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Abstract 
While aerobic glycolysis, or the Warburg effect, has for a long time been considered a hallmark of tumor 

metabolism, recent studies have revealed a far more complex picture. Tumor cells exhibit widespread metabolic 

heterogeneity, utilizing glycolysis, oxidative phosphorylation, or both, and can switch between different 

metabolic phenotypes. A framework to analyze the observed metabolic heterogeneity and plasticity is, however, 

lacking. Using a mechanistic model that includes the key metabolic pathways active in tumor cells, we show 

that the inhibition of phosphofructokinase by excess ATP in the cytoplasm can drive a preference for aerobic 

glycolysis in fast-proliferating tumor cells. The differing rates of ATP utilization by tumor cells can therefore 

drive metabolic heterogeneity. Building upon this idea, we couple the metabolic phenotype of tumor cells to 

their migratory phenotype, and show that our model predictions are in agreement with previous experiments. 

We report that the reliance of proliferating cells on different anaplerotic pathways depends on the relative 

availability of glucose and glutamine, and can further drive metabolic heterogeneity. Finally, using treatment of 

melanoma cells with a BRAF inhibitor as an example, we show that our model can be used to predict the 

metabolic and gene expression changes in cancer cells in response to drug treatment. By making predictions 

that are far more generalizable and interpretable as compared to previous tumor metabolism modeling 

approaches, our framework identifies key principles that govern tumor cell metabolism, and the reported 

heterogeneity and plasticity. These principles could be key to targeting the metabolic vulnerabilities of cancer. 

Significance: This study presents an interpretable mathematical framework for analyzing the metabolic 

heterogeneity and plasticity exhibited by tumor cells. 

Introduction 
Proposed as an emerging hallmark of cancer nearly a decade ago (1), metabolic reprogramming has now entered 

into the limelight of cancer biology as a key feature of tumor cells across cancer subtypes, with multiple 

therapeutic implications (2). Aerobic glycolysis, commonly known as the Warburg effect (3), characterized by 

increased glucose uptake most of which is excreted out as lactate even under normoxic conditions, has been 

synonymous with cancer cell metabolism for nearly a century. Studies carried out over the past decade have 

however revealed a more complex picture― there exists widespread intra-tumoral heterogeneity in the activity 
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of different metabolic pathways. Further, tumor cells at different stages of metastatic progression exhibit 

different metabolic phenotypes and metastases to distinct organs can also exhibit differences in their metabolic 

activity (4,5). Understanding the mechanistic basis of metabolic heterogeneity in different contexts will be key 

to the design of anti-cancer metabolic therapies. 

Surprisingly, the mechanistic underpinnings that drive the preference for the Warburg effect phenotype in cancer 

cells are not yet fully understood (6). Multiple hypotheses have been put forth to explain this behavior. It was 

initially proposed that cancer cells have defective mitochondria and, therefore, cannot utilize pyruvate via the 

tricarboxylic acid (TCA) cycle followed by oxidative phosphorylation pathway (7). However, it has since been 

shown that most cancer cells possess functional mitochondria and can carry out oxidative glucose metabolism 

(8–10). Others have proposed that cancer cells exhibiting aerobic glycolysis may have an advantage from an 

evolutionary game theory perspective― under limited resource availability, cells that produce ATP faster but 

less efficiently (via glycolysis for example) can outcompete other cells in the population that produce ATP 

efficiently, yet at a slower rate (via the TCA cycle for example) (11,12). Vazquez et al. have proposed that a 

switch to aerobic glycolysis can result from the maximization of rate of ATP production by cancer cells under 

high glucose uptake (13). Shlomi et al. used a genome-scale metabolic model to show that under a solvent 

capacity constraint, the Warburg effect maximizes the rate of biomass production in cancer cells (14). The 

analyses in these studies do not predict the widespread heterogeneity in the metabolic profiles of cancer cells in 

the primary tumor and of tumor cells at different stages of metastatic disease progression. Further, the 

frameworks in these studies do not connect the metabolic heterogeneity in tumor cells to the heterogeneity in 

other phenotypic states such as cell migration and to the variability in the availability of different nutrients. 

Recently, Jia et al. have put forth a systems-level analysis of coupled gene regulatory networks and metabolic 

pathways to describe metabolic heterogeneity and plasticity in tumor cells (15). The study shows that cancer 

cells can switch between different metabolic states in response to changes in the activities of master regulators 

such as AMPK and HIF-1. However, the modeling approach therein is too coarse-grained to answer some 

interesting questions relating to the flux through different reactions in the metabolic pathways and to predict the 

detailed cellular response to perturbations in the activities of specific enzymes. 

Here, we construct a mechanistic model which incorporates the key metabolic reactions that have been shown 

to be active in cancer cells. Instead of relying on a stoichiometric modeling framework, commonly known as 

flux balance analysis (16), we write down detailed mathematical equations describing the kinetics of different 

enzymatic reactions. The resultant system of ordinary differential equations can be numerically integrated to 

determine the steady state of the metabolic system. We show that the preference for aerobic glycolysis increases 

the flux through the anabolic pathways that use glycolytic intermediates as substrates, thereby facilitating fast 

proliferation. This results from the low ATP production when glucose is excreted out as lactate as compared to 

when glucose enters the TCA cycle as pyruvate. The rate of ATP consumption in cancer cells, which can vary 

with other cellular phenotypic properties, can modulate the preference of cancer cells for aerobic glycolysis 

versus oxidative phosphorylation. Next, we explore how the relative dependence of cancer cells on glucose and 

glutamine and the relative availability of these nutrients in the microenvironment can affect the metabolic 

profiles of tumor cells. Further, we use the model to predict the changes in the metabolic and gene expression 

profiles of melanoma cells under treatment with a BRAF inhibitor that can suppress glutamine uptake. Finally, 

we discuss how different experimental observations relating to cancer cell metabolism fit within the context of 

our modeling framework. 

