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Abstract  8 

Description of robust transcriptomic alterations in Huntington’s disease is essential to identify 9 

targets for biochemical studies and drug development. We analysed publicly available 10 

transcriptome data from the brain and blood of 220 HD patients and 241 healthy controls and 11 

identified 737 and 661 genes with robustly altered mRNA levels in the brain and blood of HD 12 

patients, respectively. In the brain, a subnetwork of 320 genes strongly correlated with HD and 13 

was enriched in transport-related genes. Bioinformatical analysis of this subnetwork 14 

highlighted CDC42, PAK1, YWHAH, NFY, DLX1, HMGN3, and PRMT3. Moreover, we 15 

found that CREB1 can regulate 78.0 % of genes whose mRNA levels correlated with HD in the 16 

blood of patients. Alterations in protein transport, metabolism, transcriptional regulation, and 17 

CDC42-mediated functions are likely central features of HD. Further our data substantiate the 18 

role of transcriptional regulators that have not been reported in the context of HD (e.g. DLX1, 19 

HMGN3 and PRMT3) and strongly suggest dysregulation of NFY and its target genes across 20 

tissues. A large proportion of the identified genes such as CDC42 were also altered in 21 

Parkinson’s (PD) and Alzheimer’s disease (AD). The observed dysregulation of CDC42 and 22 

YWHAH in samples from HD, AD and PD patients indicates that those genes and their 23 

upstream regulators may be interesting therapeutic targets.  24 

Keywords: Huntingtin / neurodegeneration / weighted gene co-expression network analyses / 25 

robust rank aggregation analysis  26 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.04.425185doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425185
http://creativecommons.org/licenses/by-nc/4.0/


 

Page 3 

Introduction 27 

Huntingtin (HTT) functions in diverse cellular processes such as autophagy, endocytosis, 28 

vesicle transport, and transcriptional regulation [1]. A triplet repeat expansion in exon 1 of the 29 

HTT gene results in the expansion of an N-terminal polyglutamine tract and causes 30 

Huntington’s disease (HD) [2]. Clinically, a progressive loss of motor functions, cognitive 31 

impairment, and psychiatric symptoms such as depression and anxiety [3] characterises HD. 32 

Besides neurological symptoms, HD patients suffer from a plethora of non-neuronal symptoms 33 

such as cardiac failure, muscle atrophy, impaired glucose tolerance, osteoporosis, weight loss, 34 

and testicular atrophy [4]. 35 

Expansion of the N-terminal polyQ tract impairs the multi-faceted function of HTT and its 36 

interaction with numerous other proteins [5,6]. Mutant huntingtin (mHTT), for instance, 37 

induces the activation of microglia, leading to increased secretion of interleukin-1β (IL-1β), 38 

tumour necrosis factor-alpha (TNF) and increased levels of reactive oxygen and nitrogen 39 

species [7]. Tabrizi et al. and Fan and Raymond showed that mHTT impairs the glutamate 40 

uptake in astrocytes leading to excitotoxicity [8,9]. Aberrant splicing of the mHTT mRNA 41 

results in the formation of a truncated HTT exon-1 protein forming nuclear and cytoplasmic 42 

inclusions [10]. R6/2 mice with a knock-in of exon-1 of human HTT show a more severe 43 

disease progression than mouse models with a knock-in of full-length mutant HTT [10]. The 44 

study of several huntingtin-interaction partners and their impaired function in HD further 45 

suggested impaired trafficking of clathrin-coated and non-coated vesicles in HD patients 46 

[11,12]. Transcriptomic studies of HD patients, cell lines, and mouse models expressing mHTT 47 

observed transcriptional dysregulation of a plethora of genes [13–19] such as differential 48 

regulation of genes involved in neuronal differentiation [14,16], heat shock response [13], 49 

mRNA processing [20], immune response and neuroinflammation [14]. Several mechanisms 50 

behind the broad transcriptional dysregulation such as altered expression of enhancer RNAs 51 
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[21], sequestration of transcription factors (e.g. CREB1, TBP, or mSin3a) [22–25], or the 52 

sequestration of proteins such as the muscleblind-like splicing regulator 1 (MBNL1), nucleolin, 53 

and proteins of the small interfering RNA (siRNA) machinery [26,27] have been discussed.  54 

Previously published analyses of transcriptomic profiles from HD patients [13–19] yielded 55 

varying results. Since a thorough knowledge of pathological mechanisms behind HD is 56 

essential for the design of further biochemical studies and development of therapies, we 57 

performed a meta-analysis of publicly available transcriptomic data from HD patients to 58 

identify genes altered in several studies. Within our meta-analysis, we found 661 and 737 genes 59 

with robustly altered mRNA levels in the blood and brain of HD patients, respectively. Strongly 60 

suggesting that dysfunction in protein transport and metabolism are central in HD, we identified 61 

by weighted gene co-expression network analysis a subnetwork of 320 genes, enriched in genes 62 

functioning in protein transport that strongly correlated with HD in the brain. Additionally, we 63 

identified the cell division cycle 42 (CDC42), p21 (CDC42 / RAC1) Activated Kinase 1 64 

(PAK1), 14-3-3 protein eta (YWHAH), and protein phosphatase-2 catalytic subunit α (PP2CA) 65 

as hub genes of this subnetwork. Transcription factor enrichment analysis (TFEA) highlighted 66 

distal-less homeobox 1 (DLX1), high mobility group nucleosomal binding domain 3 67 

(HMGN3), and protein arginine methyltransferase 3 (PRMT3) in this subnetwork. A signature 68 

of 74 and 41 genes, including CDC42 and YWHAH, were also altered in the brain of PD (Figure 69 

5 and Additional file 7) and in AD and PD patients, respectively.  Similarly, a subnetwork of 70 

118 genes, including genes coding for constituents of the Arp2/Arp3 complex, were 71 

significantly altered in the blood of HD patients. Strikingly, 78.0% of the genes in this blood 72 

subnetwork were direct or indirect targets of CREB1. 73 

Results 74 

Transcriptional changes in the brain of HD patients  75 

Since neurological and neuropsychiatric symptoms are the pathognomonic features of HD and 76 
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possess a high disease burden for HD patients, several transcriptomic studies investigated 77 

transcriptional changes in the brain of HD patients. In this meta-analysis, we included three 78 

published transcriptomic studies using post-mortem brain tissue from the prefrontal cortex 79 

(NCBI accession number: GSE33000 and GSE64810) [14,16] and the caudate nucleus of 80 

prodromal HD patients (NCBI accession number GSE129473) [13] (Table 1). As described 81 

above, this meta-analysis aimed at identifying promising candidates for further functional 82 

studies and improving our understanding of transcription factors and mechanism, which are 83 

mainly affected in the brain of HD patients.   84 

To identify genes with significantly altered mRNA levels in those three studies, we determined 85 

differentially expressed genes for each study separately, ranked them after their absolute Z-ratio 86 

and performed a robust rank aggregation analysis (RRA). Thereby, we identified 737 87 

differentially expressed genes (RRA score < 0.05) that were among the most altered genes in 88 

the analysed datasets (Additional file 1).  89 

Based on all genes identified by RRA (Additional file 1), we performed a weighted gene co-90 

expression analysis (WGCNA) to identify gene modules, i.e. clusters of highly correlated 91 

genes. Adjacency and the topological overlap matrix (TOM) for the gene network were 92 

calculated with a soft-thresholding power β of 14.5 for which the WGCNA network satisfies 93 

the criterion of scale-free topology (R² = 0.85) (Additional file 2). By module-based clustering 94 

with the diagonal, varying volume, and shape model (VVI), we identified nine modules of 95 

which the module eigengenes (first principal component) of seven modules (black, blue, red, 96 

brown, magenta, and turquoise) statistically significantly correlated with disease state (HD 97 

patients versus healthy individuals) as determined by correlation analysis (Figure 1A). 98 

Corroborating a potential link between genes in the black, brown and turquoise modules with 99 

HD, we found a positive and statistically significant correlation between module membership, 100 

defined as the probability that a gene belongs to this module, and gene significance, defined as 101 
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the correlation between the expression values and the trait of interest, of 0.46 (p = 0.004), 0.47 102 

