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Abstract

The concept of test-retest reliability (TRR) indexes the repeatability or consistency of a measurement
across time. High TRR of measures is critical for any scientific study, specifically for the study of individual
differences. Evidence of poor TRR of commonly used behavioral and functional neuroimaging tasks is mount-
ing (e.g., Hedge et al., 2018; Elliot et al., 2020). These reports have called into question the adequacy of
using even the most common, well-characterized cognitive tasks with robust population-level task effects, to
measure individual differences. Here, we demonstrate the limitations of the intraclass correlation coefficient
(ICC), the classical metric that captures TRR as a proportional variance ratio. Specifically, the ICC metric
is limited when characterizing TRR of cognitive tasks that rely on many individual trials to repeatedly evoke
a psychological state or behavior. We first examine when and why conventional ICCs underestimate TRR.
Further, based on recent foundational work (Rouder and Haaf, 2019; Haines et al., 2020), we lay out a hier-
archical framework that takes into account the data structure down to the trial level and estimates TRR as
a correlation divorced from trial-level variability. As part of this process, we examine several modeling issues
associated with the conventional ICC formulation and assess how different factors (e.g., trial and subject
sample sizes, relative magnitude of cross-trial variability) impact TRR. We reference the tools of TRR and

3dLMEr for the community to apply these models to behavior and neuroimaging data.

1 Introduction

The concept of test-retest reliability (TRR) originated from the notion of inter-rater reliability, i.e., the
measurement of agreement or consistency across different observers (Shrout and Fleiss, 1979). All statistics
compress and extract information from data; TRR captures the degree of agreement or consistency across
multiple measurements (rather than observers) of the same quantity (reaction time |[RT], BOLD response,
personality traits) under similar circumstances. Traditionally, TRR is assessed through the statistical metric
of the intraclass correlation coefficient (ICC). Thus, for definitional clarity, TRR in the current context is
defined as a property of individual differences, and ICC is a conventional statistical measure of TRR.

Assessment of TRR is critical for almost all data collected in scientific studies. Here we focus on one specific

type of data structure common to behavioral and neuroimaging studies: subjects perform an experiment with a

*Corresponding author. E-mail address: gangchen@mail.nih.gov


https://doi.org/10.1101/2021.01.04.425305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425305; this version posted January 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

task manipulation (i.e., a task with different conditions aimed to probe specific processes). Each experimental
condition is instantiated with many trials. For example, an experimenter might evaluate cognitive interference
using the Stroop task (i.e., RT slowing due to conflicting information; MacLeod, 1991). The task includes
two conditions, one where the name of the color (e.g., “blue”, “green”) and the color of the printed word
match (i.e., congruent condition) and one where there is a mismatch between the print color and the color
word (i.e., incongruent condition). Under the conventional ICC formulation, the contrast between the two
conditions renders an RT difference score (“contrast value”) per subject that indexes the ability to inhibit
cognitive interference. If this task is completed twice by the same subjects, an ICC can be computed as the
fraction of the total variance that can be attributed to inter-individual differences in the interference effect.

Assessment of TRR has always been part of rigorous questionnaire development; much less psychometric
scrutiny has been applied to behavioral and imaging tasks until recently. Most concerningly, the ICC estimates
now being reported appear unacceptably low for behavioral (around 0.5 or below; Hedge et al., 2018) and
imaging tasks (less than 0.4; Elliot et al., 2020), casting doubt on their utility in studies of individual differ-
ences. For imaging tasks specifically, the extent to which common average contrast values exhibit poor ICCs
in the primary brain regions of interest has been troubling. Task-based fMRI has been used for some time
to examine associations between individual differences as part of an important search for brain biomarkers of
risk and disease. High TRR is a critical requirement for these usages.

Two aspects of the Stroop task example above are noteworthy and typical in modern TRR assessments of
behavioral and imaging tasks: i) the experimenter seeks to assess the reliability of a contrast between the point
estimates of two conditions, and/or ii) many trials are used as instantiations of each condition. While trials
are clearly an important source of variance, these are rarely included in the model structure and certainly
have not occupied a place in traditional TRR calculations via ICC. Modeling trial-level variance has not
been widely practiced in neuroimaging. Ignoring cross-trial variations effectively means that all instantiations
(i.e., trials) are presumed to have the same estimate, and precision information (i.e., variance underlying the
condition estimate) is not considered at the population level. As we will demonstrate, trial-level variability is
surprisingly large in both behavior and task-based imaging data, often dwarfing subject-level variability. This
unmodeled variance will contaminate the subject-level variance on which conventional TRR estimates hinge.

Specifically, we show that

1
2
3
4

) conventional ICCs can substantially underestimate TRR;

) a single ICC value is misleading due to its failure to capture the estimation uncertainty;

) the degree of ICC underestimation depends on the number of trials and cross-trial variability;

) the number of subjects has surprisingly little impact on ICC.

In addition, based on recent foundational work (Rouder and Haaf, 2019; Haines et al., 2020), we aim to

1) build a hierarchical model that more accurately characterizes test-retest data, which accounts for cross-
trial variability and estimates TRR as a correlation;

2) show that this model identifies brain regions with TRR as high as 0.9, yet also highlights low precision
of TRR estimation with few trial replicates;

3) illustrate that the number of trials is more important in improving TRR precision than the number of
subjects;

4) make hierarchical modeling programs TRR and 3dLMEr available for TRR estimation;

In the process of laying out a new hierarchical solution to estimate TRR, we examine modeling issues
associated with the conventional ICC framework and highlight one question: what is the source of the large

cross-trial variability - often several times the magnitude of cross-subject variability?
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1.1 Classical definition of ICC

In all comparisons with ICC, we focus on the most common type, ICC(3,1), which quantifies the consistency
(i.e., rather than absolute agreement) of an effect of interest between two sessions when the same group of
subjects is measured twice (Shrout and Fleiss, 1979). Returning to our introductory example, suppose that
the effect of interest is the contrast between incongruent and congruent conditions of the Stroop task. The
investigator typically recruits n subjects who perform the Stroop task in two sessions while their RT is
collected. Suppose that each of the two conditions is represented by m trials as exemplars in the experiment.
The investigator typically follows the conventional two-level analytical pipeline. First, the original subject-
level data yerse (c=1,2; 7 =1,2; s=1,2,...,n; t = 1,2,..,m) from the s-th subject during r-th repetition for
the t-th trial under the c-th condition are averaged across trials to obtain the condition-level effect estimates

Yers. that are followed by contrasting the two conditions,

Yrs = i/\lr& - /y\Qrs- (1)

Then, at the population level, the condensed data y,s are fed into a condition-level model (CLM) under a

two-way mixed-effects ANOVA or linear mixed-effects (LME) framework with a Gaussian distribution,

yrs’arﬂ—&ae ~ N(ar + 7s, 0’3);
7—s| or NN(Oa 572')7 (2)
r=12;, s=1,2,...,n;

where a, represents the population-level effect during the r-th repetition, which is considered to be a “fixed”
effect under the conventional statistical framework; 75 is a “random” effect associated with s-th subject; The
ICC under (2) is defined as

52

T (3)

52 2°
oz + 07

ICC(3,1) =

Such a two-level analytical pipeline, averaging across trials and contrasting between conditions followed by
ICC computation, is typically adopted for behavioral and neuroimaging data analysis. The residual variability
0e may appear to capture the within-subject cross-repetition variability; however, “hidden” variability remains
embedded in o, which causes a fundamental problem with the conventional ICC - as detailed later.

The classical ICC can be examined from two statistical perspectives. First, as the data variability under
ANOVA/LME (2) through CLM is partitioned into two components, cross-subject variability 2 and within-
subject variability o2, the ICC formulation (3) directly reveals the amount of cross-subject variability relative
to the total variability. Second, ICC can be viewed as the Pearson correlation of the subject-level effects
between the two repetitions,

~2

_ _ COV(y157 y25) . o
ICC(3,1) - COI‘I‘(ylS, y23) - \/U(I’I"(yls) UCLT‘(yQS) - 572_ + O_g' (4)

There are two aspects that make the ICC calculation a unique case under a correlational framework. First,
unlike any other generic interclass correlation where the two variables are usually from two different classes
(e.g., height and weight), ICC always involves two repeated measures in the same class (e.g., the same type of
effects y15 and ya5). It is this sameness that renders the name intraclass correlation. The other aspect is that
homoscedasticity is implicitly assumed under the conventional ICC formulation in the sense that the random
variables 15 and yas share the same variance across repetitions as shown in (4). This is distinct from the

generic situation of Pearson correlation in which the two variables are usually heteroscedastic.
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Population Effects (ms) Data Variability (ms) | VR
Model RT effect repetition | mean | 95% interval | subject residual (UR) TRR
session 1 | 639 (617, 660) | . ' 4.1
model (2) congruent session 2 | 607 (585, 629) o 64 Oe: 39 (0.93) 0.72
) session 1 | 720 (700, 744) | . ' 3.0
CLM incongruent session 2 666 (641, 691) o 71 Oe: 47 (0.96) 0.69
incongruent || session 1 81 (72, 91) - ' 12.6
T vs congruent || session 2 59 (49, 69) or: 23 ge: 24 (0.61) 049
session 1 639 (617, 660) | or: 71 .
LME (5) congruent sossion 2 | 607 (584, 620) | 0y, 74 oo: 300 - 0.78
, session 1 | 720 (693, 746) | o 89 _
TLM incongruent sossion 2 | 666 (643, 689) | ory: 77 0p: 250 - 0.73
incongruent || session 1 81 (71, 92) on: 27
LME (12) vs congruent || session 2 59 (50, 68) O 18 . 976 ) L0
TLM average of session 1 | 679 (656, 703) | or: 79 70 0.74
2 conditions || session 2 | 636 (614, 659) | 0r,: 75 '
incongruent || session 1 36 (28, 42) on: 7
BML (17) vs congruent || session 2 27 (22, 33) Oryt 1 s ) 0.1
G iap | 2Verage of session 1 670 (656, 684) | or: 34 a0: 0.68
CXLAUSSIAN | 9 conditions || session 2 | 643 | (631, 659) | oy,: 28 ) '

Table 1: TRR estimated through condition- and trial-level modeling for the Study 1 data of Stroop task from Hedge
et al. (2018). Reaction time (in milliseconds) was recorded from 47 subjects who completed two sessions of the Stroop
task. With 240 trials per condition, RT ranged from 1 to 30830 ms; all data were used here without censoring. The
variability ratio (VR, defined in formulas (8) and (14)) and underestimation rate (UR, defined in formulas (7) and (13))
are indicators for the degree of ICC underestimation.