Materials and Methods 
A mechanistic mathematical model of tumor metabolism 

We used ordinary differential equations to model the key metabolic pathways active in tumor cells― glycolysis, 

the TCA cycle, oxidative phosphorylation, and glutaminolysis. The differential equations were integrated 

numerically to obtain the steady state model behavior. The mathematical expressions describing the activity of 

the different enzymes and the relevant kinetic parameters were taken from the literature (17–21). Oxidative 

phosphorylation and the electron transport chain reactions were treated using a simplified model proposed 
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previously by Nazaret et al. (22). In cases where the relevant mathematical expressions for enzymatic activity 

and the kinetic parameters were unavailable, reasonable assumptions based on Michaelis-Menten kinetics (23) 

were made. Activation and inhibition of different enzymes were modeled by changing the reaction velocity 

( ) for the enzyme by a multiplicative factor. In contrast to previous mechanistic tumor metabolism 

modeling studies that fine tune model parameters so that the model behavior is in agreement with the 

observations from a certain experimental setup (see Roy and Finley (24) for example), we focus on exploring 

the possible set of behaviors that tumor cells can exhibit under different conditions. This allowed us to develop 

a framework that can be utilized to analyze the metabolic behavior of tumor cells across cancer types and in 

different environments.  

The mathematical expressions describing model behavior and the relevant kinetic parameters are included in the 

supplementary data. The supplementary data also includes the assumptions underlying our modeling approach. 

Matlab code used to simulate the model behavior is available online (https://github.com/st35/cancer-

metabolism). 

Cell culture and knockdown of pyruvate carboxylase 

MDA-MB-468 breast cancer cells were maintained in DMEM cell culture medium supplemented with  FBS, 

 units / ml penicillin, and  μg / ml streptomycin. The cell line was authenticated using short tandem 

repeat profiling by the MD Anderson Cancer Center Cytogenetics and Cell Authentication Core. pGIPZ 

lentivirus shRNA for pyruvate carboxylase (PC) was purchased from the Cell-Based Assay Screening Service 

(C-BASS) Core at Baylor College of Medicine. The lentivirus with scrambled (control) or PC-targeting shRNA 

was infected using the standard protocol (25). Knockdown efficiency was validated by western blot analysis 

using specific antibodies. 

Cell Respiratory Assay 

Oxygen consumption rate (OCR) was measured using the XFp extracellular flux analyzer (Seahorse 

Biosciences) as previously described (25) with a minor modification. Cell Mito Stress kit (Seahorse 

Biosciences) was used for the assay and basal OCR was calculated by Report Generator Version 4.03 (Seahorse 

Biosciences). 

High-resolution Nuclear Magnetic Resonance (NMR) Spectroscopy  

Metabolites were extracted from cell pellets using  mL :  methanol-water solvent and  ml of lysing beads 

(Lysing Matrix D from MP Biomedicals, LLC). The mixture was vortexed and freeze-thawed to extract the 

metabolites. This was followed by centrifugation at  RPM for  minutes to remove debris, and rotary 

evaporation and overnight lyophilization to remove the solvent. The samples were prepared for NMR 

spectroscopy by dissolving the lyophilized sample in  µL of 2H2O following the centrifugation at  

RPM for  minutes to remove any debris that remained. Finally,  µL of the sample, with the addition of  

µL of  mM NMR reference compound , -dimethyl- -silapentane- -sulfonate (DSS), was used for NMR 

spectroscopy. Final concentration of DSS in the sample was  mM. The standard one dimensional H with 

water suppression during relaxation time was used to acquire the data. All D spectra were acquired with K 

time domain points,  seconds acquisition time,  transients,  receiver gain,  ppm spectral width, and  

second relation delay on a Bruker NMR spectrometer operating at  MHz proton resonance frequency 

equipped with cryogenically cooled triple resonance (1H, 13C, 15N) TXI probe (26). The data was processed using 

Topspin 3.1 and resonances were identified using Chenomx NMR suite 7.0 from Chenomx Inc and the human 

metabolic database (HMDB) (27). 
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Figure 1 High ATP production during oxidative phosphorylation can drive a preference for aerobic glycolysis 

in fast proliferating cells. (A) Reactions in the glycolytic pathway and key anabolic processes that use 

glycolytic intermediates as substrates. The pyruvate generated at the end of glycolysis can either be excreted 

out as lactate or enter the TCA cycle as acetyl-CoA. (B) Increased glucose uptake can drive large fluxes 

through the ribose synthesis pathway and through the phospholipids synthesis pathway. (C) Increasing the 

activity of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH), or both can increase the glucose 

uptake. (D) The phospholipids synthesis flux increases upon the upregulation of PDH, LDH, or both. In (C) 

and (D), we have assumed that the ATP concentration in the cytoplasm remains constant despite the higher 

ATP production per glucose molecule when glucose is allowed to enter the TCA cycle by upregulating PDH 

activity. (E) Different metabolites that can modulate the enzymatic activity of phosphofructokinase (PFK). 

