and the 

lateral/inferior parietal cortices – has been widely studied due to its putative role in external 

monitoring, spontaneous cognition, and autobiographical thinking (Hu et al., 2017) and due to its 

links to mental disorders like schizophrenia (Du et al., 2016).  

In the DMN, the anterior and posterior cingulate cortices (ACC and PCC) are involved in multiple 

complex cognitive functions, including decision-making, empathy, emotion, socially-driven 

interactions, and autobiographical memory (Stevens et al., 2011; Leech and Sharp, 2014). Several 

studies showed a functional and structural alteration within and between the cingulate cortex and 

other regions that emphasized the role of this region in the pathology of schizophrenia (Wood et al., 

2007; Calabrese et al., 2008; Whitfield-Gabrieli et al., 2009; Woodward et al., 2011; Yan et al., 2012; 

Peeters et al., 2015; Wang et al., 2015, 2017; Guo et al., 2017; Li et al., 2019). In a voxel-wise 

comparison between SZs and HCs, SZ individuals show a reduction of ACC gray matter (Wang et al., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.03.425152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.03.425152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
4 

2007). In addition, a reduction of ACC functional connectivity within DMN has been associated with 

SZ (Li et al., 2019). Regarding the PCC, a reduction of PCC gray matter volume has been found in both 

individuals with schizophrenia and their non-psychotic siblings (Calabrese et al., 2008). One rs-fMRI 

study showed higher connectivity between the PCC and PCu in SZ subjects (Whitfield-Gabrieli et al., 

2009). Consistent with this, an increase in connectivity between the PCu and PCC has been reported 

in schizophrenia subjects and their siblings (Peeters et al., 2015). In a small sample size, lower 

functional connectivity of the ACC in the anterior DMN and the PCu in the posterior DMN of 

schizophrenia subjects exhibiting poor insight is reported (Liemburg et al., 2012).  

Several studies from our group and others have previously reported a link between sFC among the 

ACC, PCC, and PCu and symptom severity in schizophrenia (Whitfield-Gabrieli et al., 2009; Chain et 

al., 2019; Hare et al., 2019). One of those studies reported a positive correlation between PCu/PCC 

connectivity and symptom severity as measured by the scale for the assessment of positive symptoms 

(SAPS) in a relatively small number of subjects (Whitfield-Gabrieli et al., 2009). A separate study 

showed aberrant connectivity within the DMN and also that DMN connectivity correlates with 

symptom severity in schizophrenia subjects (Garrity et al., 2007), and another study found a link 

between the ACC thickness of SZ subjects and the duration of illness and severity of psychotic 

symptoms (Wang et al., 2007). 

All the studies mentioned above either studied the DMN as a whole or emphasized the separate role 

of the PCC, ACC, and PCu within the DMN and their connectivity to the pathology of schizophrenia. 

However, inconsistent results in the functional connectivity of the regions have been previously 

observed. For example, previous studies showed that SZ subjects had both an increase and a decrease 

in ACC connectivity within the DMN compared with HC (Li et al., 2019; Shukla et al., 2019). Although 
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this inconsistency could, to a limited extent, be attributed to differences in disease subtypes or 

symptoms, we theorize that some of the heterogeneity is driven by the emphasis on sFC, which 

represents an average across different brain states during an unconstrained resting state.  

Unlike conventional sFC, which is obtained from the correlation within an entire time series, dynamic 

functional connectivity (dFC) or its network analog, dynamic functional network connectivity (dFNC) 

refers to the connectivity between pairs of brain regions (or networks) within sub-intervals of time 

series (Calhoun et al., 2014). In fact, dFC research suggests that cognitive deficits and clinical 

symptoms associated with many psychiatric disorders not only depend on the strength of the 

connectivity between any brain regions but also on the variation of connectivity strength between 

those regions over time (Calhoun et al., 2014; Damaraju et al., 2014; Du et al., 2015; Engels et al., 

2018; Vergara et al., 2018; Bhinge et al., 2019; Sanfratello et al., 2019; Schumacher et al., 2019).  