Different model frameworks for the conventional ICC may have some subtle differences and limitations.
For example, the ANOVA platform cannot handle missing data, confounding variables and sampling errors.
As a result, extended models had been adopted to various scenarios (Chen et al., 2018). Nevertheless, the
computation of conventional ICCs is relatively straightforward. Using “Study 17 of a publicly available dataset
of Stroop effects (Hedge et al., 2018) as an example, we obtain a modest ICC(3,1) = 0.49 (Table 1) for the
subtraction value between conditions even though the evidence for population-level effects is quite strong with
a Stroop effect a; = 81 ms (95% uncertainty interval (72, 91)) and ag = 59 ms (95% uncertainty interval (49,
69)) during the first and second repetition, respectively. As a comparison, the two conditions individually show

a much higher TRR with an ICC(3,1) of 0.72 and 0.69 for congruent and incongruent condition, respectively.

1.2 Separation between population effects and TRR

It is conceptually important to differentiate the effects at different hierarchical levels (e.g., population and
subject). Population-level effects are of general interest as researchers hope to generalize from the specific
sample effect to a hypothetical population. Population-level effects are captured through terms (usually called
“fixed” effects under the conventional statistical framework) such as repetition effects a, at the population
level in the LME model (2). In contrast, lower-level (e.g., subject, trial) effects are mostly of no interest
to the investigator since the samples (e.g., subjects and trials) are simply adopted as representatives of a
hypothetical population pool, and are dummy-coded and expressed in terms such as subject-level effects 75 in
the LME model (2).

Cross-subject variability is the focus in the TRR context. From the modeling perspective, the relationship
between the population and subject level can loosely described as “crossed” or “orthogonal”: the subject-
specific effects 75 in the LME model (5) are “perpendicular to” the population-level effects of overall average

a, per repetition in the sense that the former are fluctuations relative to the latter.
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(C) Weak group effect; high test-retest reliability: 0.85
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(D) Weak group effect; low test-retest reliability: 0
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Figure 1: Separation between TRR and population-level effects. Four scenarios are illustrated to demonstrate that TRR
is not necessarily tied to the strength of population effects. Hypothetical data were randomly drawn from a bivariate
Gaussian distribution: 20 subjects completed a depression screening at two separate time points (Screening 1:T1, blue
filled circle and Screening 2:T2, red empty diamond).The population effects are easy to observe (colored horizontal
lines); it is harder to assess TRR over the two sessions. TRR can be observed by assessing the proportion of subjects
for which the two testing scores are on the same side (above or below) of their respective population average. With
strong population effects from a severely depressed group, TRR can be high (A) or low (B); on the other hand, weak
Ml} , 49 x [1 p}) for each
H2 p 1

of the 20 subjects with (A) 1 = 70, pp = 56, p = 0.85, (B) u1 = 70, pz = 56, p =0, (C) p1 = p2 = 0, p = 0.85, and
(D) p1 = p2 =0, p=0.

population effects from a control group may correspond to high (C) or low (D) TRR. NV(


https://doi.org/10.1101/2021.01.04.425305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425305; this version posted January 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

It is crucial to recognize the dissociation between population effects and TRR. A popular misconception
is that strong population-level effects are necessarily associated with high TRR as long as sample sizes are
large. However, these two types of effects are not conceptually tied to one another as generally assumed. With
a hypothetical example, Fig. 1 illustrates four extreme scenarios on a two-dimensional continuous space of
population-level effects and TRR: one may have strong population-level effects with high (Fig. 1A) or low
(Fig. 1B) TRR; contrarily, it is also possible to have weak population-level effects accompanied by high (Fig.
1C) or low (Fig. 1D) TRR.

1.3 Motivations for extending the conventional ICC

The conventional ICC formulation has been widely utilized. However, a few significant limitations exist

with the classic ICC formulation (2). For instance,

1) Difficulty of obtaining a measure of uncertainty. In a conventional statistical framework, one
usually obtains a ICC estimate through CLM under ANOVA /LME (2). In addition, statistical evidence
can be assessed through either converting the ICC value using a Fisher transformation or an F-statistic
(McGraw and Wong, 1996; Chen et al., 2018). However, there is no analytical solution to assess the
range of uncertainty associated with the ICC estimate. Even though bootstrapping could be adopted
to find the quantile interval, the approach is rarely utilized in practice due to its computational cost

especially for large datasets in neuroimaging.

2) Inflexibility to assumption violations and vulnerability to numerical instabilities . The
LME framework assumes a Gaussian distribution. When this assumption is violated (e.g., skewed
data, outliers), parameter estimation through the optimization of a nonlinear objective function may
become unstable or singular. For example, there may be no clear peak when the objective function is
very diffusive, or the numerical solver may get stuck at boundaries (e.g., 0 or 1 for correlation) or a

suboptimal peak.

3) Inability to integrate measurement error. Under specific circumstances, the input data under
ANOVA/LME (2) through CLM may contain sampling errors. For instance, BOLD response as the
effect of interest in neuroimaging for TRR is not directly collected, but instead estimated from a time
series regression model. Therefore, it would be desirable to incorporate uncertainty information into the
subsequent modeling process. However, no straightforward solution is available to achieve the integration
through the ANOVA /LME platform.

4) Inability to integrate cross-trial variability. The trials that make up a condition are related to
condition effect estimates the same way participants are related to population effects. Trials, as a
dimension “orthogonal” to subjects, are expected to provide robust estimation for condition-level effects.
Yet, at the same time, the trial factor is largely of no interest to the investigator, and thus, in practice,
the data is typically collapsed across trials and further flattened across conditions as illustrated in the
data reduction step (1). As a result, cross-trial variability does not have a place in the model and the
associated uncertainty is neither properly accounted for nor propagated in the ANOVA /LME formulation
(2) through CLM for ICC computation.

Some recent modeling endeavors address these limitations. For example, a few ICC variations solve the
numerical instabilities and incorporate sampling errors; such methods have been implemented into whole-brain
voxel-wise ICC computation through the program 3dICC in AFNI (Chen et al., 2018) for fMRI data analysis.
More recently, Haines and colleagues (2020) have used a Bayesian multilevel (BML) framework to accurately
characterize the data structure and TRR distribution instead of providing only a point estimate as in the
classical ICC.
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Figure 2: Hierarchical structure of test-retest data. Assume that, in a test-retest study with two repetitions, a group
of n subjects are recruited to perform a task (e.g., Stroop) of two conditions (e.g., congruent and incongruent), and
each condition is instantiated with m trials. The collected data are structured across a hierarchical layout of 5 levels
(population, subject, repetition, condition and trial) with total n x 2 x 2 x m = 4mn data points at the trial level
compared to 2n across-condition contrasts at the subject level.

The root cause of many issues with the conventional ICC calculation is that the collapsing at the trial
and condition level loses the hierarchical integrity of the data structure. The current work extends a previous
exploration on trial-level modeling (TLM) (Chen et al., 2020) and is similarly based on the recent significant
advances in statistical modeling under a BML framework (Rouder and Haaf, 2019; Haines et al., 2020).
Data reduction, as inherent in the step (1) of cross-trial averaging and cross-condition subtraction, is known
to produce information loss and potential effect distortions. Specifically, five levels are involved in a TRR
dataset and form a hierarchical structure (Fig. 2): population, subject, repetition, condition and trial. The
conventional ICC formulation focuses only on the three top levels (population, subject and repetition) and
collapses the two lower levels (condition and trial) through averaging across trials and subtraction between
the two conditions. Our investigation will maintain the integrity of the hierarchical structure across all five

levels. In addition, we will

a
b
¢
d

expand the CLM through ANOVA/LME (2) to explicitly account for cross-trial variability;

assess the extent of underestimation by the conventional ICC;

—_— N~

perform simulations to quantitatively expound the fundamental flaws involved in the conventional ICC;

)
)
)
)

—

use a Flanker fMRI dataset with both behavior and neuroimaging data to demonstrate the improved
TRR assessment; and

(e) discuss the insights gained from our simulations and modeling applications.

2 Methods: assessing TRR through trial-level modeling

2.1 LME framework for a single condition effect

To share the conceptual evolution and modeling progression, we start with simply accommodating trial-
level effects in test-retest reliability estimation. We first focus on a single condition (e.g., congruent or
incongruent) before extending the modeling framework to contrasts. The linear mixed-effects (LME) mod-
eling platform is conceptually familiar to most analysts and computationally feasible in terms of numerical
simulations; thus, we initially adopt the LME formulation before moving to a BML framework. As opposed
to the common practice of acquiring the condition-level effect estimate at the subject level, we obtain the
trial-level effect estimates y,s; of the condition (Chen et al., 2020), where r, s and ¢ index repetitions, subjects
and trials (r=1,2; s=1,2,...,n; t =1,2,..,m).
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We expand the CLM-based LME model (2) and directly accommodate the trial-level effects y,s as below,

yrst‘araﬂ's’ ao ~ N(CLT + Trs, Jg);

(1155 T25)7 |p) Oryy0ry ~ N (02x1, Rox2);

R—| “n P (5)
PO 01y UZQ

s=1,2,.n; r=12; t=1,2,..,m;

where a,, as in (2), represents the population-level effect during the r-th repetition, 7,5 characterizes the
subject-level effects during the r-th repetition, oy captures the cross-trial variability, and R is the variance-
covariance matrix for the subject-level effects 7,.s between the two repetitions. Usually a, are termed as the
population-level intercepts (or “fixed effects” in LME terminology) while 7,5 are the varying intercepts (or
“random effects”) across subjects.

The parameter p captures the correlation between the two repetitions for the subject-level effects 715 and
Tos; thus, p represents the TRR with trial-level variability og directly incorporated into the model structure
and explicitly separated from the TRR metric p. The inclusion of cross-trial variability g into the LME model
precludes formulating TRR as a variance ratio as traditionally done in the (3). The TRR estimates based
on the LME model (5) are shown in Table 1 for the Stroop task dataset. For neuroimaging data analysis,
the program 3dLMEr (Chen et al., 2013) in AFNI can be utilized to compute whole-brain voxel-wise TRR
through the TLM-based LME formulation (5).