FBP: fructose-1, 6-biphosphate. (F) Variation of the phospholipids synthesis flux with an increase in PDH 

activity (while keeping LDH activity fixed). (G) Variation of the phospholipids synthesis flux with an 

increase in LDH activity (while keeping PDH activity fixed). The insets in (F) and (G) show how the 

ATP:ADP ratio varies in each case. The bistability in the phospholipids synthesis flux as the LDH activity is 

varied arises from a positive feedback loop― fructose- , -biphosphate, the product of PFK’s enzymatic 

activity, can allosterically activate the enzyme (see panel E). Fluxes are in units of mM h-1 (millimolar per 

hour) and are shown at steady state. 

 

Results 
Inhibition of phosphofructokinase by ATP can drive the preference for aerobic glycolysis in fast 

proliferating cells. 

As shown in Fig. 1 A, intermediate metabolites generated during the multi-step process that converts glucose to 

pyruvate are used in key anabolic processes required for cell division (28). These include the ribose synthesis 

pathway, crucial for nucleotide synthesis, and the phospholipids synthesis pathway. A large flux through both 

these pathways is likely to facilitate fast proliferation. To determine how this may be achieved, we simulated the 

dynamics of the glycolysis pathway along with the first reactions in the ribose synthesis and the phospholipids 

synthesis pathways. Fig. 1 B shows that the steady state flux through both ribose synthesis and phospholipids 

synthesis pathways can be increased by increasing the rate of glucose uptake. To obtain this result, we have 

assumed that all the pyruvate that is generated from the glucose taken up by a cell is utilized via some metabolic 

process inside the cell and that any ATP produced during such a process is also used up, thereby keeping 

constant the concentration of ATP inside the cell. The pyruvate generated from glucose can have two primary 

fates (Fig. 1 A). On the one hand, lactate dehydrogenase (LDH) can convert pyruvate into lactate which is then 
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excreted out of the cell. On the other hand, the pyruvate can enter the mitochondria where it is converted to 

acetyl coenzyme A (acetyl-CoA) by the enzyme pyruvate dehydrogenase (PDH) and further oxidized via the 

TCA cycle. The rate of glucose uptake in tumor cells can be increased by increasing the activity of either of the 

two enzymes (Fig. 1 C). The increased glucose uptake in turn increases the flux through the phospholipids 

synthesis pathway (Fig. 1 D). The symmetry between increasing glucose uptake and the phospholipids synthesis 

flux via increased lactate excretion and via increased flux through the TCA cycle, apparent in Fig. 1 C and 1 D, 

is broken when the rates of ATP production in the two processes are taken into consideration (Fig. 1 E-G). If the 

carbon taken in as glucose is excreted out as lactate,  ATP molecules per molecule of glucose are produced. 

Using the glucose carbon to drive the TCA cycle followed by oxidative phosphorylation can generate -  

molecules of ATP per glucose molecule (29). At a fixed rate of ATP consumption by the cell, using a large 

fraction of the glucose taken up by the cell to drive the TCA cycle can lead to increased ATP accumulation in 

the cytoplasm (see inset in Fig. 1 F) which will inhibit the glycolytic enzyme phosphofructokinase (PFK), 

shutting down glucose uptake (30) and driving down the phospholipids synthesis flux (Fig. 1 F). Excreting out 

the glucose carbon as lactate, on the other hand, can limit the ATP-mediated downregulation of PFK activity 

(see inset in Fig. 1 G), thereby maintaining a high phospholipids synthesis flux (Fig. 1 G) which would help 

maintain fast proliferation rates. This offers a possible explanation for the preference for glucose carbon 

secretion as lactate even under normoxic conditions (the Warburg effect) seen in fast proliferating tumor cells 

across cancer types. 

Varying ATP requirements can drive heterogeneity in the metabolic phenotypes exhibited by tumor cells. 

In the previous section, we have shown that the inhibition of PFK due to the accumulation of excess ATP 

(generated by allowing glucose-derived pyruvate to enter the TCA cycle) can downregulate anabolic processes 

including phospholipids synthesis. We propose that this could be the reason many fast proliferating cells exhibit 

the Warburg effect. The hypothesis implies that modulation of the rate of ATP consumption in cells can change 

which metabolic phenotype will lead to a large flux through anabolic processes and thus facilitate fast 

proliferation. Fig. 2 A shows that the metabolic phenotype that maximizes the flux through the phospholipids 

synthesis pathway can change as the rate of ATP consumption by tumor cells changes. At low, basal rates of 

ATP consumption, the high lactate secretion, low TCA cycle flux (high LDH, low PDH) metabolic phenotype is 

needed for driving a large flux through the phospholipids synthesis pathway. A switch to a phenotype with high 

TCA cycle flux (high PDH) will shut down this key anabolic process. However, in cells that consume ATP at 

very high rates, for example, in metastasizing cancer cells that are actively migrating through the extracellular 

matrix (31), ATP will not accumulate to concentrations high enough to inhibit PFK activity even when large 

amounts of ATP are produced per glucose molecule via the TCA cycle. These cells can thus sustain fast 

proliferation rates while not exhibiting the Warburg effect. Difference in ATP consumption by cells at different 

stages of metastasis can thus contribute towards the differences in the metabolic profiles of tumor cells at 

distinct stages of metastasis. Note that in Fig. 2 A, we have assumed that there is sufficient oxygen available for 

ATP generation via TCA cycle followed by oxidative phosphorylation and the electron transport chain. When 

the oxygen supply is limited (as is often the case in the interior of solid tumors), cells have to rely solely on 

converting glucose to lactate for ATP production (anaerobic glycolysis). In such a scenario, the rate of lactate 

production will be higher in cells with higher rates of ATP consumption (Fig. 2 B). 