The temporal feature of dFC has been reported as a plausible biomarker for identifying the 

fundamental mechanisms differentiating healthy individuals and schizophrenia subjects (Damaraju 

et al., 2014; Du et al., 2015; Rashid et al., 2016; Sanfratello et al., 2019). A previous whole-brain 

dynamic connectivity analysis showed that schizophrenia subjects spend less time in a highly-

connected state (Damaraju et al., 2014; Sendi et al., 2020). A study from our group showed an 

abnormal pattern in the dFNC of the DMN by comparing state-based connectivity strength, dwell 

time, and the number of between-state transitions of HC and SZ subjects (Du et al., 2015). The study 

identified a SZ-associated pattern in the temporal dynamics of the DMN in SZ subjects by showing 

that they spend more time in a state with sparsely connected nodes. The study also demonstrated a 

state-specific spatial disruption within the DMN by showing that the central hubs of the PCC and the 

anterior medial prefrontal cortex are significantly impaired in SZ subjects. However, the study did not 
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show how symptom severity is associated with the identified abnormal pattern and how dFC patterns 

differ between subjects with varying symptom severity.  Also, in contrast with the previously 

mentioned study that used a seed-based approach to extract the brain network components 

(regions), in the current study, we used a framework called NeuroMark (Du et al., 2019). NeuroMark 

is a fully automated independent component analysis (ICA) framework that uses spatially constrained 

ICA to estimate comparable features across subjects by taking advantage of the replicated brain 

network templates extracted from two N~900 normative resting fMRI data sets. We analyzed the dFC 

of data-driven DMN subnodes based on the NeuroMark template and showed an aberrant temporal 

pattern and a link between this connectivity pattern and symptom severity in schizophrenia.  

To investigate the temporal dynamics of FNC within DMN subnode connectivity, we used two 

different datasets. A sliding window approach was used to generate dFC samples, and k-means 

clustering was applied to identify a set of data-driven dFC states (Calhoun et al., 2014). Further, to 

investigate and model the temporal changes in the dFC, we estimated the transition probability via a 

hidden Markov model (HMM) applied to the dFC data. In the next step, via statistical analysis on the 

estimated HMM features, we tested for links between schizophrenia symptom severity and abnormal 

DMN dFC. Finally, to investigate within-state variability across all subjects, we utilized an 

interpretable machine learning approach, called logistic regression with elastic net regularization 

(ENR), to identify the features that were most important to differentiating between SZ and HC 

subjects (Tibshirani, 2011). This approach can model the differences between SZ and HC individuals 

in the connectivity of DMN subnodes within each state. We hypothesized that the disruption of state-

dependent connectivity within a shorter timescale would reveal more information about the 

dynamics among DMN subnodes in schizophrenia and potentially explain previous heterogeneous 

findings regarding these subnodes. Also, the investigation of the link between symptom severity and 
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dFC within the three network subnodes provides additional insight into the link between functional 

connectivity dynamics and clinical phenomenology. The application of these methods to two distinct 

rs-fMRI datasets enabled the validation our findings and increased the likelihood of our results being 

generalizable across the broader population of individuals with schizophrenia. 

2 Materials and Methods 

2.1 Participants and Dataset  

Data were obtained from the Mind Research Network Center of Biomedical Research Excellence 

(COBRE) (Aine et al., 2017) and the Functional Imaging Biomedical Informatics Research Network 

(FBIRN) (van Erp et al., 2015) projects. The COBRE dataset includes 89 HCs and 68 SZ subjects. The 

FBIRN dataset contains 151 SZ subjects and 160 HCs. The raw imaging data were collected from seven 

sites including the University of California, Irvine; the University of California, Los Angeles; the 

University of California, San Francisco; Duke University/the University of North Carolina at Chapel Hill; 

the University of New Mexico; the University of Iowa; and the University of Minnesota. In this study, 

written informed consent was obtained from all participants. Institutional review boards approved 

the consent process of each study site. It is worth mentioning that the COBRE subjects’ eyes were 

open during scanning while the FBIRN subjects’ eyes were closed. SZ patients were on a stable dose 

of typical, atypical, or combination antipsychotic medication for at least two months prior to data 

recording and had an illness duration of at least 1 year. HC and SZ individuals with a history of 

significant medical illness and an IQ of less than 75 were excluded from the study. In addition, those 

HC subjects with a current or past history of major neurological and psychiatric disorders in either 

themselves or a first-degree relative were excluded from this study. The demographic information 

for these subjects is shown in Table 1 and Supplementary Table S.1. Using a two-sample t-test, we 
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did not observe a significant difference between the ages of the HC and SZ groups in either dataset. 

A diagnosis of schizophrenia was confirmed with the SCID-IV interview (First et al., 2002b), and an 

absence of schizophrenia diagnosis in HC was confirmed with the SCID-I/NP interview (First et al., 

2002a). In addition, HCs with a first-degree relative with an Axis-I psychotic disorder diagnosis were 

also excluded. Symptom scores were determined based on the positive and negative syndrome scale 

(PANSS) (Hare et al., 2017).  