The conventional ICC tends to underestimate TRR of a single condition estimate. TRR aims to quantify
subject-level similarity between two repetitions; the correlation coefficient p reflects TRR with cross-trial
fluctuations removed from the TRR formulation. The crucial question becomes: How does the conventional
ICC compare with the new TRR formulation? To directly compare the conventional ICC with the TRR
estimation through the TLM-based LME formulation (5), we temporarily assume homoscedasticity between
the two repetitions: o, = o, = o,. The specific amount of underestimation can be revealingly expressed as

a linear relationship (Appendix A),
ICC(3,1) = Up, (6)

where the underestimation rate

1
L+ AV? ()

is dependent on the trial sample size m and the variability ratio (VR) (the magnitude of cross-trial variability
relative to cross-subject variability)
a0
V=—. (8)

Or

Two aspects of the ICC underestimation are noteworthy. First, the trial sample size m plays a crucial role;
specifically, the degree of underestimation decreases with the trial sample size. In contrast, the subject sample
size n on average does not impact the degree of underestimation, which might be counter-intuitive. Second,
the extent of underestimation also depends on the variability ratio V. If cross-trial variability is roughly the
same or smaller than its cross-subject counterpart (i.e., o9 < 0,) with a reasonable trial sample size m or if
V= %) < y/m, the ICC underestimation is negligible: U = @ ~1-— %VQ ~ 1.

The traditional ICC estimate could, hypothetically, be corrected. If the variability ratio V' were known
under the CLM-based ANOVA /LME framework (2), one could adjust the ICC formulation (3) to (Appendix
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A)

52
ICCa=— 7 9
o2+ 02— 10(2) )

m

where 7, and o, are the subject-level and residual variability under the conventional ICC formulation (2)
while o represents the cross-trial variability under the TLM-based LME model (5). However, the adjusted
ICCa (9) is of little practical use because the cross-trial variability og is part of the residual variability o
and remains hidden from the analyst. To be able to estimate o, one would have to resort to the TLM-based
LME formulation (5); under that circumstance, one might as well directly obtain TRR through TLM rather
than going back to CLM to make the adjustment.

The TRR underestimation via the conventional ICC can be illustrated on the experimental data from the
Stroop task (Hedge et al., 2018). We estimated TRR for each of the two conditions (congruent/incongruent)
with their conventional ICC(3,1) values of 0.72 and 0.69 for congruent and incongruent condition, respectively
(Table 1). Applying the TLM-based LME model (5), we obtained a TRR estimate of 0.78 and 0.73 for each
condition, respectively, revealing only a slight underestimation with the conventional ICC. Population effects
as well as cross-subject and cross-trial variations, o, and og were also estimated. With oy entered into the
adjusted formula (9), we achieved the adjusted TRR estimates of 0.78 and 0.72 for the two conditions that
are largely consistent with the results from their TLM-based LME estimates. The ICC underestimation was
mild with U = 0.93 or 0.96 due to a large trial sample size (m = 240) and a moderate variability ratio of
VR = 4.1 or 3.0.

2.2 Assessing model comparisons through simulations

To comprehensively compare the two modeling frameworks for a single condition effect, we use simulations.
The numerical schemes regarding the simulations are presented in Appendix B with results shown in Fig. 3.
The population-level effects a, under both CLM and TLM were robustly recovered (not shown). Findings in
regard to TRR are summarized below.

1) ICC underestimation is confirmed. The amount of underestimation, as shown in the expression (7),
depends on two factors: trial sample size m (Fig. 3B) and variability ratio V. ICC can provide reasonable
TRR estimation under special circumstances but substantially underestimates TRR when cross-trial
variability is much larger than cross-subject variability (V' = 22 > 1). When V' 5 1 (top row, Fig. 3A),
the simulated TRR values were successfully recovered for both formulations of the conventional ICC
and TLM-based LME. When V' > 1 (second to fourth row, Fig. 3A), the larger the ratio V', the larger
the underestimation by the ICC. This observation via simulations is consistent with the experimental
results (Table 1) for the Stroop task data. In addition, a linear relationship characterizes the degree of
ICC underestimation (red triangles) with simulated TRR values, as theoretically predicted through the
attenuation rate U in (6) (green lines, Fig. 3A,B,C).

2) ICC underestimation could be adjusted. Once the cross-trial variability component %8 is explicitly
accounted for in the conventional ICC formulation as shown in (9), the adjusted ICCa performs even
better than the TLM-based LME model across all settings. In fact, the adjustment is quite successful
when the sample size for both subjects and trials is 40 or above (second to fourth row, Fig. 3A).

3) Subject sample size on average has no impact on ICC underestimation. As shown in Fig. 3C,
the degree of underestimation of the ICC (green line) is the same regardless of the number of subjects.
However, as the subject number n increases, the precision of the TRR estimate based on both the
conventional ICC and the LME through TLM improves.

4) It can be challenging to attain a high precision of TRR estimation. The uncertainty of TRR

estimation is monotonically related to TRR magnitude, variability ratio V', as well as the sample sizes


https://doi.org/10.1101/2021.01.04.425305
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425305; this version posted January 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

(A) Equal sample size for trials and subjects: m =n

m=n=40 m=n=100 m=n=200

T=A

=N\

model

— TLM
- |CC

ICCa
-+ Pred

Recovered

L=N\

=A

0T

03 05 07 0903 05 07 0903 05 07 0903 05 07 09
Simulated
(B) Fixed sample size for subjects: n = 40

m=20, n=40 m=40, n=40 m=100, n=40 m=200, n=40

model

— TLM
- |CC

ICCa
-+ Pred

0T=A

03 05 07 0903 05 07 0903 05 07 0903 05 07 09
Simulated

(C) Fixed sample size for trials: m = 40

m=40, n=40 m=40, n=100 m=40, n=200

model

— TLM
- |CC

ICCa
—+ Pred

03 05 07 0903 05 07 0903 05 07 0903 05 07 09
Simulated
Figure 3: Simulation results for a single condition. The four columns correspond to the sample size of subjects and
trials while the four rows code the variability ratio V' = Z2. The 2- and y-axis are the simulated and recovered TRR,

respectively. Each data point is the median among the 1000 simulations with the error bar showing the 90% highest
density interval. The dashed purple diagonal line indicates a perfect retrieval.
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of m and n for subjects and trials. Specifically, uncertainty reduces as (a) the sample size of trials or
subjects increases, (b) TRR increases, or (c) the variability ratio V = 22 becomes smaller. Even though
sample size influences TRR precision, the trial sample size m plays a more substantial role than the
subject sample size n. As the sample size increases (from first to fourth column, Fig. 3), the error
bars for TRR estimates narrow. In addition, the precision pattern with a fixed number of subjects n
but varying trial sample size m (Fig. 3B) is similar to the one with a fixed number of trials m but
varying subject number n (Fig. 3C). Yet, between the two factors, the impact of the trial number m
is much larger than the impact of the subject number n; plus, the trial number m impacts on ICC
underestimation (Fig. 3B) while the subject number m does not on average (Fig. 3C). The simulations
also indicate that a large sample size (e.g., 100 or more when V = Z—S > 10) may be required to achieve
a TRR estimate with a reasonable precision.

5) TRR is dissociated from population-level effects. Between the two scenarios for our simulations,
(a1, az) = (0, 0) and (1.0, 0.9), the first simulates a scenario with no population effects while the latter
simulates a scenario with strong population effects with high certainty. Across both scenarios, simulation
parameters were successfully recovered from the TLM-based LME formulation (5) and the two scenarios
rendered very similar TRR patterns (only the case with (a1, a2) = (0, 0) is shown in Fig. 3), confirming
the dissociation between population effects and TRR.

6) LME modeling is susceptible to numerical instability. The performance of the TLM-based
LME formulation is acceptable under some circumstances but suffers from numerical failures under
others. Slight overestimation of TRR occurs when cross-trial variability is much larger than cross-
subject variability (V' = 2% > 1) (second to fourth row, Fig. 3A): the larger the variability ratio V,
the larger the degree of overestimation. Close examination revealed that the overestimation was caused
by the LME model with an almost or near singular fit when the numerical optimizer gets trapped at
the boundary of p = 1 with the convergence failure leading to a TRR estimate of 1.0. When V' > 10,
numerical instability increases substantially, which is consistent with the behavioral data of Stroop task
in Table 1.

2.3 LME framework for a contrast between two conditions

Now we extend the single condition effect case to the more common scenario of a contrast between two
conditions under the LME framework. Suppose that we obtain the trial-level effects y..s¢ of two conditions,
where the four indices ¢, p, s and t code conditions, subjects, repetitions and trials. A direct LME formulation

can be specified as

ycrst’Mcrsa ao ~ N(,Ucrsa 0—[%);
c=1,2,r=1,2; s=1,2,..,n; t=1,2,...m;

(10)

where pi.rs is the s-th subject’s effect under the c-th condition during the r-th repetition, and og captures the
within-subject within-repetition cross-trial variability. When the condition contrast is of interest, we would
have to resort to a derivable approach to parameterizing the subject-level effects piors. Many different methods

exist for factor parameterization; we opt to dummy-code the two conditions through the following indicator,

if c=1;
, if c=2.

I. = (11>

o= NI
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The subject-level effects p.rs are further integrated into the LME formulation (10) as below,

Uers = Qp + brle + s + )\rsId
(15, 725)7 ~ N (Oax1, RY): (s Aas)T ~ N (Oay1, Rglx)ﬂ;

R(O) — 0—72'1 p00—7—10—7—2 . R(l) — Uil plo-)\lo-)\g . (12>
P00 T 07y 0-72—2 P1OX10 ), O'§\2

c=1,2; s=1,2,..n; r=1,2.

The variance-covariance matrices R(®) and R characterize the relatedness across subjects between the two
repetitions for the two parameter sets of (715, T2 S)T and (A, >\2S)T. The assumption of independence between
two parameter sets is discussed in Appendix C.

The correlation p; embedded in the matrix RW is the TRR for the contrast between the two conditions.
With the two conditions coded through the indicator variable I.. in (11), the contrast effects correspond to the
slope terms (i.e., b, and \,) under the LME framework (12). Specifically, b, is the population-level condition
contrast while A, codes the subject-specific contrast effects. In parallel to the single condition effect in (5)
with the intercept interpretation, here a, and 7,5 are also intercepts: the former is the population-level average
between the two conditions during the r-th repetition while the latter indicates the condition average for the
s-th subject during the r-th repetition.! The variance-covariance matrix RW characterizes the relationships
of subject-level contrasts A.s between the two repetitions. In addition, R has a similar structure to the
structure R in (5) for the single condition effect; thus, similarly, TRR can be retrieved from the LME model
(12) as the correlation p; between the two varying slopes A1 and Ags. For neueroimaging data analysis, whole-
brain voxle-wise TRR for condition contrast under the TLM-based LME framework (12) can be performed
using the program 3dLMEr (Chen et al., 2013) in AFNI.

Should one account for the correlation structure for the likelihood distribution in the LME model (12)7 In
other words, instead of a single standard deviation (dispersion or scaling) parameter o¢ in the LME model (12),
one may specify a 2 x 2 variance-covariance matrix between the two sessions as in Haines et al. (2020) with
another parameter added to capture the TRR in the residuals between the two sessions. One could even further
argue that another correlation might be added to account for the relationship between the two conditions in
the likelihood distribution, resulting in 4 x 4 block-diagonal variance-covariance matrix. However, the reason
such a variance-covariance structure might occur is mostly due to suboptimal accountability of potential effects
in the hierarchical data structure. That is, if the model is reasonably specified, one would not even need to
account for this type of structure. Rather, it might be worth tuning and comparing models as alternatives to
improve model fit.