A connection between ATP consumption by tumor cells and their metabolic phenotype was recently 

demonstrated by te Boekhorst et al. (32). They observed that the stabilization of HIF1 (which downregulates 

PDH activity) in 4T1 mouse breast cancer cells decreased the oxygen consumption rate (OCR), as expected, but 

surprisingly did not significantly increase the rate of lactate production (Fig. 2 C). The decrease in OCR is 

indicative of a decrease in the flux through the TCA cycle. Our model predicts that this can happen if ATP 

consumption by tumor cells also decreases along with the downregulation of PDH activity upon HIF1 

stabilization (Fig. 2 D). This is indeed true in the case of 4T1 cells― upon DMOG treatment (which stabilizes 

HIF1), 4T1 cells underwent a change in their mode of migration from an actin-driven mode to an amoeboid 

mode involving blebbing protrusions (32). ATP consumption in the actin-driven mode of cell migration is much 

higher as compared to that in the cell migration mode dominated by blebbing protrusions (31). The decrease in 
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ATP consumption upon the switch in the migration mode could have suppressed the expected increase in lactate 

production in this experiment (Fig. 2 D). Whether the switch in the mode of migration is driven by changes in 

gene expression caused directly by HIF1 stabilization or by the metabolic changes in response to HIF1 

stabilization remains a very interesting but yet unanswered question. 

Another scenario wherein different ATP requirements can underlie the observed metabolic heterogeneity is 

collective invasion by tumor cells. Leader cells, which are at the invading edge of the tumor cell pack and use 

ATP for membrane protrusion, for maintaining focal adhesion stability, and for remodeling of the extracellular 

matrix, have a higher ATP requirement as compared to the trailing follower cells. To maximize ATP production, 

leader cells must rely on the TCA cycle and oxidative phosphorylation which help drive a large flux through 

any pathway that consumes ATP (see inset in Fig. 2 A). Our model predicts that given the reliance of leader cells 

on the TCA cycle, they will likely proliferate at a rate lower than that of follower cells (which exhibit high 

lactate production) for a range of ATP consumption rates (between  and  on the horizontal axis in Fig. 

2 A, for example). Such behavior was recently observed by Commander et al. (33) for the H1299 non-small cell 

lung cancer cell line― follower cells isolated from the cultures of this cell line exhibited higher lactate 

production and higher proliferation rates as compared to the leader cells from the same culture. Our model 

further predicts that under very high rates of ATP consumption when complete glucose oxidation via the TCA 

cycle (driven by high PDH1) is the preferred metabolic state, the phospholipids synthesis flux will increase upon 

the upregulation of GLUT1 (a glucose transporter) activity (Fig. 2 D). The observation that GLUT1 

overexpression in leader cells can increase their proliferation rate (33) provides some preliminary evidence in 

support of this prediction. 

The results reported in this section illustrate how our modeling framework can be used to explain the co-

variation of such seemingly disparate phenotypes as cell proliferation and cell migration. Note that here we 

have focused on the phospholipids synthesis pathway as a representative example from the set of anabolic 

pathways that use glycolytic intermediates as substrates. The qualitative model predictions will remain 

unchanged for any other anabolic pathway of interest which relies upon a glycolytic intermediate generated 

downstream from the enzyme PFK (the serine synthesis pathway for example (34)). 
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Figure 2 Rate of ATP consumption by tumor cells can modulate the preference for aerobic glycolysis versus 

oxidative phosphorylation. (A) The regime that maximizes the phospholipids synthesis flux depends on the 

rate of ATP consumption. The inset shows that the flux through pathways that consume ATP is maximized 

when the activity of PDH is high, i.e., when most of the glucose carbon enters the TCA cycle. (B) The rate of 

lactate production by tumor cells can depend not only on the availability of oxygen in the microenvironment 

but also the rate of ATP consumption. (C) Change in the metabolic profile of 4T1 cells upon HIF1 stabilization 

(red) as compared to the control (blue). The behavior shown is representative of that reported by te Boekhorst 

et al. (32) (see Fig. 5e therein). ECAR: extracellular acidification rate, which correlates positively with the 

rate of lactate excretion by cells. (D) Change in the metabolic profile of cells upon HIF1 stabilization (which 

inhibits PDH activity) as predicted by our model. The change labeled as expected is when the migratory 

phenotype (and the rate of ATP consumption) remains unchanged upon HIF1 stabilization. The change labeled 

as observed is when HIF1 stabilization is accompanied by a switch from actin-driven migration to amoeboid 

migration (32) which decreases the rate of ATP consumption during cell migration. (E) Under high PDH 

activity and very high ATP consumption rate, GLUT1 up-regulation can increase the phospholipids synthesis 

flux. Fluxes are in units of mM h-1 (millimolar per hour) and are shown at steady state. 

 

Distinct anaplerotic pathways can contribute towards de novo fatty acid synthesis. 

Fatty acids are a key biomolecular requirement for membrane synthesis, a necessity for cell division. While 

some tumor cells can take up fatty acids from the extracellular environment, others must synthesize the required 

fatty acids de novo (35). A key substrate for fatty acid synthesis is acetyl-CoA, an intermediate of the TCA 

cycle, which is removed from the TCA cycle as citrate (Fig. 3 A). In the cytoplasm, the enzyme ACLY converts 

citrate back to acetyl-CoA. The enzyme ACC then converts acetyl-CoA to malonyl-CoA, a precursor for the 

synthesis of fatty acids (35). To keep the sequence of reactions in the TCA cycle going, the intermediates must 

be replenished to compensate for the loss of citrate. The metabolic reactions that replenish the metabolites 

harvested from the TCA cycle for other cellular processes are called anaplerotic reactions (36). Glutamine is a 

key biomolecule that can contribute towards anaplerosis during de novo fatty acid synthesis― glutamine can be 