2.2 MRI Data Acquisition System  

For the COBRE dataset, the MRI Images were collected on a single 3-Tesla Siemens Trio scanner with 

a 12-channel radiofrequency coil. High resolution T2*-weighted functional images were acquired 

using a gradient-echo echo-planar imaging (EPI) sequence with TE = 29 ms, TR = 2 s, flip angle = 75⁰, 

slice thickness = 3.5 mm, slice gap = 1.05 mm, field of view = 240 mm, matrix size = 64, voxel size = 

3.75 × 3.75 × 4.55 mm3. Resting-state scans consisted of 149 volumes. Subjects were instructed to 

keep their eyes open during the resting-state scan and stare passively at a central cross (Aine et al., 

2017). For the FBIRN dataset, six sites used 3T Siemens TIM Trio scanners, and one site used a 3T GE 

MR750 scanner for collecting the imaging data. All sites used the following T2*-weighted AC-PC 

aligned EPI sequence: TR = 2 s, TE = 30 ms, flip angle = 77⁰, slice gap = 1 mm, voxel size = 3.4 × 3.4 × 

4 mm3, number of frames = 162, acquisition time = 5 min and 38 s (van Erp et al., 2015). 

2.3 Data Processing  

Statistical parametric mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/) in the MATLAB2019 

environment was used to preprocess fMRI data. The first five dummy scans were discarded before 

preprocessing. Slice-timing correction was performed on the fMRI data. Rigid body motion correction 

was then applied to account for subject head motion in SPM. Next, the imaging data underwent 
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spatial normalization to an EPI template in the standard Montreal Neurological Institute (MNI) space 

and was resampled to 3×3×3 mm3. Finally, a Gaussian kernel was used to smooth the fMRI images 

using a full width at half maximum (FWHM) of 6 mm.  

In each dataset, to extract reliable DMN independent components (ICs), we used the Neuromark 

automatic ICA pipeline within the group ICA of fMRI toolbox (GIFT, 

http://trendscenter.org/software/gift), which uses previously derived component maps as priors for 

spatially constrained ICA (Du et al., 2019). The Neuromark automatic ICA pipeline was used to extract 

ICs by employing previously-derived component maps as priors for spatially constrained ICA. In 

Neuromark, replicable components were identified by matching group-level spatial maps from two 

large-sample HC datasets. Components were identified as meaningful regions if they exhibited peak 

activations in the gray matter within the DMN. Seven DMN subnodes were identified based on an 

anatomical template (Tzourio-Mazoyer et al., 2002). This set of subnodes included three subnodes in 

the PCu, two subnodes in the ACC, and two subnodes in the PCC. These subnodes are shown in Table 

2 and Figure 1 (Step 1). With seven DMN subnodes, we had twenty-one connectivity features, where 

each feature represented the strength of the connection between a pair of DMN subnodes.  

2.4 Dynamic Functional Connectivity (dFC)  

For each subject i = 1 … N, the dFC of the seven subnodes in the DMN was estimated via a sliding 

window approach, as shown in Figure 1. A tapered window obtained by convolving a rectangle 

(window size = 20 TRs or 40 s) with a Gaussian (σ = 3 s) was used to localize the dataset at each time 

point. A covariance matrix was calculated to measure the dFC (Figure 1 Step2). The dFC estimates of 

each window for each subject were concatenated to form a (C × C × T) array (where C = 7 denotes the 

number of subnodes, and T = 124 in COBRE and T = 137 in FBIRN denotes the number of windows), 
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which represented the changes in brain connectivity between subnodes as a function of time (Allen 

et al., 2014; Calhoun et al., 2014; Fu et al., 2019). Since the temporal resolution and the eye condition 

of the two datasets were different, we did not combine them in our study and chose to analyze them 

separately instead. 

2.5 Clustering and Latent Transition Feature Estimation  

After calculating the dFC of each subject separately, we vectorized each FC window and concatenated 

all subjects, including both the SZ and HC groups, as shown in Step 3 of Figure 1. Next, the k-means 

clustering algorithm was applied to the dFC windows to partition the concatenated matrix into a set 

of distinct clusters or states (Allen et al., 2014; Calhoun et al., 2014; Zhi et al., 2018).  An FC state, 

which is a conceptual analogy of an EEG microstate, is a global pattern of DMN connectivity that 

remains quasi-stable for a short period of time before changing to another connectivity pattern that 

also remains quasi-stable (Calhoun et al., 2014). The optimal number of centroid states was estimated 

to be 5 using the elbow criterion based on the ratio of within to between cluster distance. Correlation 

was implemented as a distance metric in the clustering algorithm in 1000 iterations.  The output of 

k-means clustering includes five distinct states across all subjects and a state vector for each 

individual. The state vector shows how the DMN changes between each pair of states over time. Next, 

for each subject, we calculated the transition probability between states via an HMM, and this 

probability was used as a latent feature of the dFC. The transition probability, aij, is the probability of 

the network to transition from state j at time t to state i at time t+1, (Step3 in Figure 1). 