An extra bonus of the LME framework for a condition-level contrast is the availability of TRR for the
condition average as a byproduct. That is, the correlation py embedded in the variance-covariance matrix
RO for cross-subject varying intercepts 7,5 captures the TRR for the average effect. It is worth noting that
po was assumed to be 0 in Haines et al. (2020). First, the LME formulation (5) with a single condition effect
can be considered as a special case of the LME model (12) - equivalent to a condition contrast with the effects
from the two conditions being identical. This equivalence would not be true for the model adopted by Haines
et al. (2020). Furthermore, the LME framework (12) is more generic and consist between both intercept and
slope effects in the sense that TRR is assumed to exist for each of the two conditions, their contrast as well
as their average effect. In contrast, the assumption of pg = 0 as in Haines et al. (2020) leads to a degenerate

and inadequate situation where TRR is only assumed to exist for the condition contrast but not for each of

nstead of using the indicator variable I, in (11) to represent the two conditions, one may adopt dummy coding (as in Haines
et al. (2020)): One condition is coded as 1 while the other serves as the reference condition. Under dummy coding, the slopes in
the LME model (12) still correspond to the condition contrast; however, the intercepts are associated with the reference condition.

12
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the two condition nor for their average. To put it differently, the assumption of no TRR with pg = 0 for the
average effect equates to capturing interactions without accounting for the associated main effects under an
ANOVA framework.

How much cross-trial variability would impact the conventional ICC computation for a condition-level
contrast? With the homoscedasticity assumption oy, = o), = o), the extent of underestimation via the

conventional ICC for a condition contrast is updated from the single effect case (7) to (Appendix D)

1
ST Ie "
with the variability ratio V similarly defined as before,
00
V=—.
o (19

Likewise, one could adjust the original ICC by removing the cross-trial variance from the denominator (Ap-

pendix D),

52
ICCa = —A——. (15)
o5y +o02— =0

The occurrence of the number 2, relative to their counterparts (7) and (9) for the single condition case, is due
to the double amount of data involved in the cross-trial variability a condition contrast.

Underestimation of contrast TRR via the conventional ICC was once again validated with experimental
Stroop data (Table 1). First, the conventional ICC(3,1) value for the contrast was estimated as 0.49 while a
TRR estimate of 1.0 was retrieved due to a singularity problem when the parameter p; numerically degenerates
at the boundary. Population effects as well as cross-subject and cross-trial variation, o, and og were also
estimated. With o9 = 0.276, we adjusted the TRR to be 1.18 per (15). Such an uninterpretable value was
due to the fact that the adjusted cross-trial variability %08 = 6.35 x 10~* was larger than 02 = 5.53 x 107,
another incidence of numerical singularity issues when estimating TRR through the TLM-based LME in
(12) and potentially indicates that assumptions were violated. Nevertheless, the nearness to the parameter
boundary is an indication of TRR close to 1, showing the substantial underestimation of the conventional
ICC.

Simulations can also be adopted to explore same aspects for the condition contrast case as in a single
condition. The degree to which the conventional ICC underestimates TRR for a condition contrast is more
severe than for either of the two conditions alone or for the average effect between the two conditions. The
extra number of 2 in the underestimation formula in (13) for a condition contrast indicates that cross-trial
variability V' would result in more severe ICC underestimation for a contrast than a single effect. Furthermore,
the magnitude of the difference between conditions is much smaller than that of either condition or the average
effect (see the mean column in Table 1). This results in a larger variability ratio V' for the contrast, which
leads to more severe underestimation. As shown in Table 1, the variability ratio V for the contrast is about
three times larger than the ratio for the single condition effects. With a similar but more complex parameter
domain, simulation results are presented in Appendix E. Observation patterns were largely similar to those

for a single condition effect.

2.4 Extension of the LME framework to BML

The extension from LME to BML is relatively straightforward. As apparent from numerical simulations
and from applications to Stroop data, the LME framework is ill-suited for TRR estimation. Several of the

motivations for extending the conventional ICC are not helped in this framework: precision information
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or TRR distribution unavailable, violation of distribution assumption (e.g., Gaussian), no accommodation of
sampling errors, and numerical failures. For our final model, the LME formulations (5) and (12) are integrated
into the BML framework. Specifically, with a Gaussian likelihood as an example, we convert the two LME

models with little modification to their distributional counterparts of a single effect,

2y.
Yrst|tirss 00 ~ N (firs, 70);
Urs = Qp + Tps;

(715, T25)T ~ N (091, Rax2)

(16)

R — 0-’72'1 pUTIUTZ .

POT 0y 072-2
r=12;s=1,2,..n; t=1,2,..,m;
and a contrast between two conditions,
ycrst’,ucr& ag ~ N(Hcrs; 0'3);
Uers = Qr + bl + 7rs + )\T‘SIC;
0 1
(T1s, T2s)? ~ N (021, Réx)g); (Ms, A2s)T ~ N (0241, Réx)g); (17)

RO — 031 POOT 07 | RM — <7,2\1 P1OX TNy | |
p : p

2
00701y 07y 10,0, O,

c=1,2; s=1,2,..n; r=1,2.

The BML models can be further extended to solve all issues associated with the LME framework. For
example, numerical instabilities and convergence issues would be largely dissolved through modeling im-
provements such as accommodating the data through various distributions such as Student’s ¢, exponentially
modified Gaussian (exGaussian), log-normal, etc. More importantly, instead of providing point estimates with-
out uncertainty information, TRR estimation for p in (16), po and p; in (17) can be expressed by its whole
posterior distributions. Furthermore, sampling errors can be readily incorporated into the BML framework.
For neuroimaging data, trial-level effects are usually not directly measured, but instead estimated through
subject-level time series regression. Thus, it is desirable to include the standard errors of the trial-level effect
estimates into the TRR formulation. With the hat notation for effect estimate % and its standard error &, we
broaden the two BML models (16) and (17), respectively, to,

@\rst‘,ufr& 87"3157 agop ~ N(,Ufr& 8$st + O'(%)a (18)

and

?/\crst’,ur& aCTStu ao ~~ N(MTS) 8zrst + 0(2]) (19)

Lastly, the Gaussian assumption under BML for the response variable can be adaptively relaxed to a large
family of distributions such as exGaussian, zero-inflated negative binomial, etc.

Using the Stroop task data, we illustrate advantages of the BML framework. Three likelihood distributions
including Gaussian, log-normal and shifted log-normal were applied to the data in Haines et al. (2020) with
a conclusion that the shifted log-normal distribution performed the best with the log-normal model a close
second. We added two more distributions, Student’s ¢t and exGaussian, because of their ability of handling
skewed data as well as outliers. In addition, instead of assuming a diagonal matrix RO for the variance-

covariance structure of the varying intercepts 7,5 as in Haines (2020), we adopted a generic RO in the BML
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Figure 4: Comparing between five potential RT distributions to characterize the Stroop effect. (A-E) Visual comparisons
are illustrated with each of the five panels showing the posterior predictive density (light blue line) that is composed of
200 sub-curves each of which corresponds to one draw from the posterior distribution. Overlaid is the raw data (solid
black curves with linear interpolation). Overlaps between the solid black curve and the light blue line indicate how well
the respective model fits the raw data. (F) TRR distributions for the Stroop effect in Study 1 from Hedge et al. (2018)
are shown for the five likelihood distributions. The TRR estimates were based on 2000 draws from MCMC simulations
for each BML model and are shown here as a kernel density that smooths the posterior samples. The dashed vertical
line indicates the mode (peak) of each TRR distribution. Gaussian likelihood rendered the highest TRR with a mode of
0.96 but also exhibited the poorest fit to the data. The exGaussian distribution provided the lowest TRR with a mode
of 0.71 while achieving the best fit among the five distributions. (G) TRR distributions for the average effect between
congruent and incongruent conditions in Study 1 of Hedge et al. (2018) are shown for the five likelihood distributions.
Unsurprisingly, their uncertainty is much narrower than the Stroop contrast effect (F).

model (17), leading to largely consistent results with those reported by Haines et al. (2020) with regard to the
three common distributions. However, the added exGaussian outperformed all alternatives per the information
criterion through leave-one-out cross-validation. The predictive accuracy of the exGaussian model was further
confirmed by its best posterior predictive check among the five options (Fig. 4).

The modeling capability of the Bayesian framework can be illustrated through model comparisons. The
success of the conventional LME framework heavily relies on the assumption of a Gaussian distribution as
a prior, due to its nice properties such as convenient inference making through standard statistics such as
Student’s t. However, this convenience comes at a cost: when the prior Gaussian is ill-adapted, one may
sacrifice accuracy of estimates. In the Stroop dataset, the TRR estimation based on Gaussian prior had
the worst fit among the five priors (Fig. 4A-E), as also reported by Haines et al. (2020). In contrast, the
exGaussian prior clearly outperformed other options due to its well-known capability in handling skewed and
outlying data such as reaction time which is lower-bounded. This is important considering given how variable
data cleaning practices are specifically regarding outlying values. The superior performance of exGaussian over
the other three distributions (Gaussian, log-normal and shifted log-normal) considered in Haines et al. (2020)
illustrates that it might be equally important to fine-tune the model through, for example, prior distributions
as opposed to specifying a more complex variance-covariance structure as in Haines et al. (2020) (cf., our
adoption of a single dispersion parameter o for the likelihood).

The rich information from Bayesian modeling is worth noting. The TRR estimation based on the BML
model (17) with ExGaussian, together with other distributional assumptions, is presented in Fig. 4. Rather
than a simple point estimate under the conventional framework, we empirically construct the posterior distri-

bution for a parameter of interest through Monte Carlo simulations. The singularity problem (Table 1) that
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we encountered with the LME model (12) was not an issue with the BML model (17). With a mode of 0.71 and
a 95% highest density interval of [0.32, 0.99] for TRR, it is clear that the conventional ICC underestimated
TRR (ICC = 0.49). The flexibility of exGaussian also likely provided a more accurate characterization of
population-level effects and precision than, for example, the Gaussian assumption (Table 1).