converted to -ketoglutarate which replenishes the carbon removed from the TCA cycle as citrate (Fig. 3 A). As 

shown in Fig. 3 B, when the fatty acid synthesis pathway is active (high ACC activity), our model predicts that 

the TCA cycle will shut down in the absence of glutamine unless there are other active pathways that can 

replenish the TCA cycle carbon lost as citrate. Sufficient glutamine availability is needed to drive a large flux 

through the fatty acid synthesis pathway (Fig. 3 C). Oxygen is essential for the oxidation of NADH via 

oxidative phosphorylation and the electron transport chain to keep the TCA cycle running. Therefore, the 

anaplerotic pathway described above can only function when oxygen in available (green curve in Fig. 3 E) since 

it involves all the reactions of the TCA cycle. Under hypoxic conditions, an alternate reaction pathway, 

mediated by NADPH-dependent IDH, may be activated to utilize glutamine for anaplerosis― reductive 

carboxylation of -ketoglutarate to directly form citrate (Fig. 3 D and orange curve in Fig. 3 E). Thus, 

depending on the oxygen availability in different parts of the tumor microenvironment, proliferating cells can 

exhibit activity of different glutamine-driven anaplerotic pathways. Metabolic profiles of cells proliferating 

under normoxic and hypoxic conditions in a glutamine-dependent manner will therefore be different (Fig. 3 F). 
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Figure 3 Glutamine is a key metabolite for anaplerosis during de novo fatty acid synthesis and can be utilized 

via different pathways under different conditions. (A) Reactions in the TCA cycle. The citrate removed from 

the TCA cycle for use as a substrate for fatty acid synthesis is replenished by the -ketoglutarate generated 

from glutamine. (B) At high rates of de novo fatty acid synthesis (indicated by high ACC activity), our model 

predicts that the TCA cycle will shut down at low glutamine concentrations. Here, the flux through the 

enzyme -ketoglutarate dehydrogenase is shown as the TCA cycle flux. (C) High glutamine availability can 

drive a large fatty acid synthesis flux. (D) Glutamine can be utilized for fatty acid synthesis via distinct 

pathways under normoxic and hypoxic conditions. (E) Under hypoxic conditions, glutamine can be utilized 

via the reductive carboxylation pathway (see panel D). High activity of NADPH-dependent IDH is essential 

for reductive carboxylation. (F) Ratio of the concentration of different TCA cycle intermediates under 

normoxic conditions to the concentration under hypoxic conditions. Also shown is the difference in the 

mitochondrial NAD+:NADH ratio under the two conditions. Since the NADPH-dependent IDH pathway 

(active under hypoxic conditions) skips the TCA cycle reactions, activation of this pathway is accompanied 

by a decrease in the mitochondrial concentrations of multiple TCA cycle intermediates. Fluxes are in units of 

mM h-1 (millimolar per hour) and are shown at steady state. 

 

Under glutamine deprivation, for example, due to a lack of glutamine availability in the microenvironment or 

due to treatment with a drug that inhibits glutamine uptake, a glutamine-independent anaplerotic pathway will 

be needed for de novo fatty acid synthesis. Pyruvate carboxylase (PC) can drive one such pathway which 

involves the conversion of pyruvate to oxaloacetate (Fig. 4 A). As shown in Fig. 4 B, under conditions of 

glutamine deprivation, cells with high PC activity can drive fatty acid synthesis by generating both the 

precursors of citrate― oxaloacetate and acetyl-CoA― from glucose-derived pyruvate. Our model predicts that 

cells with low PC activity cannot synthesize fatty acids de novo under glutamine deprivation and are thus more 

likely to be sensitive to glutamine deprivation therapies. Note that the PC-driven anaplerotic process short-

circuits the TCA cycle (Fig. 4 A). Cells relying on this pathway will thus likely exhibit low TCA cycle flux and, 

consequently, a low oxygen consumption rate (Fig. 4 C) as compared to cells that rely on oxidative glutamine 

metabolism. Moreover, these cells will also exhibit low rates of lactate production as compared to glutamine-
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dependent cells since double the number of pyruvate molecules is now needed for citrate synthesis (Fig. 4 D), 

decreasing the availability of pyruvate for lactate production. 

To determine if PC activity is associated with low lactate production, we used a short hairpin RNA (shPC) to 

downregulate the expression of PC in MDA-MB-468 breast cancer cells (Fig. 4 E). Arrows in Fig. 4 C and Fig. 

4 D indicate that downregulation of PC activity should be accompanied by a decline in the TCA cycle flux (and 

consequently, a decrease in the basal oxygen consumption rate (OCR)) and an increase in lactate production. 

This was confirmed by Seahorse analysis (Fig. 4 F) and NMR spectrometry (Fig. 4 G), respectively. 

Interestingly, PC knockdown was also accompanied by an increase in cellular glutamine concentration (Fig. 4 

H), indicating that increased glutamine uptake may compensate for decreased PC activity in MDA-MB-468 

cells. Whether the increase in glutamine uptake upon PC knockdown is driven purely by metabolic feedback or 

by some gene regulatory mechanism remains to be determined. 

Finally, we examined the model behavior under glucose deprivation and sufficient glutamine availability. As 

shown in Fig. 1 A and Fig. 5 C, cells are unlikely to be able to proliferate under such conditions (37). This is 

because key anabolic processes that use glycolytic intermediates as substrates, such as the ribose synthesis and 

the phospholipids synthesis pathways, will shut down when glucose is unavailable. However, cells can survive 

in such a scenario provided sufficient ATP is available to keep the basal cellular processes going. ATP can be 

generated in the absence of glucose by utilizing glutamine to drive the TCA cycle (Fig. 5 A). The enzyme ME2 

(malic enzyme 2), which converts malate directly to pyruvate, can help drive a glutamine-dependent TCA cycle. 