𝑎𝑖𝑗 = 𝑝(𝑠(𝑡 + 1) = 𝑖|𝑠(𝑡) = 𝑗)    (1) 
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For each subject, twenty-five HMM features were obtained from the five states. This analysis was 

repeated separately for both the COBRE and FBIRN datasets, and the results of the analyses were 

compared to identify reoccurring patterns. 

2.6 Quantifying Group Differences with a Feature Selection Method  

Logistic regression (LR) classification was employed to quantify the difference between SZ subjects 

and HCs based on the twenty-one connectivity features of each state. The process is shown in 

Figure 2. In this process, the FC matrix of each window was converted to a vector. For the seven 

regions in the DMN, we obtained a total of twenty-one features (i.e., C1, C2, …, C21). Elastic net 

regularization (ENR), a machine learning-based feature selection method, was used to model the 

difference between the HC and SZ subjects (Zou and Hastie, 2005; Tibshirani, 2011). ENR applies both 

L1- and L2-regularization, as shown in Equation 2 and 3. In this method, the LR model parameters 

(i.e., feature coefficients) will move towards zero as 𝜆 increases. This will give a trajectory of the 

model parameters as a function of 𝜆 and form a model regularization path. The features related to 

the slowest decaying coefficients were considered to be most important. The cost function used in 

ENR is shown in the equations below: 

min
𝛽0, 𝛽

(
1

2𝑁
∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2 + 𝜆𝑃𝑎(𝛽))
𝑁
𝑖=1                               (2) 

𝑃𝑎(𝛽) =
(1−𝛼)

2
‖𝛽‖2

2 + 𝛼|𝛽|1                                (3) 

where N is the number of samples, yi is the label of sample i, xi is the feature vector of sample i, β and 

β0 are model parameters, λ is the regularization parameter, and Pa(β) is the penalty term in which α 

(a scaler value) determines the relative contributions of the L1 and L2 norms where α = 1 is purely an 

L1 norm and α = 0 is purely an L2 norm (Zou and Hastie, 2005). 
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The LR model was fit using 10-fold nested cross-validation (CV) with a train-test ratio of 9:1 (Wainer 

and Cawley, 2018). In nested CV, the data was divided into training and test sets in an outer fold, 

while the training data was further divided into another training set and a validation set in the inner 

fold. The optimized parameters are obtained using the inner-loop training and validation data. Here, 

the hyperparameters of each model are tuned to minimize the inner-fold CV error of the 

generalization performance by sweeping the penalty parameter across 100 logarithmically-

distributed values between 10-5 to 105. Using the results of the performance of the classifiers upon 

the test data, we computed the receiver operating characteristic (ROC) of the cross-validation and 

the area under the curve (AUC) as a measure of separability between SZs and HCs. To identify the 

most informative feature to the classification between SZs and HCs, we calculated the proportion of 

models for which a given parameter was retained during the penalty parameter sweep in the inner 

fold. This measurement may be interpreted as the relative importance of each feature in the 

classification. We further applied multiple comparisons in a one-way analysis of variance (ANOVA) 

test and found the groups of features that most contributed to the model classifying between HC and 

SZ subjects. 

2.7 Statistical Analysis  

To find a link between the twenty-five HMM features and the PANSS of the SZ group, we used 

Pearson’s partial correlation method accounting for age (both datasets), gender (both datasets), 

and scanning site (for FBIRN only). All p values were adjusted by the Benjamini-Hochberg correction 

method for false discovery rate, or FDR (Yoav Benjamini ; Yosef Hochberg, 1995). 

3 Results 

3.1 Dynamic functional connectivity states  
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Five states were identified in both datasets, as shown in Figure 3. For easier comparison, we 

vertically aligned the similar states of both datasets. The Pearson correlation between the cluster 

centroid matrix was used to quantify the similarity between the states identified within each 

dataset. The state centroid values are shown in Table 3. Similar dynamic DMN FC was observed in 

both datasets even though the eye condition during recording was different across datasets. The 

ACC regions showed negative connectivity in all states of both datasets except for state 5 in the 

FBIRN data. The connectivity between the ACC and PCC (ACC/PCC) was negative in all states of both 

datasets, and the connectivity between PCu and PCC was positive in all states of both datasets 

except state 3 of the FBIRN dataset. Within PCu, within PCC, and between PCu and ACC showed 

similar positive and negative connectivity patterns across datasets.  