We provide the program TRR for test-retest reliability estimation under BML. The BML models for
a single condition effect (16, 18) and for a condition contrast (17, 19) are implemented into the program
TRR through Markov Chain Monte Carlo (MCMC) simulations using Stan (Carpenter et al., 2017) through
the R package brms (Biirkner, 2017). Each Bayesian model is specified with a likelihood function, followed
by priors for lower-level effects (e.g., trial, subject). The hyperpriors employed for model parameters (e.g.,
population-level effects, variances in prior distributions) are detailed in Appendix F. The program TRR is
publicly available as part of the AFNI suite and can be used to estimate TRR for behavior and region-level

neuroimaging data. Runtime ranges from minutes to hours depending on the amount of data.

3 BML modeling of TRR applied to a neuroimaging dataset

3.1 Data description

Modified Eriksen Flanker Task Analysis in the current report used a subset of the subjects in Smith
et al. (2020): 24 adults (>18 years; age: 26.81 £+ 6.36) and 18 youth (<18 years; age: 14.01 £ 2.48).
Subjects performed a modified Eriksen Flanker task (Eriksen and Eriksen, 1974) with 432 experimental trials
during fMRI scanning in each of two separate sessions 53.5 + 11.8 days apart. Participants were asked to
identify, via button press, the direction a center arrow, flanked by two arrows on either side. On half of the
trials, the arrows were congruent with the center arrow (i.e., pointing in the same direction as the center
arrow) and on the other half of the trials the arrows were incongruent with the center arrow (i.e., flanking
arrows were pointing the opposite direction as the center arrow). The two trial types were randomized across
the task with 108 additional fixation only trials per session for a total of 540 trials per session. On each
trial, a jittered fixation at a variable interval (300-600 ms) appeared on the screen followed by the Flanker
arrows at a fixed time of 200 ms. The trial ended with a blank response screen of 1700 ms. The task was
completed in four runs with three blocks per run to provide intermittent performance feedback to maximize
commission errors. Stimulus presentation and jitter orders were optimized and pseudorandomized using the
make random _timing.py program in AFNI. Details regarding image acquisition and pre-processing are in
Appendix G.

Subject-level Analysis At the subject level, we analyzed brain activity with a time series model with
regressors time-locked to stimulus onset reflecting trial type (incongruent, congruent) and error condition
(correct, commission, omission). Regressors were created with a gamma variate for the hemodynamic response.
The effects of interest at the condition level were two main contrasts: Cognitive Conflict (incongruent correct
responses vs. congruent correct responses) and Error (incongruent commission errors vs. incongruent correct
responses). All 42 participants were included in the conflict contrast, but only 27 participants had sufficient
commission errors in the incongruent condition (> 20) to be included in the error contrast. For the conflict
contrast, there were a total of 32005 observations across two sessions of the Flanker task, which corresponds
to approximate 190 trials per condition per session (350 4 36 incongruent trials and 412 £ 19 congruent trials
across sessions) per subject. For this subset of participants included into the error contrast, there were a total
of 11366 observations available across both sessions, which corresponds to 331 £ 28 incongruent correct trials
and 90 + 27 incongruent commission errors per condition per subject. We analyzed the subject-level fMRI
data at the whole-brain level as well as in a region-based approach using 12 Regions-Of-Interest (ROIs). We
compare two approaches: a conventional CLM with regressors created at the condition level and TLM with

trial-level regressors.
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Region-of-interest (ROI) Selection Seed coordinates for independent ROIs were selected using Neu-
rosynth term-based meta-analyses using the terms “cognitive control” and “error”, the two main population
level effects of interest. Additionally, in order to derive ROIs outside of the main condition-level effects, we
also selected peak coordinates from term-based meta-analyses for the term “visual” and “default mode”. In
order to select a reasonable number of peak coordinates, all four z-valued maps (uniformity test for “cognitive
control” and “error”, association test for the “visual” and “default mode” map), FDR~corrected to 0.01, were
further thresholded to z-value of 10. Spheres with a 6-mm radius (57 voxels) were created for each of the 12
sets of peak coordinates derived from the surviving clusters. Six (6) spheres were derived from the “cognitive
control” and “error” maps respectively, 4 spheres were derived from the “default mode” map and 2 spheres
from the “visual” map. Spheres derived from the “default mode” and “visual” map were used for both conflict

and error data for a total of 12 ROIs for each contrast).

3.2 TRR estimation for behavioral data

The RT data from the Flanker task are structured as follows: There were two overlapping subsets of data
representing the two main contrasts of interest: conflict (i.e., incongruent correct responses vs. congruent
correct responses) and error (i.e., incongruent commission errors vs. incongruent correct responses). Trials
with omissions were not considered. The RT values ranged within [4, 1669] and [9, 1686] ms for the conflict

and error subset, respectively.

(A) Contrasts between conditions (B) Averages across conditions

ICCICLM: 0.56 contrast ICCICLM: 0.86 average

TRR/TLM/LME: 0.85 conflict ;ET”I).V\Z/;.ZVWZE(S(JSS)G congﬂict

PE (se): 68.2 (3.8) H se): 472.2 (8. H
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Figure 5: TRR distributions of behavioral data (RT) from Flanker task. The TRR estimates for the contrast (A) and
average (B) between the two conditions were based on 2000 draws from MCMC simulations of the BML model with
an exGaussian likelihood and are shown here as a kernel density estimate which smooths the posterior samples. Each
dashed vertical line indicates the mode (peak) of the perspective TRR distribution, and the shaded area shows the
95% highest density interval. The conflict TRR distribution was much more concentrated while the error TRR was
relatively diffusive. The magnitude of the variability ratio (VR) is a proxy to assess ICC underestimation. Population
effects (PE) and standard errors (se) in milliseconds are shown for reference.

The TRR estimates for the RT data of the Flanker task were relatively high.? As expected, the average RT
effects rendered more precise estimates, and there was more convergence between conventional ICC and BML
for average estimates. The TRR estimates for the RT contrast data via the conventional ICC were 0.56 and
0.82 for conflict and error contrast respectively. Under the BML framework, five distributional candidates were
considered (17): Gaussian, Student’s ¢, log-normal, shifted log-normal and exGaussian. Model comparisons
and validations for each of the two contrast RT (conflict and error) indicated that, similar to the RT data
of the Stroop task (Fig. 4), the exGaussian distribution was the best fit alongside the Student’s ¢. Using
the BML framework, the TRR for the conflict contrast, estimated as the mode of the TRR distribution, fell
higher than estimated by the ICC, at around 0.95. There was less discrepancy for the error contrast between
the two approaches with a mode of 0.88 in the BML. However, for the error contrast, the BML revealed that
there was larger uncertainty about the TRR estimation (Fig. 5). The point underestimates based on the
conventional ICC were largely negligible except for the contrast of conflict, as indicated by the corresponding

variability ratio.

2The TRR analysis scripts used in this paper are available at https://github.com/afni-gangc/TRR
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3.3 Whole-brain TRR estimation for neuroimaging data

(A) Conflict average: ICC/CLM (B) Error average: ICC/CLM

Figure 6: Whole-brain voxel-level TRR estimates for the fMRI Flanker dataset. The conventional ICC values for the
average conflict effect (A) showed negligible underestimation compared to the TRR estimated based on TLM (C). In
contrast, the conventional ICC values for the average error effect (B) showed a moderate amount of underestimation
compared to the TRR estimation (D) based on TLM. The ICC values for the conflict (E) and error contrast (F) were
much smaller than their average counterparts. The TLM-based approach numerically failed at most voxels in the brain
and is thus not pictured. The three slices of axial (Z = 0), sagittal (Y = 14) and axial (Z = 28) planes are oriented in
the neurological convention (right is right) in the MNI template space. A small proportion of negative TRR (C,D) shown
in white matter and CSF was because of no constraint on the correlation value in the variance-covariance structure. In
contrast, the conventional ICC values are lower-bounded by 0 per its definition as a variance ratio. The ICC estimation
was performed using 3dICC while the TLM-based TRR estimation was obtained through 3dLMErv.

As the BML model is not computationally feasible at the whole brain voxel-level, two modeling frameworks
were adopted: conventional ICC using the program 3dICC with condition-level modeling (2) and the LME
model (12) using the program 3dLMEr with trial-level modeling. There were a total of eight analyses with
each of the two models applied to the two effects (the average and the contrast between the two conditions)
for conflict and error data respectively. The input for the ICC computation was composed of a condition-level
contrast per session from each of the 42/27 subjects. The trial-level input for TRR estimation had the same
structure as the RT data: 32005 and 11366 three-dimensional volumes of trial-level effects for conflict and
error subsets, respectively, from two conditions, two sessions and 42/27 subjects.

Individual differences were largely reliable among most voxels for the average effect across both conditions
as estimated via the CLM/ICC. Similarly, TRR was in the moderate to high range for the average effect for
both conditions when applying the trial-level model in the LME framework (Fig. 6, C vs D). The underes-
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timation via the conventional ICC metric (Fig. 6, A vs C) was largely negligible for the average of conflict
responses, while small but noticeable for the average of the error responses (Fig. 6, B vs D). For contrasts,
ICC estimates were lower, largely below an ICC of 0.4 for both contrasts (with the exception of primary
visual, parietal and motor regions). Higher ICCs were noted for the error than the conflict contrast in several
regions. The difference in ICC underestimation between conflict and error contrasts is likely due to the larger
number of trials for the conflict compared to the error data (i.e, more precise estimates). Based on the ICC
results (Fig. 6E,F), the reliability of individual differences for the conflict and error between-condition con-
trast would be considered poor to adequate, depending on region. Unlike for the average effect (Fig. 6C,D),
numerical failures occurred for most voxels in the brain for the contrast analyses and thus results are not

shown). Therefore, we explore the comparison between ICC/CLM and TLM on the region level via the BML.

3.4 Region-level TRR estimation for neuroimaging data

TRR estimation at the region level was performed through BML. The BML model (19) was adopted using
the program TRR with the trial-level effect estimates from each subject as input. A Student’s t-distribution
was utilized for cross-trial variability so that any potential outlying values can be accounted for (Chen et al.,
2020). In addition, the standard errors of the trial-level effects from the subject level were also incorporated
into the BML model to improve modeling robustness. The runtime was about 1.5 hours for each ROI through
4 Markov chains (CPUs) on a Linux computer (Fedora version 29) with AMD Opteron® 6376 at 1.4 GHz.

Most regions exhibited adequate to excellent reliability for the average, both conflict and error, with
some variability across regions in terms of precision of these estimates. There were only a few exceptions (R
precuneus and R angular gyrus). However, for the contrasts, large variations existed across ROIs in terms of
both TRR magnitude and precision (Figs. 7,8). Some regions showed moderate to high TRR with relatively
high certainty; some regions exhibited high TRR with a wide range of uncertainty; others were difficult to
assess as their TRR distributions were very diffusive. The following regions demonstrated high reliability with
relatively high precision: left MOG and right MTG for the conflict contrast (Fig. 8A); left SMA and PreCG
for the error contrast. Some regions had reasonably high reliability but with moderate to poor precision (e.g.,
left SMA, left IPL, right angular gyrus for conflict contrast; left IL, right IFG, left and right IFG, MOG and
right MTG for error contrast). The reliability at some regions was so diffusive with a substantial amount of
uncertainty that an estimate through the conventional ICC would be pointless.