(p = 1e-04), and 0.41 (p = 0.008), respectively (Figure 1A). Additionally, genes belonging to 103 

the black and brown module showed a high mean gene significance (Figure 1B). In contrast, 104 

indicating that transcriptomic alterations of genes of the turquoise modules were less 105 

pronounced than the genes of the black and brown module, we observed a low mean gene 106 

significance of genes of this module. Corroborating the results of our network analysis, we 107 

found that most of the identified genes or proteins are known to interact with several other 108 

proteins belonging to the same module. For instance, according to the network analysis in 109 

GeneMania, 94.05% and 94.11% of the genes are known to be co-expressed in humans. 110 

Likewise, network analysis using the STRING database (confidence cut-off = 0.4) [28] showed 111 

that 34 of 53 proteins (64.2%) of the black and 36 of 81 proteins (44.4%) of the brown module 112 

interact with at least one other protein (data not shown).   113 

Based on the clustering analysis of the modules eigengenes (Figure 1C) and the similarity of 114 

the eigengene adjacency (Figure 1D), we grouped the observed modules in three meta-modules: 115 

the first meta-module (M1) consisted of the black, blue, magenta, and red module, the second 116 

meta-module (M2) consisted of the brown, green and turquoise module, and the third meta-117 

module (M3) consisted of the yellow and pink module. Combining the identified WGCNA 118 

modules to meta-modules and subsequent analysis of this meta-modules demonstrated a high 119 

correlation with HD (correlation r = 0.5, p-value = 1e-38), a positive correlation between gene 120 

significance and module membership of 0.73 (p-value = 2e-54), and the highest mean gene 121 

significance of all meta-modules for M1 (Figure 2A and B). Corroborating the importance of 122 

genes belonging to M1, the eigengene and adjacency of M1 clustered together with the disease 123 

state (Figure 2C and D). According to STRING, protein-protein interactions were strongly 124 

enriched in M1 (826 observed edges, 602 expected edges, and p < 1.0e-16) at minimal 125 

interaction confidence of 0.4. While the eigengene of M2 correlated with HD, we could not 126 

observe a positive correlation between gene significance and module membership and, 127 
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therefore, did not analyse this meta-module further.  128 

Owing to the high similarity between modules of the same meta-module, we performed the 129 

transcription factor enrichment analysis (TFEA) and the subsequent GO-term enrichment 130 

analysis on the meta-modules M1 instead of single modules (Figure 3A-D). Characterising 131 

functional enrichment of genes belonging to the M1 subnetwork, we performed enrichment 132 

analyses against the gene ontology (GO) and Reactome database. Using the GO database, we 133 

found an enrichment of genes involved in protein transport (GO: 0015031, 12.8 % of genes in 134 

M1 and FDR = 0.046) (Figure 3A) such as the Ras-related proteins 11A (RAB11A), 2A 135 

(RAB2A), 14 (RAB14), syntaxin-7 (STX7), syntaxin-12 (STX12), or the sorting nexin 3 136 

(SNX3) in M1. Among the three datasets, the 41 proteins that belonged to M1 and function in 137 

protein transport processes showed a strong up-regulation in HD patient samples with a median 138 

Z-ratio of 1.51 (Figure 3B). To also include genes with lower Z-ratios into the functional 139 

enrichment analyses, irrespective of their module membership, we additionally conducted gene 140 

set enrichment analysis (GSEA) of the three datasets independently. Strongly suggesting that 141 

the alteration of genes involved in protein transport may be relevant in HD, we found a strong 142 

enrichment of proteins involved in the co-translational protein targeting to the membrane in all 143 

three datasets by GSEA (Figure 3E). Additionally, genes functioning in cellular metabolic 144 

processes (GO:0044237, 56.3 % of genes in M1 and FDR = 0.023), cellular respiration 145 

(GO:0045333, 3.4 % of genes in M1 and FDR = 0.027) and translation (GO:0006412, 5.6 % of 146 

genes in M1, and FDR = 0.023) were statistically significantly enriched in the M1 subnetwork. 147 

Similarly, when using the Reactome database, we observed a strong enrichment of proteins 148 

involved in protein metabolism, gene expression (transcription) and post-translational protein 149 

modification (Figure 3D). Using the network enrichment analysis test (NEAT), we found a 150 

highly statistically significant over-enrichment of 38 KEGG pathways in M1 (Additional file 151 

3). Among these enriched pathways were “SNARE interaction in vesicular transport” (adjusted 152 

p-value = 1.74e-33), “RNA transport” (adjusted p-value = 2.10E-217), and “mRNA 153 
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surveillance pathway” (adjusted p-value = 9.63E-60) (Additional file 3).  154 

To identify highly connected genes within the M1 subnetwork, we computed hub genes, i.e. 155 

genes with high intramodular connectivity, gene significance and module membership (Table 156 

2, Additional file 4). Among these hub genes was CDC42 (Z-ratios: 1.72; 1.83; 1.45 in 157 

GSE33000, GSE129473 and GSE64810 respectively), a membrane-associated small GTPase 158 

that interacts with several effector proteins and thereby regulates cell migration [29], the bipolar 159 

attachment of spindle microtubules to kinetochores [30], the extension and maintenance of the 160 

formation of filopodia, the dedicator of cytokinesis 10 (DOCK10) mediated spine formation 161 

[31], and the structural plasticity of dendritic spines [31]. Further corroborating the importance 162 

of CDC42 in the subnetwork correlating with HD, CDC42 was additionally central in the M1 163 

protein-protein interaction network, constructed using the STRING database (Additional file 164 

5). Together with CDC42, we identified 18 proteins with altered mRNA levels in all datasets 165 

that were directly connected with CDC42 according to the STRING database. Further, CDC42 166 

interacts with other identified hub proteins such as the P21/Cdc42/Rac1-Activated Kinase 1 167 

(PAK1) [32], 14-3-3 protein eta (YWHAH), or the protein phosphatase 2 catalytic subunit α 168 

(PPP2CA). mRNA levels of the CDC42 small effector 2 (CDC42SE2), that functions 169 

downstream of CDC42, was upregulated in the brain of HD patients (Z-ratios: 2.17; 0.97; 1.2). 170 

Additionally, CDC42 can interact with the CDC42-interacting protein 4 (CIP4), also known as 171 

thyroid hormone receptor interactor 10 (TRIP10) and HTT [33,34] that was not robustly 172 

dysregulated in our meta-analysis (Z-ratios -1.35, -0.03, 0.51). Besides the interaction of 173 

CIP4/TRIP10 with HTT and CDC42, CIP4/TRIP10 can interact with the vesicle-associated 174 

membrane protein 2 (VAMP2) and 7 (VAMP7) which are linked with other genes robustly 175 

altered in the brain of HD patients such as the vesicle-associated membrane protein 1 (VAMP1) 176 

and the Ras-related Protein Rab-14 (RAB14) [35].  177 

In addition, we identified PAK1 (Z-ratios: 2.07; -0.42; 0.299), which can interact with CDC42, 178 
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as a hub gene in the M1 subnetwork. Additionally, the PAK1 Interacting Protein 1 (PAK1IP1), 179 

which inhibits the activation of PAK1 by CDC42 through its interaction with the N-terminus 180 

of PAK1 (Xia et al, 2001), was upregulated in the brain of HD patients in all studies (Z-ratios: 181 

1.88; 1.10; 1.98). Since PAK1, as well as PAK2 and PAK3, belong to the group A PAKs [36], 182 

we also analysed mRNA levels of other group A PAKs. While PAK2 was not robustly altered 183 

in the brain of HD patients (Z-ratios: -1.43; 1.31; 0.7), PAK3 mRNA levels (Z-ratios: 1.98; 184 

0.46; 0.70) were slightly elevated in the brain of HD patients, although it was not identified by 185 

RRA (p = 0.10). Both CDC42 and PAK1 are interacting with another hub gene, the protein 186 

phosphatase 2 catalytic subunit alpha (PPP2CA) (Z-ratios: 1.98; 0.74; 1.91), which is an 187 

important phosphatase for microtubule-associated proteins. PPP2CA was additionally the most 188 

central protein in the network analysis of the M1 protein-protein interaction network 189 