3.2 Difference between SZ and HC connectivity in each state  

A feature learning method embedded in a 10-fold LR classifier was used to identify the differences 

between SZ and HC subjects in each state (Figure 2). Figures 4 and 5 show the classification and 

feature learning results of each state in the classification between SZ and HC subjects in the COBRE 

and FBIRN datasets, respectively.  Multiple features were identified as equally important for 

differentiating each state. A detailed description of the feature learning results can be found in the 

section, “Classification and Feature Selection Results for Each State,” of the supplementary material. 

Figure 6 consolidates results from Figures 4 and 5 for easier comparison across datasets. It depicts 

differences in features between the SZ and HC groups (corrected p<0.05) that were selected by ENR 

in the COBRE dataset (Figure 6A) and the FBIRN dataset (Figure 6B). Red lines show stronger 

connectivity in HC subjects relative to SZ subjects, and blue lines show stronger connectivity in SZ 

subjects relative to HC subjects. The line width indicates the difference in connectivity strength 
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between the SZ and HC groups.  

Disrupted connectivity between the PCu and PCC (PCu/PCC) was observed in both datasets. In both 

datasets, we observed higher PCu/PCC connectivity in SZ subjects in states 1 and 4 (corrected p<0.05). 

State 5 of the FBIRN dataset also displayed higher PCu/PCC in SZ subjects. In the COBRE dataset, SZ 

subjects showed a lower PCu/PCC connectivity in state 2 and state 5 (corrected p<0.05), and in the 

FBIRN dataset, PCu/PCC connectivity of SZ was lower in state 3 (corrected p<0.05). Also, for both 

datasets, the connectivity between PCu and the cingulate cortex (including both the ACC and PCC) of 

SZ subjects was higher in state 1, state 3, state 4, and state 5 (corrected p<0.05).  

Both datasets showed higher ACC connectivity in HC subjects in state 2 (corrected p<0.05), and the 

FBIRN data showed a higher ACC connectivity in HC subjects in states 1, 3, 4, and 5 (corrected p<0.05). 

Higher HC PCC/ACC connectivity was observed in states 2 and 4 of both datasets (corrected p<0.05), 

and higher HC PCC/ACC connectivity was also observed in states 1 and 5 of the COBRE dataset 

(corrected p<0.05). For state 3 in both datasets, PCC/ACC connectivity was similar across HC and SZ 

groups. Additionally, PCC connectivity of the HC and SZ groups was similar across all states and both 

datasets.  

3.3 Symptom correlation with HMM features  

It is important to understand how the dynamic aspects of DMN connectivity correlate with symptom 

severity. In the COBRE dataset, one correlation between total PANSS and an HMM feature was 

significant after accounting for FDR correction (FDR corrected p < 0.05). In this instance, symptom 

severity showed a positive correlation with transitions from state 4 to state 2 (r=0.40, FDR corrected 

p=0.02, n=64). Similar results were found in the FBIRN data in which the transition probability from 
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state 4 to state 2 showed a significant correlation with negative PANSS (r=0.32, FDR corrected 

p=0.002, n=141). 

4 Discussion 

Two key goals of the current study were (1) ensuring the generalizability of results by identifying 

similar patterns found in two distinct datasets and (2) offering an explanation for preexisting 

contradictory findings on DMN connectivity in schizophrenia. We explored the temporal dynamics of 

functional connectivity among several data-driven DMN subnodes from the PCC, ACC, and PCu 

regions using rs-fMRI of two schizophrenia datasets. We further explored SZ and HC group 

connectivity differences among the subnodes, identifying multiple patterns that generalized across 

datasets.  

In both datasets, we observed negative connectivity within the ACC (except state 5 of FBIRN) and 

between the ACC and PCC of all states of both datasets. While the connectivity between the PCu and 

PCC was positive in all states of both datasets except state 3 of the FBIRN dataset. On the other hand, 

the connectivity between the PCu and ACC, within the PCu, and within the PCC demonstrated a similar 

pattern in both datasets, fluctuating between positive and negative connectivity. Here, using data-

driven subnodes within the DMN, we showed that the brain network is highly dynamic. Previous 

literature typically ignored this dynamical DMN behavior. In contrast to the previous study that 

evaluated DMN dynamics using pre-defined regions of interest (Du et al., 2016), the work presented 

here is the first study that utilized data-driven subnodes, compared the within-DMN connectivity 

between SZ and HC subjects, and linked the temporal patterns of the DMN with symptom severity in 

SZ subjects. As recent work has emphasized, it is essential to ensure that data within a node is 

consistent; otherwise, the results can be misleading (Yu et al., 2017). This is especially true when 
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studying dynamics (Iraji et al., 2020). The Neuromark pipeline that we used to identify subnodes yields 

reproducible nodes that should contribute to the overall generalizability of our results (Du et al., 

2020). 