The variability ratio can be used as a proxy for the degree of underestimation via ICCs. The degree of
underestimation, shown as a linear relationship with TRR, through the formula (7) or (13), is derived under
the assumption of a Gaussian distribution for cross-trial variability. While this assumption is largely violated
for both behavioral data (e.g., RT for Stroop and Flanker tasks) as well as BOLD response, the variability
ratio serves a useful metric that provides an explanation as to why such heterogeneity exists across estimates
for different regions and contrasts. A large VR is usually associated with substantial underestimation via
ICCs and a large amount of TRR estimation uncertainty. It is important to note that 10 out of the 12 ROIs
had a substantial range of uncertainty for the TRR for both conflict and error contrasts (Fig. 8) that were for
the most part associated with a large variability ratio. It is for this reason, that TRR cannot simply expressed

as point estimates through the conventional ICC.

3.5 Implications for practice

The advancements through the BML are substantial for any researcher hoping to assess TRR for their
task-based imaging data. It is specifically the additional precision information that is crucial for the researcher
to develop a full picture of the task’s TRR. The current version of the Flanker task was selected as a task
that, with its two contrasts, covered several scenarios in the literature: The conflict contrast, with its 432

experimental trials per session likely represents the upper range of trial-level repetitions. The error contrast
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Figure 7: TRR distributions for the average effect across conditions at 12 ROIs. The TRR estimates for the average
effect of conflict (A) and error (B) contrast were obtained using the program TRR based on 2000 draws from MCMC
simulations of the BML model with a Student’s ¢-distribution. The TRR posterior distribution for each ROI is shown
here as a kernel density estimate that smooths the posterior samples. Each blue vertical line indicates the mode (peak)
of the TRR distribution, and the shaded area shows the 95% highest density interval. Three quanitities are shown
for each ROI: conventional ICC, TRR estimated through TLM with LME and variability ratio (VR). Asterisk (*)
indicates numerical problem of either singularity or convergence failure under LME. Abbreviations: R: right, L: left,
SMA: supplementary motor area, IFG: inferior frontal gyrus, IL: insula lobe, IPL: inferior parietal lobule, PreCG:
precentral gyrus, MOG: middle occipital gyrus, MTG: middle temporal gyrus, ANG: angular gyrus, ORBmid: middle

orbital gyrus

with a minimum of 20 trials in the incongruent commission error condition has just barely enough trials to

derive summary estimates in a conventional analysis. Additionally, the number of participants for the conflict

contrast (42) was almost double of that of the error contrast (27). The VR was generally larger in the conflict
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Figure 8: TRR distributions for the two contrasts of the Flanker task for ROIs. The TRR estimates for the conflict
(A) and error (B) contrast were obtained using the program TRR based on 2000 draws from MCMC simulations of the
BML model with a Student’s ¢t-distribution. The TRR posterior distribution for each ROI is shown here as a kernel
density estimate that smooths the posterior samples. Each blue vertical line indicates the mode (peak) of the respective
TRR distribution, and the shaded area shows the 95% highest density interval. Four quantities are shown for each
ROI: conventional ICC, TRR estimated through TLM with LME, population-level effect (PE) with its standard error,
and variability ratio (VR). Asterisk (*) indicates numerical problem of either singularity or convergence failure under
LME. Abbreviations: R: right, L: left, SMA: supplementary motor area, IFG: inferior frontal gyrus, IL: insula lobe,
IPL: inferior parietal lobule, PreCG: precentral gyrus, MOG: middle occipital gyrus, MTG: middle temporal gyrus,
ANG: angular gyrus, ORBmid: middle orbital gyrus

than the error contrast, both in the behavioral and imaging data (albeit variable across regions). Half of the
trials in both contrasts overlap (i.e., incongruent correct responses are used across both contrasts). Hence,

despite relatively few instantiations in the task, commission error responses in the error contrast may generate
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a more consistent signal within person that distinctly differs between individuals, compared to the correct
congruent responses included in the conflict contrast. Interestingly, behaviorally, the error contrast showed
a lot of uncertainty around TRR estimates compared to the conflict contrast, which had a more narrow
TRR distribution. No such visible difference emerged between the two contrasts in the ROI analysis of the
imaging data. It is plausible that while behaviorally errors are few and inconsistent, generated via different
mechanisms (i.e., short error RTs due to premature, anticipatory responses or flanking distractors, long error
RTs due to attention lapses) all of which can occur in the same individual, these errors result in a common,
intra~-individually relatively consistent in inter-individually distinct error signal in the brain. This tentative
explanation highlights the need to more systematically use this rich and informative method for further
exploration of TRR across different cognitive processes and experimental designs to fully understand how
reliably certain processes can be measured and how TRR is impacted by experimental design choices. Most
importantly, our initial results provides a more nuanced assessment of task fMRI TRR than recent reports:
TRR variability is large, even within the same contrast across regions, both in magnitude and precision of
TRR estimates; understanding the source of trial level variability may provide an important avenue to improve
TRR in future work.

4 Discussion

High TRR of measurement is of great importance. Here, we adopt a new modeling framework for the esti-
mation of TRR in behavioral and imaging tasks that (a) characterizes the data hierarchy including individual
trials, (b) handles outliers and skewness in a principled way, and (c) properly quantifies uncertainty. Our
investigation illustrates the cost of data reduction and the benefits of constructing an adaptive model that
preserves the hierarchical integrity of the data. Several key findings emerged in the step-by-step process by
which we built the TRR model formulation: (a) TRR is conceptually distinct from population effects; (b) the
conventional ICC underestimates TRR in cases where trial-level variability is large relative to between-subject
variability; (c) trial-level variability is surprisingly large in both psychometric and neuroimaging data; and

(d) a large number of trials is important to adequately assess TRR. We will discuss each of these in turn.

4.1 The relationship between population-level effects and TRR

We demonstrated that population effects are not necessarily tied to the reliability of individual differences.
As clearly illustrated in Fig. 1, all four possible scenarios can occur: large population effects can have strong or
weak TRR, and the absence of population-level effects does not preclude high TRR. Dependence of high TRR
on population effects is often, mistakenly, assumed. In practice, researchers usually choose to examine TRR of
those regions that exhibit strong population effects. In other words, strong evidence of population-level effects
may pique the researcher’s interest in exploring the reliability of individual differences. However, limiting the
search space to population level effects may be too narrow. The common practice of dichotomizing results
into “significant” and “not significant” via multiple testing adjustment specifically exacerbates this problem.
This can mean missed opportunities to estimate TRR for regions involved in the task or regions that, while
not showing involvement “on average” are relied upon by a subset of individuals. For example, the statistical
evidence associated with the four regions of our ROIs (R Precuneus, R ANG, L ANG and L. ORBMid) was
not strong enough per the currently adopted criteria for multiple testing adjustment, and would not have been
part of the current TRR exploration if the selection had been solely based on the statistical strength at the

population level.
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4.2 BML as an adaptive solution for the underestimation of TRR via ICC

Recent reports using the ICC metric suggests that TRR of common cognitive and fMRI tasks are largely
inadequate. Issues of measurement have become front and center in the field; these basic measurement issues
have motivated new statistical modeling approaches for behavioral and imaging tasks (Rouder and Haaf, 2019;
Haines et al., 2020).

ICC, as defined under the conventional framework of variance ratio under the ANOVA or LME platform,
is not equipped to handle data structures that include many trials nested within subject and condition. At
least four problems exist with the conventional ICC formulation: 1) failure to accurately characterize the
underlying data generating process, 2) underbiased estimation, 3) difficulty of obtaining uncertainty, and 4)
contingency on rigid assumptions and occurence of numerical failures. Nevertheless, many experiments involve
a large number of trials to increase precision of estimates and estimate small to medium effect sizes. Averaging
trial-level effects as commonly practiced in condition-level modeling fails to account for trial-level variability
and underestimates reliability. As shown in the current report, the underestimation by the conventional ICC
is linearly associated with TRR, and the rate of underestimation depends on two factors: the trial sample
size and the relative magnitude of cross-trial variability to cross-subject variability. Specifically, the larger
the cross-trial variability relative to cross-subject variability, the more severe the underestimation via the
ICC. ICCs are implicitly “contaminated” by cross-trial variability, and are thus sensitive to trial sample size.
As a result, ICC values reported in the literature, even on the same task, may have embedded in them
underestimation to a different degree, due to different trial sample sizes. Therefore, TRR estimates may
not necessarily be comparable across experiments, leading to a portability problem (e.g., Rounder and Haaf,
2019). By definition, ICC as a TRR measure concerns subject-level effects; thus, trial-level effects should be
appropriately untangled in effects partitioning.

Hierarchical models such as LME and BML through TLM allows the researcher to disentangle trial-level
effects from other sources of variance, providing a more accurate assessment of TRR. In other words, even
though trial-level effects are of no interest, accounting for them in the model structure disentangles the
cross-trial variability from the cross-subject variability and allows the accurate estimation of the correlation
structure across repetitions at the subject level. With a data structure involving five levels (Fig. 2), a
hierarchical model closely follows the underlying data generative process and simultaneously incorporates
all the information available through regularization and shrinkage. As a result, one effectively gains high
predictive accuracy for TRR estimation.

The BML framework is well-suited for TRR estimation. The adoption of the Bayesian formulation is
mostly not intended to inject prior information, but to overcome several limitations of the LME approach
through Monte Carlo simulations. Despite their accommodation of multilevel data structure, LME models
can encounter numerical difficulties. In addition, they only provide point estimates with no easy access to
uncertainty estimates and have a limited flexibility of handling deviations from a Gaussian distribution such
as data skewness and outliers. BML can further overcome theses LME-associated issues. For example, rather
than censoring data through brute force or arbitrary thresholding, BML resorts to a principled approach
and adapts to the data through a wide variety of distributions (see Fig. ?7). The full and rich information
contained in posterior distributions is another benefit, offering distributional subtleties and straightforward
interpretations. Despite a large amount of noise unaccounted for in fMRI data and a high variability ratio,
the modeling investment is worthwhile in revealing TRR values above 0.9 with actual real experimental data
(Fig. 4).
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4.3 High cross-trial variability

Large cross-variability is the root cause for all the three problems in the current context: ICC under-
estimation, numerical failures in LME modeling and poor precision of TRR estimates. Experimental data
indicates that cross-trial variability is much larger than cross-subject variability. If the former is roughly in
the same order of magnitude as, or smaller than, the cross-subject variability, the conventional ICC might be
considered a shortcut to approximate TRR as shown in the formulations (7) and (13). However, experimental
data from both behavioral and neuroimaging datasets point to a much larger cross-trial variability than cross-
subject variability. Specifically, the variability ratio V' may reach up to 10 for simple effects and go beyond
20 for contrasts. Such large V values are directly associated with specific issues: underestimation of TRR
when the conventional ICC formulation is adopted, numerical convergence issues in LME modeling and a poor
precision of TRR estimation under the BML framework. One many suspect that large cross-trial variability
might be ascribed to suboptimal modeling in subject-level time series regression due to (i) the substantial
amount of confounding effects that are usually not properly accounted for and (ii) poor characterization of
varying hemodynamic response across trials, condition, regions and subjects through a prefixed basis function.
However, considering the fact that large cross-trial variability also exists in psychometrics to slightly lesser
extent (Rouder et al., 2019), suboptimal modeling is less likely the main reason.