(Additional file 5).  190 

Broad transcriptional dysregulation in HD was often linked to direct interaction of mHTT with 191 

proteins of the small interfering RNA (siRNA) machinery [22–27] and different transcriptional 192 

regulators such as CREB1, TBP, mSin3a, MBNL1, nucleolin, histone deacetylases (HDACs), 193 

or the DNA methyltransferase 1 (DNMT1). Therefore, we performed a transcription factor 194 

enrichment analysis (TFEA) of the M1 subnetwork to define which transcription factors would 195 

best explain the observed alterations in the brain of HD patients. Analysis of the target genes 196 

of the top five TFEA hits, the mitochondrial transcription termination factor 3 (MTERF3), 197 

Myb/SANT DNA binding domain containing 4 with coiled-coils (MSANTD4), small nuclear 198 

RNA activating complex polypeptide 5 (SNPAC5), zinc finger protein 833 (ZNF833), and 199 

thymocyte nuclear protein 1 (THYN1), showed that most of their target genes were upregulated 200 

in the brain of HD patients (Figure 4 and Additional file 6). mRNA levels of MTERF3, 201 

MSANTD4, SNPAC5, ZNF833 and THYN1 were not consistently altered in the brain of HD 202 

patients. Alongside with the mRNA levels of their target genes, mRNA levels of the distal-less 203 

homeobox 1 (DLX1) (regulates 11.9 % of M1, TFEA rank = 6, Z-ratios: 2.21; 0.16; 1.04), 204 
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protein arginine methyltransferase 3 (PRMT3) (regulates 11.6 % of M1, TFEA rank = 14, Z-205 

ratios: 0.46; 2.65; 1.11), and nuclear transcription factor Y subunit β (NFYB) (regulates 29.7 206 

% of M1, TFEA rank = 24, Z-ratios: 1.05; 2.39; 2.02) were robustly upregulated in the brain of 207 

HD patients (Figure 4 and Additional file 6). Additionally, mRNA levels of the high mobility 208 

group nucleosomal binding domain 3 (HMGN3) (regulates 24.1 % of M1, TFEA rank = 13, Z-209 

ratios: -0.91; 1.90; 1.77), that was additionally ranked high in the TFEA, appeared to be 210 

upregulated in only two of three studies and slightly downregulated in the other study 211 

(Additional files 1 and 6). Strikingly, we noted that transcriptions factors that have previously 212 

been shown to be affected by mHTT such as CREB1 (rank 182) or TBP (rank 208) were ranked 213 

low or could not be detected at all (mSin3a) by TFEA.  214 

Besides the effects of mHTT on transcription factors, previous publications indicated that the 215 

dysregulation of epigenetic modifiers such as DNMT1 or histone deacetylases (HDACs) 216 

(Federspiel et al, 2019; Siebzehnrübl et al, 2018; Moreno et al, 2016) might contribute to the 217 

broad transcriptional dysregulation in HD. In our meta-analysis, HDCA2 (Z-ratios: 0.69, 1.84, 218 

1.86) and HDAC9 (Z-ratios: 2.26, 0.88, 1.42) were upregulated in the brain of HD patients, 219 

while the histone deacetylase 5 (HDAC5) mRNA levels were decreased (Z-ratios: -0.18; -2.17; 220 

-2.02). By RRA, we did not identify DNMT1, DNMT3A, or DNMT3B as robustly altered 221 

genes. Nonetheless, we noted a downregulation of DNMT1 (Z-ratio 0.48; - 1.35, -1.72) and 222 

DNMT3A (Z-ratio: 0.54, -1.38, -2.20) in datasets from Agus et al. 2019 and Labadorf et al., 223 

while both, DNMT1 and DNMT3A, were slightly upregulated in the larger dataset from 224 

Narayanan et al., 2014. DNMT3B (Z-ratio: - 0.76; -0.31; -0.79) was mostly unaltered in the 225 

brain of HD patients in all datasets.  226 

Taken together, mRNA levels of 320 genes of the M1 co-expression network strongly 227 

correlated with HD and genes involved in protein transport and metabolism was enriched in 228 

this co-expression subnetwork (Figure 3A, B and D). CDC42, PAK1, YWHAH and PP2CA 229 
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were identified as hub genes of this network. Especially substantiating on the relevance of 230 

CDC42, CDC42 has been indirectly linked with HD before [34] and can indirectly or directly 231 

interact with other identified hubs and 18 other proteins with robustly altered mRNA levels in 232 

the brain of HD patients. Further, the TFEA of the M1 subnetwork highlighted DLX1, NFY 233 

and HMGN3 as potential transcriptional regulators whose function might be affected in the 234 

brain of HD patients. mRNA levels of several epigenetic modifiers such as HDAC2, HDAC9, 235 

DNMT1, and DNMT3A were additionally altered in at least two of the three studies using HD 236 

brain samples.  237 

A large proportion of differentially regulated genes in the brain of HD patients were also 238 

altered in Alzheimer’s and Parkinson’s disease 239 

Previous transcriptomic studies have identified common transcriptional patterns between 240 

Alzheimer’s disease (AD) and Parkinson’s disease (PD) [37] and between AD and HD [16]. 241 

Hence, we compared the list of robustly altered genes in the brain of HD patients with the results 242 

of a previous meta-analyses comparing transcriptional alterations in PD and AD [37]. Of the 243 

737 genes with robustly altered mRNA levels in the brain of HD patients, that were identified 244 

by RRA, 74 genes were also differentially expressed in PD and 41 genes were altered in all 245 

three neurodegenerative diseases (Additional file 7). Strikingly, alterations of mRNA levels of 246 

these genes were mostly reciprocal between HD and AD or PD, i.e. genes with an elevated 247 

mRNA level in the brain of HD patients showed decreased mRNA levels in the brain of AD or 248 

PD patients.   249 

Analysing of the co-expression networks demonstrated that 100 % of these 74 genes were 250 

annotated as co-expressed in the GeneMania database (Figure 5A). 41 proteins whose mRNA 251 

levels were altered in HD and PD have at least one annotated interaction partner (Figure 5B). 252 

While PPP2CA, YWHAH, RAB11A and CDC42 which have been identified as hub genes / 253 

proteins in the M1 subnetwork network were also all central in the protein-protein interaction 254 
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network (Figure 5B and Additional file 5) of genes differentially expressed upon HD and PD, 255 

only YWHAH was also central in the constructed co-expression network (Figure 5A and 256 

Additional file 5).  257 

Transcriptional changes in the blood of HD patients 258 

As afore-described, HTT is ubiquitously expressed and HD symptoms are not confined to the 259 

central nervous system [1,4]. Hence, we additionally analysed transcriptomic studies of blood 260 

samples from HD patients and healthy controls (Table 1). Borovecki et al. 2005 (GSE1751) 261 

analysed the transcriptomic profile of twelve symptomatic and five presymptomatic HD 262 

patients in comparison to 14 healthy controls, whereas Hu et al. 2011 (GSE24520) included 263 

venous cellular whole blood samples from 6 healthy controls and 8 HD patients. Transcriptomic 264 

profiles of lymphocytes from 12 moderate stage HD patients and 10 age-matched healthy 265 

controls were analysed by Runne et al. 2007 (GSE8762). 266 

By robust rank aggregation (RRA), we identified 661 genes differentially expressed upon HD 267 

among the three datasets (p < 0.05) (Additional file 1). Based on those 661 genes with a soft-268 

thresholding power β = 19.5 (scale-free topology R2 = 0.87) (Additional file 2) and subsequent 269 

module-based clustering with the diagonal, equal volume, varying shape (EVI) model, we 270 

identified nine WGCNA modules. Of these modules, the module eigengene of three modules 271 

(brown, pink, and yellow) statistically significantly correlated with the disease state (healthy 272 

individuals versus HD) (Figure 6A). While genes of the brown module showed a negative 273 

correlation between module membership and gene significance, genes of the pink and yellow 274 

modules showed a positive correlation (Figure 6A). Corroborating the importance of genes of 275 

the pink and yellow modules, genes of these modules showed the highest mean gene 276 

significance of all identified modules (Figure 6B). Further, 94.12 % and 86.55 % of the genes 277 

belonging to either the pink or yellow module were annotated by GeneMania to be co-expressed 278 

in humans. Owing to the low distance between the modules eigengenes of the pink and yellow 279 
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modules (Figure 6C) and the highly similar adjacency of these modules (Figure 6D), we 280 

combined these modules for further downstream analysis and will further refer to this module 281 

as the blood meta-module (MB).  282 

Like the enrichment of the meta-module M1 identified in the brain samples, we found a strong 283 

enrichment of proteins involved in transport (FDR = 0.03 and 35.6 % of all genes in MB) and 284 

metabolic processes (FDR = 0.03 and 66.9 % of all genes in MB) in the MB subnetwork (Figure 285 