Previously, a few studies directly examined ACC functional connectivity in the pathophysiology of 

schizophrenia. However, inconsistent results were observed. One study reported lower ACC 

connectivity in SZ (number of subject or N=58) subjects relative to HCs (N=61) (Shukla et al., 2019). A 

recent study showed a higher ACC connectivity for SZ (N=32) subjects at baseline relative to HCs 

(N=32) and a decreased ACC connectivity after one week of olanzapine treatment (Li et al., 2019). In 

the current study, we identified a pattern of disrupted ACC connectivity in the smaller dataset (i.e., 

COBRE), in which one state showed a higher ACC connectivity in HCs and other states showed no 

significant differences between HC and SZ groups. On the other hand, in the FBIRN dataset, which is 

a relatively large dataset compared to the COBRE dataset and the datasets in the studies mentioned 

above, we found a consistent increased ACC connectivity of HC subjects in all states. A possible 

explanation of previous inconsistent findings is the small sample size of the studies. However, even 

in the smaller dataset, we highlighted increased ACC connectivity in HCs with the dFC approach. As 

such, the use of sFC obtained from unconstrained rs-fMRI could be another explanation for previous 

inconsistent results on ACC connectivity. Finally, a previous study in a relatively small number of 

subjects (N=13) reported marginally (p=0.05) greater within-PCC connectivity in SZs relative to HCs 

(Whitfield-Gabrieli et al., 2009). However, in the current study, in which both datasets had a relatively 

larger sample size, no significant differences within-PCC were observed in any state. This supports 

the importance of using data-driven subnodes to study within-PCC connectivity in schizophrenia 

pathophysiology.  
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Although most previous studies of DMN functional connectivity focused on the ACC and PCC, we 

further highlighted the role of PCu/PCC connectivity via a comparison between HC and SZ subjects in 

two different datasets. In three of five states of both datasets, we found that the PCu/PCC 

connectivity was greater in SZs than HCs. However, we observed unique behavior across dFC states 

that would not be captured by sFC. Using sFC, previous studies reported both increases (Whitfield-

Gabrieli et al., 2009; Peeters et al., 2015) and decreases (Wang et al., 2014) in the PCu/PCC 

connectivity in schizophrenia. These contradictory results are possibly due to focusing on sFC and 

averaging the functional connectivity across time. The current study showed a disrupted pattern of 

PCu/PCC connectivity with a relatively large sample and potentially highlighted the importance of 

studying functional connectivity sampled from shorter periods. 

We investigated the link between symptom severity and dFC temporal patterns in each subject. 

Consistent across both datasets, we found a significant positive correlation between symptom 

severity and the transition from a state with low PCu/PCC and high ACC connectivity to a state with 

higher PCu/PCC and lower ACC connectivity. These results emphasize the role of cingulate cortex 

connectivity and PCu/PCC connectivity as potential biomarkers of SZ, and the role is further 

highlighted in the more severe SZ subjects. A previous study explored the link between dFC features 

such as the number of transitions between states and the dwell times of each state, and the results 

were not significant after FDR correction (Rabany et al., 2019). Our current study shows that HMM 

features extracted from dFC are correlated with symptom severity and supports the importance of 

exploiting the network dynamics as potential biomarkers. This also motivates future work studying 

the relationship of symptom severity to other dFC features.  
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The current study extends previous studies performed on the same datasets that investigated the 

dynamics of the whole-brain network connectivity (Damaraju et al., 2014; Sendi et al., 2020). In a 

larger brain network, a group of brain networks such as the visual, sensorimotor, and auditory 

networks, which are strongly correlated, may mask less-correlated networks and limit spatiotemporal 

resolution (Schlesinger et al., 2017). That could potentially delineate why the main results of these 

studies focused on these dominant networks and reported less on networks like the DMN that may 

have been masked. Also, due to higher DMN activity during resting state, studying the dynamics of 

this network can reveal new information that cannot be found by analyzing the whole-brain 

connectivity. Although in the current study we focused on the DMN because of prior knowledge of 

the role of the network in the pathophysiology of schizophrenia, future investigations and methods 

that can mechanistically remove irrelevant networks are needed (Cohen et al., 2015; Schlesinger et 

al., 2017; Qiao et al., 2019).  