Cells will high ME2 activity can thus survive glucose deprivation by using glutamine to generate ATP (Fig. 5 

B). Note that ATP synthesis from glutamine in a glucose-independent manner is oxygen-dependent (Fig. 5 D)― 

the process involves an operational TCA cycle which generates NADH, and the conversion of glutamate to -

ketoglutarate generates an additional NADH molecule. Oxygen must be available for the oxidation of NADH to 

NAD+ via the electron transport chain, a process that generates ATP. Under hypoxic conditions, NADH will 

accumulate and shut down not only the TCA cycle but also the entry of glutamine into the TCA cycle (Fig. 5 D). 

Cells in hypoxic niches are thus less likely to survive glucose deprivation as compared to cells in normoxic 

niches. 
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Figure 4 Pyruvate carboxylase (PC)-dependent anaplerosis under low glutamine concentrations. (A) 

Reactions involved in PC-dependent anaplerosis during fatty acid synthesis. (B) At low glutamine 

concentrations, high PC activity can help maintain a significant fatty acid synthesis flux. (C) and (D) When 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.04.424598doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.424598
http://creativecommons.org/licenses/by/4.0/


11 

 

PC-dependent anaplerosis is the dominant anaplerotic pathway, cells carrying out de novo fatty acid synthesis 

will exhibit low TCA cycle flux and low oxidative phosphorylation (and consequently, low OCR) (C) and low 

lactate production (and consequently, low ECAR) (D). ECAR: extracellular acidification rate, which 

correlates positively with the rate of lactate excretion by cells. In panel C, the rate of conversion of TCA 

cycle-generated NADH to NAD+ in an oxygen-dependent manner is shown as the TCA cycle flux. (E-G) 

Downregulating PC expression in MDA-MB-468 breast cancer cells decreases the oxygen consumption rate 

(OCR) and upregulates lactate production. (E) Western blot confirmed a decrease in the expression of the PC 

protein upon knockdown using PC shRNA compared to cells with control (Scrambled) shRNA. (F) Seahorse 

analysis shows decreased OCR in shPC cells (also, see arrow in panel C). NMR spectroscopy analysis shows 

increased lactate level (G) (also, see arrow in panel D) and increased glutamine level (H) in shPC cells. 

Fluxes are in units of mM h-1 (millimolar per hour) and are shown at steady state (B-D). 

 

 

Figure 5 Glutamine can drive the TCA cycle in the absence of glucose. (A) Reactions involved in the 

glutamine-driven TCA cycle when glucose concentration is low. (B) Under low glucose concentrations, malic 

enzyme 2 (ME2) activity must be upregulated to maintain a significant ATP production rate. (C) In the 

absence of glucose, the phospholipids synthesis flux remains low, irrespective of the ME2 activity. Thus, cells 

are unlikely to proliferate under low glucose concentrations (37). (D) Oxygen is essential for maintaining a 
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significant flux through pathways that consume ATP when glutamine is available, but the glucose 

concentration is low. Fluxes are in units of mM h-1 (millimolar per hour) and are shown at steady state. 

 

 

Figure 6 Pyruvate carboxylase (PC) expression levels are altered in melanoma cells in response to BRAF 

signaling inhibitors. (A) Representative depiction of the response of three different subclones of the SKMEL5 

melanoma cell line to treatment with PLX4720, a mutant BRAF inhibitor, as reported by Paudel et al. (38) 

(see Fig. 3 A therein). (B) RNA expression levels of the PC gene (Z-score calculated after log  normalization) 

in the three subclones in (A) at  days and  days post-treatment with PLX4720. The gene expression data 

was obtained from Jia et al. (39). The error bars indicate the standard deviation. (C) RNA expression levels of 

MYC and PC genes (Z-score calculated after log  normalization) in tumor samples obtained from melanoma 
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patients. In each panel, the blue dot indicates the expression levels before treatment. The different red markers 

in each panel indicate the expression levels in samples obtained at different time points after treatment with 

BRAF signaling inhibitors. The gene expression data was from downloaded from the Gene Expression 

Omnibus databse (accession GSE75299). See Song et al. (40) for details regarding the patient samples and the 

BRAF signaling inhibitor administered in each case. 

Interplay between metabolic plasticity and drug response in melanoma 

Paudel et al. observed that single-cell-derived subclones of the SKMEL5 melanoma cell line, which carries a 

BRAF mutation, exhibit heterogeneity in their short-term response to the BRAF inhibitor PLX4720 (38) (Fig. 6 

A; also see Fig. 2 A and Fig. 3 A in Paudel et al. (38)). Since BRAF signaling inhibition can suppress glutamine 

uptake by downregulating MYC (41,42), cells proliferating under PLX4720 treatment may resort to glutamine-

independent anaplerotic pathways such as the PC-mediated pathway. We analyzed the gene expression profiles 

of the SKMEL5 subclones (reported by Jia et al. (39)) and observed that the expression of PC is upregulated in 

the SC10 subclone upon PLX4720 treatment (Fig. 6 B). Surprisingly, among the three subclones for which gene 

expression data is available, only SC10 showed population expansion in the short-term (  hours) after 