7A and B). Consistent with the enrichment of proteins involved in protein transport, we found 286 

a strong enrichment of proteins localised to endosome membranes (FDR = 0.002 and 9.3 % of 287 

genes in MB) (Figure 7C). Among the 11 proteins localised to endosome membranes were the 288 

vesicle-associated membrane protein 7 (VAMP7) (Z-ratios -1.47; 0.99; 3.3), a paralog of 289 

VAMP2 that also displayed altered mRNA levels in the brain, and the sorting nexin 10 (SNX10) 290 

that is involved in membrane trafficking and protein sorting [38]. Additionally, we observed 291 

dysregulation of the actin-related proteins ACTR2/Arp2 (Z-ratio: -0.95; -1.75; 3.15), 292 

ACTR3/Arp3 (-1.92; -1.62; 2.78), and ARPC5 (-1; -1.87; 2.24) that together with ARBC1A, 293 

ARBC1B, ARPC3, and ARPC4 form a seven-subunit protein complex playing an essential role 294 

in the regulation of the actin cytoskeleton [39]. By analysis of the MB protein-protein 295 

interaction network, ACTR2 was the most important hub protein, which strongly substantiates 296 

on its pathophysiological relevance in HD. Further indicating that transcriptional dysregulation 297 

of regulators of the actin cytoskeleton may be important in HD, other actin-related proteins such 298 

as ACTR3B (Z-ratios: 1.3; 1.30; 1.62), ACTR6 (1.38; 1.54; 1.88) and ACTR10 (Z-ratios: 1.64; 299 

1.23; 1.34) were robustly upregulated in the blood of HD patients according to this meta-300 

analysis. The alteration of mRNA levels of constituents of the Arp2/3 complex and actin-related 301 

proteins further substantiates on the identification of CDC42 as an important hub gene in the 302 

brain since CDC42 can activate the Arp2/3 complex through Wiskott-Aldrich syndrome 303 

proteins [40] such as WAS, WASF1, WASF2, WASF3, and WASL that appeared to be neither 304 

robustly altered in the brain nor in the blood of HD patients. 305 
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To identify transcription factors that can regulate the transcription of genes belonging to MB, 306 

we performed a TFEA (Additional file 6). The CGG Triplet Repeat Binding Protein 1 307 

(CGGBP1), zinc finger protein 654 (ZNF654), forkhead box N2 (FOXN2), and the specificity 308 

protein 3 transcription factor (SP3) were ranked at the top in the TFEA. Strikingly, transcription 309 

of these transcriptional regulators is regulated by the cAMP-responsive element-binding 310 

protein-1 (CREBP1). CREB1 was also ranked high (rank 15) in the TFEA and can regulate the 311 

transcription of genes coding for constituents of the Arp2/3 complex and hub genes of the MB 312 

subnetwork such as membrane-associated ring-CH-type finger 7 (MARCH 7), pumilio RNA 313 

binding family member 2 (PUM2), survival motor neuron domain containing 1 (SMNDC1), or 314 

zinc finger DHHC-type palmitoyltransferase 17 (ZDHHC17), also known as the huntingtin-315 

interacting protein 14 (HIP14). CREB1 together with the other enriched transcription factors 316 

regulated by CREB1 (TET2, SP3, RLF, CGGBP1, ZNF148, FOXN2, ZNF654, ZBTB11, and 317 

ZNF770) regulates the transcription of 92 from 118 (78.0 %) genes belonging to MB 318 

(Additional file 8). 319 

Taken together, the enrichment of proteins localised to endosome membranes further 320 

corroborates the above-described alteration of protein-transport-related genes in the brain of 321 

HD patients. The dysregulation of several constituents of the Arp2/3 complex, that is activated 322 

by CDC42, substantiates on the relevance of actin cytoskeleton dysregulation in HD.  323 

52 genes were differentially regulated in the blood and brain of HD patients   324 

As noted before, the ubiquitous expression of HTT [1] and the clinical manifestation of HD 325 

outside the central nervous system [4] indicates that transcriptomic changes caused by polyQ 326 

expansion of HTT may be not confined to nervous tissues. According to our meta-analysis, 52 327 

genes were dysregulated in brain- and blood-derived samples from HD patients (Additional file 328 

1).  329 

Based on the genes/proteins altered in the blood and brain of HD patients, we constructed a 330 
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protein-protein interaction network (Figure 8) to investigate the relationship between the 331 

identified genes. Furthermore, to identify transcription factors that might explain the observed 332 

transcriptomic alterations, we conducted a transcription factor enrichment analysis. While 333 

82.4 % of the proteins were annotated as co-expressed by GeneMania (data not shown), 48.1 % 334 

were interacting with a least one other protein according to the STRING databases (interaction 335 

cutoff: 0.4).  336 

In our meta-analysis, we noted that mRNA levels of the zinc finger DHHC-Type 337 

palmitoyltransferase 13 (ZDHHC13), i.e. huntingtin-interacting protein 14 (HIP14), and the 338 

zinc finger DHHC-Type palmitoyltransferase 17 (ZDHHC17), i.e. huntingtin-interacting 339 

protein 14-like protein (HIP14L) were mostly elevated in the blood and brain of HD 340 

patients. Previous studies linked the altered interaction between mHTT and ZDHHC17 and 341 

ZDHHC13 with altered regulation of the striatal N-Methyl-D-Aspartate Receptor (NMDA) 342 

trafficking [41].  343 

TFEA analysis of the 52 genes altered in the blood and brain of HD samples highlighted the 344 

enrichment of NFY target genes (rank 3) (Additional file 6). NFY is a trimeric complex of 345 

proteins coded by the NFYA, NFYB, and NFYC genes. Besides the high ranking of NFYB in 346 

the combined dataset (rank 3), targets of NFYB were also enriched in the M1 (brain, rank 24) 347 

and the blood (rank 48) (Additional file 6). Moreover, NFYB (Z-ratios in the brain datasets: 348 

1.05, 2.39, 2.02) mRNA-levels and NFYB target genes (mean Z-ratio: 1.62) were also 349 

increased in the brain of HD patients (Figure 5 and Additional file 1).  350 

HMGN3, NFY and CDC42 mRNA were additionally altered in the striatum of YAC128 351 

and R6/2 mice and predictive for HD 352 

To further substantiate on the relevance of identified hub genes or transcriptional regulators 353 

such as CDC42, PAK1, YWHAH, DLX1, HMGN3, or NFY, we analysed transcriptomic 354 

alterations in the striatum of R6/2 [42] and YAC128 mice [43] (Additional file 9). Furthermore, 355 
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we assessed how accurate control and HD mice can be discriminated based on mRNA levels of 356 

these genes (Additional file 10 and 11).  357 

Indicating that NFY may play a role in HD across tissues, TFEA of the subnetworks M1 and 358 

MB and the combined dataset highlighted NFY. Like in human HD patients, NFYA (Z-ratios: 359 

1.75, 0.77, 1.93 in R6/2, 12-month-old YAC128, and 24-month-old YAC128 mice 360 

respectively) and NFYB (Z-ratios: 1.31, 0.45, 1.38) mRNA levels were elevated in R6/2 and 361 

YAC128 mice. Additionally, control and HD mice could be well discriminated based on NFYA 362 

(AUC = 0.86; 95% CI = [0.71, 1]), and NFYB (AUC = 0.79; 95% CI = [0.60, 0.98]) mRNA 363 

levels (Additional files 8 - 10).  364 

In contrast, HMGN3 was only highlighted by TFEA of the M1 module, correlating with HD in 365 

the brain, and not in the blood datasets which may imply that dysregulation of HMGN3 may be 366 

confined to the brain In R6/2 and YAC128 mice, HMGN3 mRNA levels were elevated (Z-367 

ratios: 1.89, 0.78, 2.06) in HD mice and control and HD mice could be well discriminated based 368 

on the HMGN3 mRNA levels.  (AUC = 0.89; 95% CI = [0.76, 1]) (Additional files 8 - 10).  369 