The large cross-trial variability in fMRI tasks remains to be fully explored. In a test-retest dataset, there are
2m times more trial-level effects than subject-level effects: 4mn trial-related terms correspond to 2n subject-
related terms for a contrast (Fig. 2). Thus, one might expect that cross-trial variability o9 would be much
smaller than the cross-subject counterpart o... On the other hand, trial-level effects fluctuate substantially
and their sequences appear to be random without a clear pattern (Chen et al., 2020). Such randomness occurs
across brain regions within the same subjects as well as across subjects. In other words, a large proportion
of cross-trial fluctuations cannot be simply accounted for by habituation, fatigue or sensitization. At the
same time, these trial-level fluctuations are not purely random fluctuations: there is a high degree of bilateral
synchronization within the same subject (Chen et al., 2020). In addition, the cross-trial fluctuations are to
some extent associated with behavioral measures such as reaction time and stimulus ratings that are typically
modeled through trial-level modulation analysis at the subject level. One may hypothesize that the random
nature of trial-level fluctuations may be caused by momentary lapses in attention. Alternatively, brain regions
may constantly undergo some intrinsic fluctuations - external stimuli or tasks are surprisingly small constrains

stacked on top of large intrinsic neuronal activities.

4.4 TImportance of trial sample size

Two types of sample size, trials and subjects, are involved in typical psychometric and neuroimaging
studies. Per central limit theorem, a reasonably large sample size of an experimental unit is amenable to
conventional properties such as a Gaussian distribution. This theorem is pivotal to many modeling frameworks
including the conventional ICC formulation. However, the asymptotic property of the unbiasedness and
Gaussianity heavily relies on large sample sizes, which cannot necessarily be met or easily predetermined in
practice. In fact, the sample size of trials and subjects is a big issue for TRR estimation.

The pivotal role of trial sample size remains largely unrecognized in the field of TRR (Rouder et al., 2019).
Surprisingly, the number of trials plays a much more crucial role than that of subjects in the amount of ICC
underestimation under the conventional formulation. It has been generally assumed that subject sample size
might help in achieving high ICC (Elloitt et al., 2020; Haines et al., 2020). However, the trial number has a
much stronger impact on the degree of ICC underestimation, as shown in the underestimation formulas (7)
and (13) as well as simulation results in Figs. 3 and 9. The smaller the number of trials, the more severe the

ICC underestimation. In contrast, the number of subjects would not, on average, cause any underestimation
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of ICC or TRR.

When trial variability is high, trial sample size is pivotal in determining the precision of TRR estimates.
A substantial number of trials may be required to achieve reasonable precision. Even though BML addresses
risks of underestimation, the uncertainty of TRR estimation as represented by, for example, standard deriva-
tion or highest density interval, may remain wide when cross-trial variability is large. The TRR estimation
uncertainty depends on four factors (Figs. 3 and 9): TRR magnitude, variability ratio, trial and subject sam-
ple size. Among the four factors, only the sample sizes could be experimentally manipulated. Even though the
uncertainty of TRR estimates decreases as the sample size increases for both trials and subjects, the impact
of trial sample size is much stronger (Fig. 3B,C and Fig. 9B,C). Also, as shown in experimental results (Figs.
4,5, 8 and 7), the precision of TRR estimation varies substantially across brain regions or between simple
effects and contrasts. To dissolve those diffusive posterior distributions of TRR, a few hundred or even more
trial samples may have to be adopted. In practice, such experimental designs may not be feasible due to their

time burden on the subject and financial burden on the experimenter.

4.5 Difficulty of obtaining high TRR precision for a contrast

For average condition effects it is relatively easy to achieve reasonable TRR precision. For effects of a single
condition or the average among two or more conditions, empirical data indicate that cross-trial variability
oo is larger than cross-subject variability o, with a variability ratio V' less than 10. Thus, it is possible,
with a sizeable trial sample size (possibly larger than what is typically adopted in the field), to obtain TRR
estimation within a small or moderate amount of uncertainty (Figs. 4, 5 and 7). Consequentially, one may
be able to estimate TRR under LME through TLM (Fig. 6C,D). While the program TRR can perform TRR
estimation for both behavior and region-based neuroimaging data, the program 3dLMEr can be adopted for
neuroimaging whole-brain voxel-wise TRR estimation (though uncertainty information is unavailable).

A reasonably high precision of TRR estimation for a contrast might be harder to attain under some circum-
stances for the following reason: Cross-trial variability og measures the trial-level fluctuations per condition
(and per subject) regardless of the research focus on a single condition or a condition contrast. However,
cross-subject variability o, for a condition contrast measures the fluctuations regarding the contrast, not for
the individual condition effects nor at the trial level, as characterized in the parameters A,s in formulations
(12) and (17). The contrast between two conditions is usually a few times smaller in effect magnitude. For
example, suppose that the magnitude of the BOLD response in the congruent and incongruent condition is
1.0% and 0.8% at a brain region, respectively. Their contrast of 0.2% would be 4-5 times smaller than the
magnitude of each condition alone. Yet, cross-trial variability op remains roughly the same regardless of the
effect (i.e., contrast, a single condition or cross-condition average). Thus, the relative magnitude of cross-trial
variability would be much larger for the contrast than a single condition, leading to a sizeable variability ratio
V. In other words, the cross-subject effects \.s often will get dwarfed by cross-trial variability o, resulting in
a large uncertainty for the TRR estimation of a contrast. Another contributing factor in neuroimaging specifi-
cally is the cross-region variability; the variability ratio V' may be so large in some regions that the requirement
for trial sample sizes may become practically unfeasible. Nevertheless, some brain regions could still achieve
high TRR estimation with a reasonable precision (Fig. 8). In general, we recommend the adoption of the
BML framework for its flexibility and adaptivity to closely characterize the data information. Additionally,
even though it may be difficult to achieve high precision for TRR, estimates, the resulting posteriors from a

BML model would likely still encapsulate the distribution shape regardless of its centrality or diffusivity.

4.6 Two types of generalizability

Scientific investigation strives to gain knowledge through legitimate generalization. With limited samples

and properly built models, one draws broad conclusions that extend far beyond specific experiments. From a
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statistical perspective, generalization is made possible through inferences regarding the observed or a hypo-
thetical population based on the data at hand. Two types of generalizability is relevant in the current context
concerning TRR: population-level effects and reliability of individual differences.

Population-level effects capture the general summarization for the effects of interest. The notion of popula-
tion effects in experiments such as Stroop and Flanker tasks is directly associated with the representativeness
through the measurement unit of, for example, subjects and trials. Such effects usually lie at the top levels
of the data hierarchy and are modeled as fixed effects under the conventional LME framework. For example,
the population-level contrast between incongruent and congruent conditions is the main focus in experimental
designs of inhibition tasks while group difference in terms of developmental trajectory between patients and
controls might be a research goal in a longitudinal study. Due to the widespread popularity, population-level
effects are relatively intuitive and easy to visualize as the horizontal lines illustrated in Fig. 1. Typical
sample size for subjects and trials is below 100. In this context, cross-subject and cross-trial fluctuations are
considered noise and nuisance.

TRR concerns a different type of generalizability: the consistency, reliability or conformity of individual
differences. From the research perspective, individual differences can be trait-like measures, behavioral (e.g.,
RT) or BOLD response. Unlike population-level effects that is assumed to be “fixed” in a statistical model,
TRR is characterized by subject-level effects that vary across subjects and are termed as “random” effects under
the LME framework. Thus, it is no surprise that the cross-subject variability relative to the total variation
captures the TRR in the classical quantification of ICC. Specifically, the research interest hinges as to how
strongly the two or more effects from each measuring unit (e.g., subject) resemble each other. Individual
samples such as trials and subjects are expected to vary across specific exemplars, but a high consistent
type of variation should have a systematic pattern, and such a pattern is the second type of generalizability
that is characterized as the correlation, not average, across the samples. The generalizability of TRR lies
in the reference of subject-level effects relative to their associated population-level effects. For example,
subject-specific effects characterize the relative variations around the population effects. A high reliability of
individual differences in a Flanker task experiment means that subjects with a larger inhibition effect relative
to the population average are expected to show a similar pattern when the experiment is repeated. Due to
their smaller effect size compared to population effects, subject-level effects and TRR are much more subtle
and require visual detection through close inspection of within-subject similarity using population effects as
references (dots and diamond in Fig. 1). As a result, their detection may require larger sample sizes. In this
context, individual differences are captured at the center stage as a correlation while population-level effects

are centered out as baselines.

4.7 Violating model assumptions

Understanding assumptions underlying each model is a necessity, and TRR estimation illustrates this point
from multiple angles. An assumption that is often overlooked is the one of data distribution. With only two
parameters of location and scaling, the Gaussian distribution has many desirable properties such as guaranteed
asymptotic convergence with large enough samples and numerical frugality and has been adopted widely in
statistical modeling. However, small samples often result in data with skewed or diffusive distributions.
Collecting large enough sample sizes to ensure that a Gaussian shape is met is often not an option in practice
including for studies assessing TRR. A typical approach is to censor outliers or transform the distribution. In
addition to the arbitrariness involved in determining the threshold for censoring, it is only in rare cases that
the choice of the adopted model is justified or comparisons are made with other potential candidate models.
In contrast, the Bayesian framework is flexible to fitting different distributions and allows the incorporation
of measurement errors.

Model comparison and validation are important in improving the accuracy of TRR estimation. For ex-
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ample, through model comparisons and validation (Fig. 4), our investigation indicated that an exponentially
modified Gaussian distribution is better suited to describe the RT data than its Gaussian and log-normal
counterparts, due to its strengths in accommodating data skewness and outliers. This also confirms the
adaptivity of the exGaussian distribution for RT data in the literature (Ratcliff, 1979).