PLX4720 treatment (Fig. 6 A). While subclone SC07 population is stationary, subclone SC01 exhibits 

population regression upon PLX4720 treatment. Both these subclones did not exhibit increased PC expression 

upon drug treatment (Fig. 6 B). Our modeling framework predicts that if SC10 cells are reliant on PC for 

anaplerosis under PLX4720 treatment as PC upregulation upon drug treatment would suggest, they must exhibit 

a low oxygen consumption rate (low OCR) and a low extracellular acidification rate due to low lactate 

production (low ECAR) (Fig. 4 C). Indeed, upon PLX4720 treatment, SC10 cells have been shown to switch to 

a metabolic state with low OCR and low ECAR (see Fig. 2 D in Jia et al. (39)). We further analyzed the gene 

expression profiles of melanoma tissue samples obtained from patients before and after treatment with a BRAF 

signaling inhibitor (40) (Gene Expression Omnibus (43) accession GSE75299). Out of the six patient samples, 

four exhibited upregulation of PC upon drug-induced BRAF signaling inhibition (Fig. 6 C). This is 

accompanied by the downregulation of MYC, a well-known target of BRAF signaling. Thus, our analysis 

suggests, albeit preliminarily, that PC-mediated anaplerosis may play a key role in the response of melanoma 

cells to treatment with BRAF signaling inhibitors, at least at short time scales. 

Discussion 
The Warburg effect is perhaps the oldest recognized metabolic hallmark of cancer cells (3,6). However, multiple 

studies have now shown that the picture is far more complex― tumor cells within the primary tumor and those 

at different stages of metastatic progression exhibit widespread heterogeneity in their metabolic profiles (4,5). 

The metabolic phenotype can also co-vary with other functional attributes such as morphology (44), migratory 

phenotype (32,33), and stemness (45). Here, using a detailed mechanistic model of some of the key metabolic 

pathways in tumor cells, we show that variation in ATP usage can be a key driver of the metabolic heterogeneity 

exhibited by tumor cells. Differences in the availability of nutrients and in the ability of tumor cells to take up 

these nutrients can further contribute towards the diversity of metabolic profiles. By using a mechanistic 

modeling approach, our study avoids the difficulties associated with choosing an appropriate objective function 

and appropriate constraints that plague flux balance analyses. Further, our modeling approach captures the 

effect of feedback loops in metabolic pathways and we show that these are crucial to understanding the 

metabolic heterogeneity exhibited by tumor cells. Exploring the possible set of metabolic profiles that can be 

obtained by varying the reaction velocities in the model instead of fitting the model parameters to a set of 

experimental observations concerning a specific cell line allowed us to develop a broad framework to analyze 

diverse tumor metabolic profiles instead of making predictions pertaining only to a given experimental setup. 

While the framework in the present study does not include all the metabolic pathways active in tumor cells as is 

usually the case for genome-scale metabolic models (14), the predictions from our framework are far more 

interpretable and propose key principles that underly the metabolic profiles seen across tumor types. These 

principles could hold the key to identifying metabolic targets for anti-cancer therapy (5). 
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Our model predicts that in order to drive large fluxes through anabolic pathways that are crucial to fast 

proliferation, the cytosolic ATP concentration must be kept below a threshold to maintain the activity of PFK, a 

key enzyme in the glucose uptake pathway. This can explain why tumor cells, across cancer types, often prefer 

aerobic glycolysis over oxidative phosphorylation― the ATP yield per glucose molecule from aerobic 

glycolysis is less than one-tenth of the yield from oxidative phosphorylation (29). That the inhibition of PFK by 

high levels of ATP can drive aerobic glycolysis in tumor cells was first postulated by Scholnick et al. (46) nearly 

half a century ago. An important corollary that follows from this prediction is that the preference of tumor cells 

for aerobic glycolysis versus oxidative phosphorylation can be modulated by the rate of ATP consumption in 

these cells. We have built upon this corollary to describe how the metabolic state of tumor cells can depend on 

their migratory phenotype (32,33). The framework can also be helpful in understanding other behaviors 

exhibited by tumor and other fast proliferating cells. For example, the PI3K / Akt signaling pathway, which is 

activated in response to extracellular growth factors in normal, non-cancerous cells (47), transcriptionally 

upregulates ENTPD5. ENTPD5 promotes proper protein glycosylation and protein folding via a cycle of 

reactions that convert ATP to ADP (48). Our model predicts that the resulting increase in ATP consumption will 

increase the flux through anabolic pathways such as the phospholipids synthesis pathway, facilitating fast 

proliferation. Knockdown of ENTPD5 has indeed been shown to inhibit cell growth in PTEN-null mouse 

embryonic fibroblasts (48). The increased glycolytic flux from upregulated ATP consumption can also account 

for the observed upregulation of ATPases such as the Na+ / K+ pump in tumor cells (49–51). The idea that the 

operation of the Na+ / K+ pump can alter the rate of glycolysis was also proposed by Scholnick et al. (46). Note 

that the model of tumor metabolism described here does not incorporate ATP production from other metabolic 

pathways including from the -oxidation of fatty acids. Inclusion of -oxidation in the present model could 

shed light on the interplay between fatty acid metabolism and other cell behaviors including proliferation rates, 

and further unravel the context-dependence of fast proliferation rates on glycolytic flux. 