In concert with a more pronounced HD phenotype in 24-month YAC128 and R6/2 mice than 370 

in 12-month-old YAC128 mice, the increase of HMGN3, NFYA, and NFYB mRNA levels 371 

positively correlated with the age of YAC128. This raises the possibility that HMGN3, NFYA, 372 

and NFYB mRNA levels might be utilised as markers for disease progression and severity. 373 

However, further investigations on the usability of those genes as biomarkers in larger patient 374 

cohorts are required. Further, it should be clarified whether alteration of mRNA levels HMGN3, 375 

NFY, their target genes are specific for HD or whether they are present in other 376 

neurodegenerative diseases.  377 

DLX1 and PRMT3 mRNA levels, which were both also highlighted by TFEA, were only 378 

elevated in the striatum of R6/2 mice but appeared to be unaffected in YAC128 mice. Like in 379 

the brain samples of HD patients, we observed a robust downregulation of DNMT3A (Z-ratios: 380 
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- 1.24, -1.79, - 1.14) in the striatum of R6/2 and YAC128 mice and the mice could be 381 

discriminated based on DNMT3A levels (AUC = 0.83; 95% CI = [0.66, 0.99]). In disagreement 382 

with the analysis of brain samples from HD patients, DNMT1 and DNMT3B levels were not 383 

consistently altered in the striatum of R6/2 and YAC128 mice. 384 

Further corroborating the importance of CDC42 dysregulation in HD, CDC42 mRNA levels 385 

were elevated in the striatum of R6/2 and YAC128 (Z-ratios: 1.24, 1.18, 1.88). Additionally, 386 

control and HD mice could be discriminated based on CDC42 mRNA levels (AUC = 0.85; 95% 387 

CI = [0.68, 1]). mRNA level of PAK1, that was identified as a hub gene in the M1 subnetwork 388 

and correlated with HD, was merely elevated in YAC128 mice (Z-ratios: 1.47, 2.08), but was 389 

mostly unaffected in R6/2 mice (Z-ratio: - 0.45).  390 

Discussion 391 

In our meta-analysis, we intended to identify by RRA, WGCNA and network analysis robust 392 

transcriptomic changes underlying HD. To this end, we included transcriptomic studies 393 

analysing different human brain regions and tissues from symptomatic and prodromal HD 394 

patients. Thereby, we identified subnetworks of 320 (M1) or 118 (MB) genes with robustly 395 

altered mRNA levels in the brain and blood of HD patients, respectively. Network analysis of 396 

differentially expressed genes in the brain highlighted CDC42, PAK1, YWHAH, and PP2CA 397 

as hub genes of the M1 subnetwork. Additionally, we identified a signature of 74 and 41 genes, 398 

including CDC42 and YWHAH, that were altered in the brain of PD and HD (Figure 5 and 399 

Additional file 7) and AD, PD and HD patients, respectively. In the blood, we identified a 400 

subnetwork of 118 genes, including genes coding for several constituents of the Arp2/3 401 

complex that is activated by CDC42. TFEA highlighted the relevance of several already 402 

described (e.g. CREB1 and NFY) or novel (e.g. DLX1, PRMT3 and HMGN3) transcription 403 

factors that may play a role in HD. In conclusion, our analysis suggests that dysregulation of 404 

transcription factors and epigenetic modifiers, cellular metabolism, actin cytoskeleton and 405 
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SNARE complex proteins play an important role in the pathology of HD (Figure 8).  406 

As noted before, the pathology of HD is neither confined to certain brain regions nor the brain 407 

[4]. A succesful HD therapy should, therefore, target a gene or protein that is not exclusively 408 

altered in a certain brain region or tissue. Hence, we analysed RNA data from different brain 409 

regions and blood samples in our meta-analysis, although an increased interstudy variability, 410 

reducing the sensitivity with which differentially expressed genes are identified, may argue 411 

against the combined analysis of different brain regions. Furthermore, certain limitations for 412 

the interpretation and combined analysis of transcriptomic data from different studies should 413 

be considered: although authors of the original publications strictly controlled RNA quality 414 

before RNA sequencing or microarray analysis, small changes in RNA quality might impair 415 

transcript quantification and subsequently also the results of this meta-analysis. Second, post-416 

mortem samples from HD patients who died from HD can only provide insights into 417 

transcriptional changes at the end stage of HD that do not necessarily reflect changes at disease 418 

onset or during disease progression. Third, neurodegeneration in the brain of HD patients in 419 

late disease stages poses the risk that some of the observed alterations are caused by changes in 420 

tissue composition. Bearing the danger of altered tissue composition as a confounding factor in 421 

mind, we also included the dataset from Agus et al. 2019 who analysed early-stage, prodromal 422 

HD patients in which neuronal loss was less pronounced [13].  423 

Several studies have shown that HTT and its interactors such as the huntingtin-associated 424 

protein 1 (HAP1) or the huntingtin-interacting protein 1 (HIP1) participate in protein transport 425 

and the organisation of the cytoskeleton [1]. RNAi-mediated silencing of the huntingtin-426 

interacting protein 1 related (HIP1R), also known as huntingtin-interacting protein 12 (HIP12), 427 

for instance, led to the stable association of clathrin-coated structures and their endocytic cargo 428 

to dynamin, actin, the Arp2/3 complex, and cortactin [44,45]. Furthermore, HAP1 regulates 429 

synaptic vesicle exocytosis [46] and neuronal endocytosis through its interaction with the Sec23 430 
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homolog A, COPII coat complex component (SEC23A) and the clathrin light chain B [47]. In 431 

line with previous findings that HTT and its interactors regulate the cytoskeleton and transport 432 

processes and substantiating that impairments of these functions contribute to the 433 

pathophysiology of HD, we identified CDC42 as a hub gene in the M1 subnetwork that was 434 

highly correlated with HD in transcriptomic studies of post-mortem brain samples. CDC42 435 

mRNA levels were also elevated in the brain of HD patients and in the striatum of R6/2 and 436 

YAC128 mice. In contrast to HD, CDC42 mRNA levels were decreased in brain of AD and PD 437 

patients [37]. Besides, mRNA levels of several constituents of the Arp2/Arp3 complex 438 

(ACTR2/Arp2: blood; ACTR3/Arp3: blood and brain; ACTR3B: brain; ARPC5: blood; 439 

ACTR6: brain), that interacts with the HIP1R-cortactin complex and is activated by CDC42, 440 

were altered in HD patients. mRNA levels of VAMP1, an indirect CDC42 interactor, were 441 

robustly upregulated in all studies using HD brain samples (Additional file 1). mRNA levels of 442 

VAMP2 and VAMP7 were additionally altered in the HD blood samples (Additional file 1), 443 

although these alterations were not consistent across the different studies. VAMPs are major 444 

constituents of protein complexes involved in the docking and fusion of vesicles [48]. These 445 

complexes are comprised of VAMPs, other syntaxins, the synaptosome associated protein 25 446 

(SNAP-25), the N-ethylmaleimide-sensitive factor-like protein (NSF), the NSF-attachment 447 

proteins alpha (NAPA, SNAPA), beta (NAPB / SNAPB), gamma (NAPG / SNPAG), and 448 

SNAP receptors (SNARE). Corroborating our finding that the mRNA levels of VAMPs were 449 

altered in the brain and blood of HD patients and the striatum of R6/2 and YAC128 mice (this 450 

study), VAMP2 protein levels were also increased in striatal synaptosomes of Hdh140Q/140Q 451 

mice [49]. On the contrary, protein levels of other proteins involved in the docking and fusion 452 

of vesicles such as SNAP-25 or rabphilin 3a were reduced in the post-mortem cortex of HD 453 

patients [50]. Additionally, analysis of 175Q-HTT knock-in mice demonstrated altered levels 454 

of other proteins involved in synaptic function (SNAP-25, Rab3A, and PSD95), axonal 455 

transport, and microtubules (dynein, dynactin, and KIF3A) [51]. Additionally, HTT can interact 456 
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with SNAP25, and the SNAP25-associated proteins syntaxin 1A (STX1A) and calcium 457 

voltage-gated channel auxiliary subunit alpha2delta 1 (CACNA2D1) [52]. Raising the 458 

possibility that HTT and its abundant interactor, the huntingtin-associated protein 40 (HAP40), 459 

plays a role in docking and fusion of synaptic vesicles, we previously found that constituents 460 

of this complex, the N-ethylmaleimide-sensitive factor attachment proteins alpha (NAPA, 461 