Finally, as mentioned earlier, the eye condition is different in the COBRE and FBIRN datasets. A 

previous study reported that different eye conditions might modulate DMN dynamics (Zhang et al., 

2018), which could explain some differences in the DMN dynamics between the two datasets. State 

5 of FBIRN dataset was distinguished from all other states in both datasets by showing higher within-

ACC connectivity. Since previous literature showed higher activity in the ACC during sleep (Hobson 

and Pace-Schott, 2002), we wonder whether this connectivity pattern is possibly linked to the light 

sleep or drowsiness that may have occurred during the unconstrained state of eyes-closed in the 

FBIRN dataset. This potentially demonstrated another benefit of dynamic functional connectivity 

analysis, separating undesired states from the rest, specifically when the eye is closed.  

4.1 Limitations  
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There are some limitations to this work. Symptom scores are highly dependent on the skill and 

knowledge of the rater and the inclination of the subjects to be accurate in describing their symptoms 

(Kay et al., 1987). As such, our use of the FBIRN dataset, which was collected from multiple sites and 

raters, may have introduced a degree of bias into our analyses. The choice of window size is an implicit 

assumption about the dynamic behavior of the network in that a short window captures more rapid 

fluctuations, whereas a longer window causes more smoothing. Previous studies suggest that a 

window size between 30-60 s provides a reasonable choice for capturing dFC variation (Preti et al., 

2017). The duration of scanning was over 5 minutes, which has been shown to result in reliable and 

replicable resting-state FNC (Van Dijk et al., 2010; Abrol et al., 2017). While we are encouraged by the 

similarity of results across multiple data sets, schizophrenia is likely a heterogeneous disorder, and 

more work is needed to evaluate the potential of multiple types of connectivity patterns within this 

group to provide additional insight into the disorder.  

4.2 Conclusion 

Previous studies focused on static connectivity of the DMN, including the PCC, ACC, and PCu and 

showed an essential role of this connectivity in schizophrenia. In the current work, we extended this 

existing body of research into the domain of dynamics by investigating the temporal patterns of 

connectivity in the DMN. A comparison of the DMN connectivity in SZs and HCs identified patterns of 

disruption in a shorter timescale that were reproducible across two relatively large datasets with 

distinct collection protocols. These patterns of disruption could possibly explain why previous studies 

of DMN connectivity showed contradictory results. In both datasets, we found that SZ subjects with 

higher symptom severity are more likely to transition from a state with lower PCu/PCC connectivity 

and higher ACC connectivity to a state with higher PCu/PCC connectivity and lower ACC connectivity. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.03.425152doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.03.425152
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
20 

This highlights the potential relationship between symptom severity and the dysregulation of the 

dynamical properties of DMN functional connectivity. 

5 Data Availability Statement 

The datasets supporting the findings of the study are available upon a reasonable request made to 
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Table 1.  Demographic and clinical information of subjects 

   SZ HC P-value 

C 
O 
B 
R 
E 

Number 68 89 NA 
Age 37.79±14.44 38.09±11.66 0.52 

Gender(M/F) 57/11 64/25 0.61 
PANSS (positive) 15.29±5.05 NA NA 
PANSS (negative) 14.72±5.45 NA NA 

F 
B 
I 
R 
N 

Number 151 160 NA 

Age 38.06±11.30 37.04±10.68 0.41 

Gender(M/F) 115/36 115/45 0.99 

PANSS (positive) 15.32±4.92 NA NA 

PANSS (negative) 14.32±5.42 NA NA 

Note: SZ: Schizophrenia; HC: healthy control; PANSS: Positive and Negative Syndrome 
Scale, M: Male, F: Female,  NA: not applicable; all p values have been calculated using two-
sample t-test.  
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Table 2. Component labels extracted using Neuromark 

Component name Peak coordinate (mm) 

(IC 32), Precuneus [PCu1] -8.5 -66.5 35.5 

(IC,40), Precuneus [PCu2] -12.5 -54.5 14.5 

(IC 23), Anterior cingulate cortex [ACC1] -2.5 35.5 2.5 

(IC 71), Posterior cingulate cortex [PCC1] -5.5 -28.5 26.5 

(IC 17), Anterior cingulate cortex [ACC2] -9.5 46.5 -10.5 

(IC 51), Precuneus [PCu3] -0.5 -48.5 49.5 

(IC 94), Posterior cingulate cortex ([PCC2] -2.5 54.5 31.5 
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Table 3. Mean value of the connectivity in each state based on the cluster centroid 
matrix from Figure 3 