Recently, Luengo et al. (52) have proposed that increased NAD+ demand for oxidation as compared to the ATP 

demand during cell proliferation can drive a preference for aerobic glycolysis in multiple cell lines. In such a 

scenario, high ATP concentration and low ADP availability, resulting from low ATP usage, inhibits the 

regeneration of NAD+ from the NADH produced during the TCA cycle. The limited NAD+ availability limits 

cell proliferation. In the modeling framework described in the present study, high ATP concentration resulting 

from low ATP usage also drives a preference for aerobic glycolysis. However, in our framework, the NAD+ 

concentration is not limiting. Rather, it is the anabolic fluxes, such as the flux through the phospholipids 

synthesis pathway, that become limiting due to the inhibition of PFK by ATP. The focus on increased anabolic 

fluxes required for cell division allows us to capture the increased glucose uptake and lactate production in 

tumor cells. Limited NAD+ availability cannot account for the increased lactate production since uptake of 

carbon as glucose and its excretion as lactate is redox neutral overall. The two ideas, one described by Luengo 

et al. (52) and the other proposed in the present study, may be applicable in different scenarios depending on 

whether NAD+ is limiting or not. 

Tumor cells, across cancer types, can rely on different growth signaling pathways to drive continued cell 

proliferation (53,54). Different growth signaling pathways often activate distinct pathways to drive the same 

cellular process. For example, in prostate cancer cells, androgen-receptor mediated signaling promotes the 

uptake of fatty acids from the extracellular environment while PI3K / Akt signaling drives de novo fatty acid 

synthesis (35). In the case of breast cancer, receptor-positive breast cancer cells rely primarily on de novo fatty 

acid synthesis while basal-like, receptor-negative breast cancer cells take up fatty acids from the extracellular 

environment (55). The present modeling framework can provide useful insights into the metabolic profiles of 

cancer cells reliant on different growth signaling pathways. Our model predicts that tumor cells that synthesize 

fatty acids de novo must increase their glutamine uptake or upregulate the expression of the enzyme PC. While 

cells taking up glutamine will maintain high lactate production, lactate production will be down-regulated in 

cells upregulating PC activity. In contrast, tumor cells that can take up fatty acids can rely on these both for ATP 

generation (via -oxidation) and for anabolic processes. These cells will thus likely have both low glutamine 

uptake and low glucose uptake. Prostate cancer cells treated with an inhibitor of androgen receptor signaling 
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such as enzalutamide can develop resistance by activating the PI3K / Akt signaling pathway, thereby turning on 

de novo fatty acid synthesis (56). Our modeling framework predicts that the emergence of enzalutamide 

resistance must be accompanied by a change in the metabolic profile of tumor cells including an increase in 

glucose uptake. A recent study has shown that the activities of signaling pathways that regulate cell metabolism, 

including the p38 pathway, are indeed altered by enzalutamide treatment in prostate cancer cells (57). 

Multiple studies have shown a tight coupling between cell-type switching and change in the metabolic state of 

cells, especially in the context of epithelial-mesenchymal plasticity. Bhattacharya et al. showed that neural crest 

cells in a chicken embryo activate aerobic glycolysis at the onset of cell migration and that an increase in 

glycolytic flux is essential for driving an epithelial to mesenchymal transition (58). Luo et al. have shown that 

inhibition of glucose uptake via treatment with -deoxyglucose leads to an increase in reactive oxygen species 

(ROS) concentration, causing mesenchymal breast cancer stem cells to switch to a more epithelial state (but not 

to a fully epithelial state) (44). Our modeling framework suggests that inhibition of glucose uptake will lead to 

increased reliance on glutamine for ATP production (Fig. 5 A and Fig. 5 B). Apart from playing a key role in 

anaplerosis and in glucose-independent ATP production, glutamine also drives an anti-oxidant response via the 

glutathione pathway (59). Treatment with -deoxyglucose could thus decrease the availability of glutamine for 

the anti-oxidant response. The consequent increase in ROS concentration can upregulate NRF2 which has been 

shown to stabilize a hybrid epithelial-mesenchymal state (60). Further, given the low availability of glutamine 

for the anti-oxidant pathway, epithelial cells would be more susceptible to thioredoxin suppression (44) 

(thioredoxin mediates a glutamine-independent anti-oxidant response). Incorporating ROS generation and anti-

oxidant pathways into the present modeling framework could thus help further our understanding of metabolic 

dependence in cell-type switching. 

Finally, our modeling framework could be useful for analyzing the interplay between metabolic re-

programming and epigenetic re-programming in cancer cells (61), a topic that has recently come into focus 

(62,63). The modeling framework described here can be used to predict how the relative concentrations of 

certain metabolites will change in response to a metabolic switch (see Fig. 3 F). For example, when cells turn on 

de novo fatty acid synthesis, the cytoplasmic concentration of acetyl-CoA must increase. This will increase the 

availability of acetyl-CoA for the acetylation of cellular proteins, including histones. Such an increase in the 

acetylation of cellular proteins in prostate cancer cells upon androgen receptor inhibition (which is accompanied 

by an increase in de novo fatty acid synthesis) has been shown experimentally (64), and has been proposed to 

promote the stabilization of the androgen receptor (56). Further, PI3K / Akt inhibition, which will downregulate 

de novo fatty acid synthesis, has been shown to deplete the H3K27ac epigenetic modification, thereby 

remodeling the chromatin landscape. This epigenetic remodeling can hinder the emergence of resistance to 

androgen receptor inhibition (65). Previous studies have proposed that epigenetic changes in response to 

metabolic stress induced by environmental changes can increase transcriptional variability in cells. The 

increased transcriptional variation can help mitigate the metabolic stress and promote adaptation to new 

environmental conditions (66,67). Mechanistic coupling between metabolism, epigenetics, and transcriptional 

regulation could play a role in the emergence of drug resistance in cancer cells (68–70). Building upon the 

present modeling framework to further explore how the metabolic state can alter the epigenetic state in tumor 

cells is a promising future endeavor, and could shed light on the mechanistic underpinnings of failure of anti-

cancer therapies. 
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