SNAPA), beta (NAPB / SNAPB), and gamma (NAPG / SNPAG) are the closest homologs of 462 

HAP40 [53].  463 

Besides proteins of the SNARE complex, we identified other proteins linked with CDC42 in 464 

our network analysis of transcriptomic data from brain tissue of HD patients. For instance, 465 

PAK1, identified as a hub gene in the subnetwork M1, and its interactor PAK1IP1 showed 466 

robust upregulation in HD patients. The PAK proteins, PAK1 and PAK3, are central regulators 467 

of neuronal development and activating PAK1 mutations were aetiologic for secondary 468 

macrocephaly, developmental delay, ataxic gait and seizures in two unrelated patients [36]. 469 

Double knock-out of PAK1/PAK3 in mice affected brain size and structure [54]. Linking PAKs 470 

with HTT, Luo and Rubinszstein showed a physical interaction between HTT and PAK1 [55] 471 

and siRNA-mediated silencing of PAK1 and PAK2 reduced mutant HTT toxicity and 472 

aggregation [55,56]. PAK2 knock-down in the murine striatal cell line STHdh(Q111) also 473 

reduced mutant HTT toxicity [57].  474 

As afore-mentioned, we found that 78 % of the genes of the subnetwork MB, which strongly 475 

correlated with HD in the blood (Figure 6), were directly or indirectly regulated by CREB1 476 

(Additional files 6 and 7). CREB1, a leucine zipper transcription factor, activates the 477 

transcription of genes upon binding to the cAMP-response element (CRE). Steffan et al. 478 

previously showed that the CREB1-binding protein (CBP), a transcriptional coactivator of 479 

CREB1, can interact with HTT [22]. In a transcriptomic study of subcutaneous adipose tissue 480 

obtained from HD patients, CREB1 target genes were enriched, and the CREB1 mRNA levels 481 
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were significantly increased (McCourt et al, 2015). Substantiating the physiological importance 482 

of CREB1, the double knock-out of CREB-1 and the cAMP-responsive element modulator 483 

(CREM) in mice (Creb1NescreCrem-/-) led to severe neuronal loss during brain development and 484 

perinatal death [58]. A conditional, postnatal knock-out of Creb1 and Crem, showed 485 

considerable atrophy in the striatum and hippocampus and a dystonic phenotype [58]. 486 

Indicating that the loss-of-function of CREB1 in mice can partly be compensated by CREM, 487 

neither the loss of CREB1 nor CREM alone induced neurodegeneration in mice [58]. While we 488 

also found a strong enrichment of CREB1 target genes in our MB subnetwork by TFEA, 489 

CREB1 mRNA levels appeared to be unaltered in all analysed datasets. As afore-mentioned, 490 

TFEA of the M1 subnetwork consisting of genes with robustly altered mRNA levels in the brain 491 

of HD patients did not highlight CREB1. The finding that CREB1 targets were not enriched in 492 

the M1 subnetwork (Additional file 6) in combination with the data from Mantamadiotis et al., 493 

raises the possibility that CREB1 function may be affected in the brain of HD patients, but the 494 

CREB1 dysfunction is compensated by CREM or other transcription factors. In contrast, 495 

CREB1 dysfunction might not be compensated outside the brain due to the lack of detectable 496 

CREM protein expression in blood cells [59]. Another transcription factor whose transcription 497 

is controlled by CREB1 and whose target genes were enriched in the MB subnetwork is SP3. 498 

The dual treatment of R6/2 mice with mithramycin, inhibiting SP3, and cystamine reduced the 499 

hypertrimethylation of histone H3 and extended their overall survival over 40% [60]. The 500 

alteration of the activity or mRNA levels of CREB1 might also partly explain observed 501 

alterations in mRNA levels of CDC42 and constituents of the Arp2/3 complex (this meta-502 

analysis) since CREB can regulate their transcription.  503 

The TFEA performed in this study also highlighted the enrichment of NFY target genes in the 504 

M1 and MB subnetwork as well as in the dataset of genes affected in both tissues. In the brain 505 

of HD patients, mRNA levels of NFYB and its target genes were elevated (Figure 5, Additional 506 

file 8). Further corroborating that the dysregulation of NFY and its target genes may be 507 
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important in HD, van Hagen et al. found an enrichment of NFY target genes among a gene 508 

cluster that was differentially expressed in rat PC12 cells expressing the exon 1 of human 74Q-509 

HTT [61]. Aggregates of mutant HTT can interact in vitro and in the mouse brain with NFY 510 

and thereby reduce transcription of the NFY target gene HSP70 [62]. On the other hand, our 511 

meta-analysis may indicate that the transcriptional activity and transcription of NFY might be 512 

increased in the brain of HD patients, R6/2 and YAC128 mice. With regards to the currently 513 

available data on the role of NFY in HD, we cannot exclude the possibility that elevated mRNA 514 

levels of NFY and its target genes are caused by a compensatory mechanism to restore NFY 515 

function. This scenario may explain why transcription of NFY targets was reduced in one study 516 

[62], while we observed increased transcription of NFY and its targets.  517 

Besides NFY and CREB-1, TFEA (Additional file 6) of the M1 subnetwork of genes altered in 518 

the brain of HD patients highlighted DLX1, PRMT3, and HMGN3 that may be involved in 519 

astrocyte maturation [63]. To our knowledge, this is the first study which indicates a potential 520 

role of DLX1, PRMT3, and HMGN3 dysfunction in HD. As noted above, DLX1 mRNA levels 521 

were only upregulated in the brain of HD patients in two studies, while it appeared to be 522 

unaffected in the third study analysing the caudate nucleus of prodromal HD patients. 523 

Additionally, DLX-1 mRNA levels were elevated in the striatum of R6/2 mice, while it was 524 

unaltered in the striatum of YAC128 mice. Besides the role of DLX1 in the adult brain, DLX1 525 

plays also an important role in brain development; DLX1, together with NOLZ-1 and DLX2, 526 

regulates the migration of striatal neurones to the dorsal or ventral striatum and the identity of 527 

striatal projection neurones [64]. Chen et al. also demonstrated that the knock-out of NOLZ-1, 528 

also known as zinc finger protein 503 (ZNF503), in mice led to an upregulation of DLX1/2 and 529 

an aberrant neuronal migration from the dorsal to the ventral striatum [64]. Demonstrating that 530 

elevated DLX1/DLX2 levels were causative for the aberrant neuronal migration, restoration of 531 

the altered DLX1/DLX2 levels in NOLZ-1 knock-out mice rescued the aberrant neuronal 532 

migration [64]. A conditional DLX1 knock-out in cortical interneurons in mice reduced the 533 
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excitatory input, fewer excitatory synapses and hypoplastic dendrites [65] which substantiated 534 

on the relevance of DLX1 beyond the striatum. Additionally, DLX1 knock-down in 535 

interneurons enhanced dendritic growth through neuropilin-2 and PAK3 [66], that was also 536 

slightly upregulated in the brain of HD patients (Z-ratios: 1.98; 0.46; 0.70) according to this 537 

meta-analysis. PRMT3, a protein methyltransferase whose mRNA levels were elevated in the 538 

brain of HD patients and the striatum of R6/2 mice (this study) but neither in the blood nor the 539 

striatum of YAC128 mice, is essential for dendritic spine maturation in the rat hippocampus 540 

[67] and neuronal development [68]. Due to a more rapid disease progression and disease onset 541 

in R6/2 than YAC128 mice [69,70], the elevation of DLX-1 and PRMT3 mRNA levels in the 542 

striatum of R6/2 but not in YAC128 mice raises the possibility that the dysregulation of DLX-543 

1 and PRMT3 occurs in later disease stages and is more pronounced upon expression of the 544 

HTT-exon1 fragment.  545 

Conclusion 546 

Here, we identified, by RRA and WGCNA, subnetworks of 320 (M1) and 118 (MB) genes with 547 

robustly altered mRNA levels in the brain and blood of HD patients, resp. In the brain, CDC42, 548 