  PCU ACC PCC PCU/ACC PCU/PCC ACC/PCC 

C 
O 
B 
R 
E 

State1 -0.053 -0.142 0.145 -0.018 0.085 -0.060 
State2 -0.004 -0.166 -0.050 0.003 0.071 -0.055 
State3 0.051 -0.028 -0.204 0.063 0.002 -0.080 
State4 0.068 -0.249 0.077 -0.0619 0.1234 -0.100 
State5 -0.019 -0.139 -0.099 0.025 0.041 -0.024 

F
B
I
R
N 

State1 -0.009 -0.025 0.132 -0.028 0.101 -0.128 
State2 -0.018 -0.140 -0.099 0.028 0.049 -0.042 
State3 0.064 -0.026 -0.202 0.075 -0.003 -0.100 
State4 -0.010 -0.215 0.086 -0.015 0.080 -0.057 
State5 -0.034 0.088 -0.051 0.061 0.010 -0.090 

Note: PCu: Precuneus, ACC: Anterior cingulate cortex, PCC: Posterior cingulate cortex, PCu/ACC: Connectivity 
between PCu and ACC, PCu/PCC: Connectivity between PCu and PCC, ACC/PCC: Connectivity between ACC and 
PCC. 
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Figure 1.  Analytic pipeline. Step1: The time-course signal of seven regions in the default mode network 
(DMN) has been identified using group-ICA.  Step2: After identifying seven regions in the DMN, a taper 
sliding window was used to segment the time-course signals and calculate the FC matrix. Each FC matrix 
contains twenty-one connectivity features. Each feature represents the connectivity between a pair of 
DMN subnodes. Step3: After vectorizing the FC matrixes, we concatenated them applied and k-means 
clustering to group the FCs into five distinct clusters. Then, 25 hidden Markov model (HMM) features 
were calculated from the state vector of each subject. We investigated the association between HMM 
features and symptom severity in schizophrenia subjects. 
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Figure 2. Feature selection. The connectivity features of seven default mode network (DMN) subnodes 
were used as inputs to fit a logistic regression classifier to discriminate SZs from HCs. With seven 
subnodes of the DMN, we had twenty-one connectivity features. The feature selection method, elastic 
net regularization (ENR), used the model generated by the classifier and the input features to identify 
the most predictive features. ACC: Anterior cingulate cortex, PCC: posterior cingulate cortex, PCu: 
Precuneus.  Table 2 provides more information about different subnodes. 
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Figure 3.  Dynamic connectivity states results. A) The five dFC states identified with k-means 
clustering in the COBRE data for both SZ and HC subjects.  B) The five dFC states identified with k-
means clustering in the FBIRN data for both SZ and HC subjects. The similar states between the two 
dataset are aligned vertically. The similarity between states was measured by the Pearson correlation 
of the cluster centroid matrix of the two datasets. There is not a similar pattern between COBRE and 
FBIRN in state 5. The colorbar shows the strength of the connectivity. Table 2 provides more 
information about different subnodes. 
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Figure 4. Feature selection results in COBRE dataset. The left panel shows the receiver operating 
characteristic curve of the classification between SZs and HCs in each state. The right panel shows the 
relative importance of the features to the classification. The colorful features are groups of equally 
important features that were found to be of greater importance than the remaining features by a 
multiple comparison ANOVA test.  The features (C1 – C21) are defined in Figure 2. AUC: Area under the 
curve. 
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Figure 5. Feature selection results in FBIRN dataset. The left panel shows the receiver operating 
characteristic curve of the classification between SZs and HCs in each state. The right panel shows the 
relative importance of the features to the classification. The colorful features are groups of equally 
important features that were found to be of greater importance than the remaining features by a 
multiple comparison ANOVA test.  The features (C1 – C21) are defined in Figure 2. AUC: Area under the 
curve. 
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Figure 6.  Group difference between SZ and HC connectivity in each state. Group differences in dFC of 
those connectivity features selected by elastic net regularization method (see Figures 4 and 5) in each 
state (corrected p < 0.05). Wider line means larger group difference. Red lines represent increased 
connectivity while blue lines represent decreased connectivity in HC subjects. a COBRE dataset. b FBIRN 
dataset. ACC: Anterior cingulate cortex, PCC: Posterior cingulate cortex, PCu: Precuneus. HC: Healthy 
control, SZ: Schizophrenia. Table 2 provides more information about different subnodes. 
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