PAK1, YWHAH, and PP2CA were highlighted as hub genes of the M1 subnetwork (Additional 549 

file 4), that appears to be enriched in genes functioning in protein transport (Figure 3). We also 550 

identified a signature of 74 and 41 genes, including CDC42 and YWHAH, that were altered in 551 

the brain of PD and HD (Figure 5 and Additional file 7) and AD, PD and HD patients, 552 

respectively. In blood, we identified a subnetwork of 118 genes, including genes coding for 553 

several constituents of the Arp2/3 complex that is activated by CDC42. TFEA (Figure 5 and 554 

Additional file 6) highlighted the relevance of CREB1 in the pathology of HD since the 555 

transcription of 78.0 % of genes altered in the blood of HD patients were directly or indirectly 556 

regulated by CREB1. Furthermore, DLX1, PRMT3, HMGN3 and NFY target genes were 557 

enriched in the identified modules. HMGN3, NFYA, NFYB, and CDC42 mRNA levels were 558 
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additionally altered in R6/2 and YAC128 mice (Additional file 9) and could be used to 559 

discriminate between control and HD mice (Additional files 10 and 11). Indicating that the 560 

upregulation of DLX1 and PRMT3 transcription may occur in later disease stages, DLX-1 and 561 

PRMT3 mRNA levels were merely elevated in R6/2 mice but not in YAC128 mice that show 562 

a less severe HD phenotype than R6/2 mice.  563 

Our results strongly suggest that abnormal protein transport, cytoskeletal organization, and 564 

transcriptional regulation might be central features in the pathophysiology of HD (figure 8). 565 

Furthermore, our study substantiates the role of CDC42, previously identified HTT interactors 566 

(e.g. PAK1, and PAK2) and transcriptional regulators (e.g. CREB1 and NFY) which have been 567 

reported to be sequestered to mutant HTT aggregates. Most interestingly, our data indicate a 568 

potential pathophysiological role of DLX-1, HMGN3 and PRMT3 in HD that have not been 569 

reported before.  570 

Methods 571 

Retrieval and tiding of datasets  572 

In our meta-analysis, we analysed transcriptomic studies that were published in a peer-reviewed 573 

journal and whose raw data were publicly available. Furthermore, we excluded transcriptomic 574 

studies with less than eight samples from HD patients. To analyse post-mortem brain tissue, we 575 

retrieved data from the Gene Ontology Omnibus (GEO) database of the National Center for 576 

Biotechnology Information (NCBI) with the accession number GSE33000 [16], GSE129473 577 

[13], and GSE64810 [14]. For the analysis of blood samples from HD patients, raw data were 578 

retrieved from the GEO database with the accession numbers GSE1751 [19], GSE24250 [17], 579 

and GSE8762 [18]. If genes were measured by several probes, the average of all probes of the 580 

respective genes was used. In our meta-analysis, we excluded samples from presymptomatic 581 

HD patients due to a low patient number.  582 
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Missing data in the dataset GSE33000 were imputed by sequential and random hot-deck 583 

imputation as implement in the R-package VIM [71] since we assumed missing at random after 584 

graphical analysis of missing values by the R-function matrixplot (VIM package) [72]. We 585 

normalised raw transcript-levels by quantile-normalisation using the R function 586 

normalize.quantiles.robust from the package preprocessCore (Bolstad, 2019) and, afterwards, 587 

converted them into Z-Scores. 588 

Robust rank aggregation analysis (RRA) 589 

To obtain a list of robustly altered genes, we computed Z-ratios according to the method 590 

proposed by Cheadle et al., 2003 [73] and ranked them after their absolute Z-ratio. The sorted 591 

transcript lists were analysed with RRA, as implemented in the R package RobustRankAggreg 592 

[74]. RRA is a distribution-based and parameter-free method that detects genes ranked 593 

consistently better than expected for uncorrelated genes (null hypothesis) and computes an 594 

significance score based on an probabilistic model [74]. The used the RRA algorithm previously 595 

showed a higher robustness  to outliers, noise, and errors than other rank aggregation methods 596 

[74].  597 

We included transcripts with a RRA score < 0.05 in the further downstream analysis and 598 

performed clustering analysis and plotting of the heatmaps with the function heatmap.2 599 

implemented in the R-package gplots (version 3.0.3) [75].  600 

Generation of weighted correlation networks  601 

For the weighted correlation network analysis (WGCNA), the signed co-expression networks 602 

were build using the R-package WGCNA [76]. Correlation between genes was computed by 603 

biweight midcorrelation [76] to compute adjacency matrices. Based on the scale-free criterion 604 

[77], we set the power parameter β and computed the topological overlap measure (TOM) and 605 

the corresponding dissimilarity matrices (1 – TOM). Genes were clustered by model-based 606 

clustering of the dissimilarity matrix as implemented by Scrucca et al. 2016 [78]. Correlation 607 
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of module eigengenes with disease state and between gene significance and module 608 

membership were calculated by Pearson’s product-moment correlation as implemented in R 609 

(Langfelder et al, 2008; R Core Team, 2020). We adjusted p-values for multiple testing with 610 

the method described by Yekutieli & Benjamini, 2001 [79]. Genes with a gene significance 611 

score above 0.3, module membership above 0.7, and intramodular connectivity that is larger 612 

than the 8th percentile of all genes were identified as hubs. 613 

Enrichment Analysis 614 

Gene set enrichment analysis (GSEA) was conducted with the algorithm implemented in the 615 

STRING database [28] for each dataset separately and results were combined by ranking 616 

enriched terms after their enrichment scores and aggregation by RRA [74]. Gene ontology (GO) 617 

and Reactome term enrichment of genes from different subnetworks were performed with the 618 

algorithms implemented by the STRING database [28] in Cytoscape (version 3.7.2) [80]. 619 

Based on the pathway annotations in the KEGG database [81] and the protein-protein 620 

interaction data from STRING (version 11.0) [28], we performed a network enrichment 621 

analysis test (NEAT) [82] as implemented in the R package ´neat´. Transcription factor 622 

enrichment analysis (TFEA) was performed with ChIP-X Enrichment Analysis 3 (CheA3) [83] 623 

using the mean rank as the metric. Furthermore, we calculated the mean Z-ratios of transcription 624 

factor targets with R-scripting language [84] and plotted the results using ggplot2 [85].  625 

Network analysis 626 

Protein-protein interaction networks (PPIN) were retrieved from the STRING database [28] 627 

using a confidence level cut-off of 0.4 and the Cytoscape software (version 3.7.2) [80]. Top 50 628 

hubs of the PPIN were computed with the cytoHubba plug-in [86] using the betweenness, 629 

bottleneck, closeness, clustering coefficient, degree, DMNC, EcCentricity, EPC, MCC, 630 

radiality and stress scoring methods. Results of different scoring methods were aggregated by 631 

RRA [74] to increase the robustness of the prediction. For the network of genes altered in HD, 632 
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AD, and PD only the top 10 (protein-protein-interaction network) hub proteins or top 20 633 

(coexpression network) were used. We included hub proteins with an RRA score below 0.05 in 634 

the further analysis and combined the lists of hubs in the co-expression network, identified by 635 

WGNA, and the protein-protein interaction network by RRA [74]. 636 

Comparison of differentially expressed genes in the brain of AD, PD, and HD patients 637 

The list of differentially expressed genes in the brain of AD and PD patients was retrieved from 638 

Kelly et al 2019 [37] and for HD all genes with an RRA score in the brain below 0.05 were used. 639 

Networks and hub proteins / genes were computed as described above.  640 

Confirmation of hub genes in HD mouse models 641 

We analysed two datasets with transcriptomic data of HD mouse models to confirm if the 642 

identified hub genes and transcriptional regulators were additionally altered in independent 643 

datasets. In these studies, transcriptomic alterations in the striatum of R6/2 [42] (NCBI 644 

accession number: GSE113929) or YAC128 (NCBI accession number: GSE19677) [43] were 645 

analysed. Since Becanovic et al. 2010 used YAC128 mice at the age of 12 and 24 months, we 646 

separated the samples according to the age of mice and analysed them as independent datasets. 647 

Data tidying and computation of Z-ratios were performed as described in the sections “retrieval 648 

and tiding of datasets” and “Robust rank aggregation analysis (RRA)”. 649 

Classification analysis of selected genes (ACTR2, ACTR3, ARPC5, CDC42, CREB1, DLX1, 650 

DNMT1, DNMT3A, DNMT3B, HDAC2, HDAC5, HMGN3, NFYA, NFYB, NFYC, PAK1, 651 

PRMT3, VAMP2, VAMP7, YWHAH, ZDHHC13, ZDHHC17), identified in the human 652 

datasets, was performed, as implemented in the R-package pROC [87], to compute the area 653 

under the curve (AUC) of the respective receiver-operator characteristics (ROC). 95 % 654 

confidence intervals of AUCs were calculated by bootstrapping with 10,000 replicates and 655 

genes with confidence intervals for the AUC above 0.5 were considered capable to discriminate 656 

between control and HD mice since the classification model is statistically significantly better 657 
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than a random classification model.  658 
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Figures 900 

 901 

 902 

Figure 1: Result of WGCNA analysis and the association of the disease state with module eigengenes. 903 
A. Heatmap showing the correlation between module and disease state or between gene significance and 904 
module membership. P-values adjusted after Benjamini & Yekutieli (Yekutieli & Benjamini, 2001) are 905 
given in brackets. B: Mean gene significance of each module. Error bars depict the 95% confidence interval. 906 
C. Dendrogram showing hierarchical clustering of module eigengenes. D. Eigengene adjacency heatmap.   907 
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  908 

Figure 2: Correlation of WGCNA meta-modules and the association of the disease state with module 909 
eigengenes. A. Heatmap showing the correlation between the meta-module eigengenes (MEM1, MEM2, 910 
and MEM3), and disease state (HD) or between gene significance (GS) and meta-module membership. P-911 
values adjusted after Benjamini & Yekutieli (Yekutieli & Benjamini, 2001) are given in brackets. B: Mean 912 
gene significance (GS) of each meta-module. Error bars depict the 95% confidence interval. C. Dendrogram 913 
showing hierarchical clustering of module eigengenes. D. Eigengene adjacency heatmap.   914 
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 916 
Figure 3: Enrichment analysis of M1 subnetwork. A: Gene ontology (GO) term enrichment analysis for 917 
biological processes. B: Mean Z-ratios of genes belonging to the enriched biological processes. C: Gene 918 
ontology (GO) term enrichment analysis for cellular compartments. D: Enrichment of Reactome pathways. 919 
The size of the circles depicts the negative decadic logarithm of the false-discovery rate (FDR). E: Result 920 
of gene set enrichment analysis against the gene ontology database. Only gene sets identified in each dataset 921 
(red: GSE33000; blue: GSE129473; grey: GSE64810) are shown and sets were ordered according to the 922 
score of the RRA analysis. 923 
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 925 

Figure 4: Z-Scores of target genes from the top 25 enriched transcription factors. Enrichment of 926 
transcription factors was computed with the Chea3 tool and the Z-ratios for each gene of M1 controlled by 927 
the respective transcription factor was averaged for the three different studies. Transcription factors were 928 
ordered based on the result of the transcription factor enrichment analysis with the best-ranked transcription 929 
factor at the top of the graph and transcription factors with robustly altered mRNA levels were depicted in 930 
red.       931 
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 936 

Figure 5: Co-expression and protein-protein interaction network of genes altered in HD and PD. A. Co-937 
expression network.  B. Protein-protein interaction network representing proteins that have at least one annotated 938 
interaction partner within the query. Networks  were constructed with Cytoscape [80], its GeneMania [88]  and STRING 939 
[28] plugins. List of differentially regulated genes in the brain of PD patients was retrieved from [37]. 940 
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 941 

 942 

Figure 6: Result of WGCNA analysis and the association of the disease state with module eigengenes. 943 
A. Heatmap showing the correlation between module and disease state or between gene significance and 944 
module membership. P-values adjusted after Benjamini & Yekutieli (Yekutieli and Benjamini, 2001) are 945 
given in brackets. B: Mean gene significance of each module. Error bars depict the 95% confidence interval. 946 
C. Dendrogram showing hierarchical clustering of module eigengenes. D. Eigengene adjacency heatmap.   947 
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 949 

Figure 7: Enrichment analysis of MB meta-module. A: Gene ontology (GO) term enrichment analysis 950 
for biological processes. B: Mean z-ratios of genes belonging to the enriched biological processes. C:  Gene 951 
ontology (GO) term enrichment analysis for cellular compartments. D: Enrichment of Reactome pathways.  952 
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 954 

Figure 8: Protein-protein interaction map of proteins with altered mRNA levels in the blood and 955 
brain of HD patients. Protein-protein interaction map was constructed the STRING database and plotted 956 
with Cytoscape. For illustration purposes, we added HTT to the protein interaction map, although mRNA 957 
HTT were not robustly altered.   958 
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 960 

Figure 9: Schematic illustration of transcriptomic alterations in the brain of HD patients. 961 

 962 

 963 
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Tables 965 

Table 1: Information on patients from the analysed transcriptomic studies. DLPC: 966 

dorsolateral prefrontal cortex; BA: Broadmann area;  967 

 968 

Accession 

number 

No. HD 

patients 

No. 

controls 

Age (HD) Age (Control) Tissue Reference  

GSE33000 157 157 55.9 ± 14.32 63.5 ± 19.40 DLPFC (BA9) [16]  

GSE129473 11 5 61.0 ± 21.59 62.8 ± 27.43 

Caudate nucleus 

/ DLPFC (BA9) 

[13]  

GSE64810 20 49 58.25 ± 10.36 68.35 ± 15.83 DLPFC (BA9) [14,15]  

GSE24250 8 6 NA NA 

Venous cellular 

whole blood 

[17]  

GSE8762 12 10 48.4 ± 11.76 50.08 ± 8.63 Lymphocytes [18]  

GSE1751 12 14 NA NA 

Venous whole 

blood 

[19]  

  969 
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Table 2: Top ten hub genes of meta-module M1.  Hub genes were determined based 970 

on their intramodular connectivity, module membership and gene significance as 971 

described in the methods section. A positive Z-score shows upregulation in HD samples, 972 

while a negative Z ratio shows a downregulation. The complete list of identified hub 973 

genes can be retrieved from the supplement. IC: intramodular connectivity; MM: module 974 

membership; GS: gene significance. 975 

Gene IC MM GS 

Z-ratio 

GSE33000 

Z ratio 

GSE129473 

Z ratio 

GSE64810 

C3orf14 60.22 0.96 0.48 2.01 0.46 1.77 

ATP6AP2 59.31 0.95 0.42 1.72 1.05 1.77 

ISCA1 57.93 0.95 0.47 1.96 0.75 1.77 

B3GALNT1 57.11 0.95 0.44 1.80 1.27 1.50 

POLR2K 54.55 0.94 0.49 1.98 1.44 2.30 

PAK1 54.65 0.92 0.44 2.07 - 0.42 0.30 

ACP1 53.75 0.94 0.45 1.82 1.22 1.76 

CDC42 53.60 0.94 0.42 1.72 1.83 1.45 

EID1 53.22 0.93 0.44 1.75 1.11 2.20 

RCN2 52.24 0.93 0.43 1.75 1.48 1.95 
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Additional files 977 

• Additional file 1 (Excel file, .xlsx): Genes with robustly altered mRNA levels in the brain and 978 

blood of HD patients. 979 

• Additional file 2 (Excel file, .xlsx): Selection of the soft-thresholding power β.  980 

• Additional file 3 (Excel file, .xlsx): Result of neat analysis 981 

• Additional file 4 (Excel file, .xlsx): Identified WGNA hub genes. 982 

• Additional file 5 (Excel file, .xlsx): Hubs of protein-protein interaction networks. 983 

• Additional file 6 (Excel file, .xlsx):  Results of transcription factor enrichment analysis. 984 

• Additional file 7 (Excel file, .xlsx): List of genes altered upon HD, PD and AD.  985 

• Additional file 8 (Excel file, .xlsx): CREB-1 transcription factor subnetwork. 986 

• Additional file 9 (Excel file, .xlsx): Alteration of mRNA levels in the striatum of R6/2 and 987 

YAC128 mice. 988 

• Additional file 10 (Excel file, .xlsx): Results of ROC analysis of selected genes and 989 

transcriptional regulators. 990 

• Additional file 11 (Portable Document Format, .pdf): ROC curves of selected hub genes and 991 

transcriptional regulators. 992 
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