Point estimation can be misleading and can cause numerical failures. As a first-order moment, in con-
ventional statistics, an effect estimator for the mean of data samples is usually adopted. The uncertainty
associated with this estimate can be reasonably characterized through the standard deviation. Point es-
timation is so popular because its information extraction is based on the pithy centrality measure through
algorithms such as maximum likelihood. However, for parameters such as variance and correlation, their point
estimates, based on higher-order moments, may conceptually and computationally encounter serious issues.
First, their distributions are not necessarily symmetric nor highly concentrated; thus, a single value from a
point estimate may not do justice to accurately expressing the entire distribution and will thus often provide
only a limited to distorted summary, especially when the posterior distribution is skewed or diffusive (Fig. 4).
Second, uncertainty information is not readily available for these parameters under the conventional frame-
work such ANOVA and LME. Lastly, numerical singularity or convergence failure is a commonplace when 1)
the parameter of interest (e.g., correlation, TRR) gets trapped at the boundary, 2) the posterior distribution
is overly diffusive, or 3) the variability ratio V' is too large. While the conventional ICC point estimate may
feel familiar, the BML framework clearly illustrates that it needs revision. Furthermore, assessing statistical
evidence for ICC based on Fisher-transformation or F-statistic (Chen et al., 2018) still does not solve the
issue of providing a measure of precision. A large degree of uncertainty may manifest in numerical failures in
the LME model, necessitating large modifications to existing experimental designs including more trials (and

more subjects to a lesser extent).

4.8 Limitations

Currently, for the BML framework, it is not feasible for TRR analysis to be conducted at the whole brain
level. Thus, its application is currently limited to behavioral and region-based neuroimaging data. Because
long chains of iterations are required to obtain stable numerical simulations under the Bayesian framework,
the computational cost of BML is usually high for large datasets. The program TRR can be used behavioral
or region-level neuroimaging data; however, for whole-brain voxel-level analysis, users are currently limited to
the LME approach which can be performed with the program 3dLMEr for a single conditions or a contrast
with large effects. However, only point estimations of TRR are available with no uncertainty information.

A much larger trial sample size might be needed to achieve reasonable TRR precision. Between the two
sampling units of participants and stimulus trials, it is the latter that is more efficient in dampening the
TRR estimation uncertainty. In typical fMRI studies, the number of trials ranges from 10 to 50, which
are much smaller than those of experimental datasets illustrated here. Aligned with a recent assessment in
phychometrics (Rouder et al., 2019), we surmise that hundreds of trials might be required for neuroimaging
studies to narrow down TRR estimation uncertainty.

Trial-level modeling requires careful experimental designs. As each trial is modeled separately at the
subject level, the risk of high correlations or multicollinearity may arise among the regressors. To avoid such
potential issue, trial sequence timing can be randomized to reduce multicollinearity using tools such as RSFgen
in AFNI or optseq®. However, even if statistically separable, trial level effect estimates can be unreliable. To
obtain effect estimates at the trial level, one is largely limited to the common approach of presuming a fixed-
shape hemodynamic response for most experimental designs. As a substantial amount of variability exists
across tasks, brain regions, subjects and even trials, such a presumption might misidentify trial-level effect

magnitude, resulting in compromised TRR estimation.

3https://surfer.nmr.mgh.harvard.edu/optseq/
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5 Conclusion

The conventional intraclass correlation could underestimate the test-retest reliability to varying extents
for datasets with many trials making up a condition of interest. TRR accuracy via ICC is lost in two ways:
first, the ICC formulation fails to accurately partition the hierarchical structure embedded in the data; second,
a single value of test-retest reliability through ICC fails to capture the uncertainty associated with a point
estimate. We recommend that TRR be estimated through subject-level correlation across repetitions via a
Bayesian multilevel model that maps the data structure as accurate as possible. We offer two publicly available
programs, TRR and 3dLMEr, for TRR estimation. In addition, we suggest that TRR be reported with either
a full posterior distribution or a mode combined with its highest density interval. A large number of trials
might be required to achieve acceptable amount of TRR estimation uncertainty especially for subtle effects

such as a contrast between two conditions.
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Appendices

A ICC underestimation for a single condition effect

We seek to derive the conventional ICC under the LME framework through TLM. It is worth noting that,
under the LME formulation (5), ICC can be conceptualized as the correlation between the two cross-trial
averages at the subject level 7., ~ N(a, + 7y, =02) (r = 1,2) with the homoscedastity assumption between

the two repetitions o, = 0, = 0,. With the notations

1 1
gs = 5(7_15 + 7—25)7 Ns = 5(7_15 - 7—25);

we have

1 1
gls- NN(a1+£S+nsa aa(%)v y2s- NN(a2+£S_7757 %0(2))7
1 1 1
Var(&,) = 5(1+p)o2, Var(n) = (1 - p)o?, Cov(&s, n,) = ;(Var(&,) — Var(s,)) = 0,

1 1
Var(gy,.) = Var(&s) + Var(ns) + Cov(&s, 1s) + —of = o7 + —a, (20)

1 1
Var(g,) = Var(§,) + Var(,) = Cov(&, m,) + —0f = o + —a,

COV(ylS,, y25~) = Var(fs) - Var(ns) = p0—72'
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Through the notations

1
v=2 - —
Or 1+EV2

it becomes clear that ICC can be directly expressed as the function of p

Cov(y I 2
100G31) = — SV Wier Bos) NI S—
\/Va'r(yls~) Va‘r(yZS-) o7+ m70 L+ EV

Up.

The variability ratio V' characterizes the magnitude of cross-trial variability og relative to the cross-subject
variability o, and the parameter U encapsulates the rate of ICC underestimation. It is quite revealing that
the extent of ICC underestimation depends on two factors, the trial sample size m and the relative magnitude
of cross-trial variability, V.

The underestimation of ICC formulation can be conceptually corrected. Under the homoscedasticity
assumption, the derivations (20) indicate that Var(7,,.) = Var(y,,.) = o2 + Lo2. That is, the variability
of cross-trial averages is composed of two components, one associated with cross-subject variability o, and
the other with cross-trial variability og. Thus, if the cross-trial variability og is known, we could restore
the accuracy of ICC by removing the trial-related variance component from the denominator of the ICC

formulation (3),

0.2

ICCa = T

02+02— 1o2
B Simulations for a single condition effect

Simulations were conducted for TRR with a single condition-level effect. Below are the manipulation
parameters for the two models of CLM (2) and TLM (5) with two repetitions of data collection:
1) homoscedasticity with fixed scaling parameters across sessions: 0., = 0., = 0, = 1,
2) 4 different TRR values: p = 0.3, 0.5, 0.7 and 0.9,
3) 4 different sample sizes of subjects: n = 20, 40, 100 and 200,
4) 4 different sample sizes of trials per repetition: m = 20, 40, 100 and 200,
5) 4 different ratios of cross-trial relative to cross-subject variability: V = Z—S =1, 4, 7 and 10,
6) 2 different sets of population-level effects across the two repetitions: (a1, az) = (0, 0) and (1.0, 0.9),
)

7) 3 different approaches to assessing cross-session reliability:

(a) conventional ICC estimated with ANOVA/LME (2) through aggregation across trials,*

(b) test-retest reliability p estimated through LME (5),

(c) conventional ICC adjusted by removing the cross-trial variability %3_
Each of these 4 x 4 x 4 X 4 x 2 x 3 = 1536 combinations was simulated 1000 times, using the function Imer
in the R package Ime4 (Bates et al., 2015) with the following iterative steps.

i) For each subject s, obtain subject-level effects during the two repetitions through random sampling:

2 1
] ~ N (0241, Rax2), where R = [ om ponom] = [ /1) ,s=1,2,..,n.
P

2
POT1 01y 07y

T1s

T2s
ii) Draw the simulated data under LME (5):

Yrst ~ N(ay + Tps, 03), 7=1,2; s=1,2,..,n; t =1,2,..,m.

4The aggregation step more accurately reflects the typical preprocessing in behavior data than in neuroimaging. The following
two pipelines are not strictly commutative in fMRI data analysis: (a) obtain condition-level effect estimates from time series
regression with one regressor per condition, and (b) perform time series regression with one regressor per trial and then obtain
the condition-level effect estimate by averaging the trial-level regression coefficients. The aggregation step in our simulations
follows the latter pipeline as a rough approximation for the former.
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iii) Solve the two LME models of (2) and (5).

iv) Recover the simulated parameters including the three TRR estimates. Specifically, the conventional
ICC is obtained through the ICC formula (3) while the TRR is estimated through p in (5). In addition,
the adjusted ICC is obtained by removing the cross-trial variability %2’ through the formula (9).

C Correlation structure among the varying intercepts and varying slopes
in the LME model (12)

With two conditions and a 2 x 2 factorial structure, we denote pers as the s-th subject’s condition-level
effects (c=1,2; r=1,2; s =1,2,...,n) and assume that the four effects associated with each subject follow

a quad-variate Gaussian distribution,

(115 p12s, f21ss H22s)” ~ N(O4x1, Pixa),
P = diag(qi1, q12, 21, q22) C diag(qi1, q12, g21, 922), (21)

s=1,2,...,n,

where P and C' are the variance-covariance and correlation matrix for the four effects. With the symme-

try assumptions corr(fieis, pe2s) = m (¢ = 1,2), corr(pirs, pors) = 0 (r = 1,2) and corr(uiis, Ho2s) =
corr(pii2s, M22s) = 1), the correlation matrix C' is of the following structure,

S © 3 o~
> I = 3
N R, 3
—_— N 3

where the correlations 6, n and 7 are such that the correlation matrix C' is positive semi-definite.

Now we derive the variance-covariance structure of the quad-variate (7is, o5, A\1s, A2s)? under the LME
formulation (12). With the indicator variable I, defined in (11), the four variables are the varying intercepts
and slopes and can be expressed as 7.5 = %(ers + pors) and Aps = piirs — pors (r = 1,2). Furthermore,
the correlation matrix for the quad-variate (7is, T2s, A1s, )\23)T is of the the following block diagonal form
that justifies the independence assumption between the varying intercepts and varying slope in the LME

formulation (12),

1 £0o 0 0
1 0 0
Po (23)
0 0 1 P1
0 0 L1 1
We obtain the correlation pg between the two varying intercept components as
) cov(Tis, Tos) cov(§(pa1s + p21s), 3(H12s + p1225)) T+ (24)
0 = p— ey 5
\/V&r(ﬁs) var(7a;) \/Var(%(uns + p21s)) var(%(,u,lgs + p22s)) 1+
and the correlation p; between the two varying slope components as
1 COV(Alsa >\23) _ COV(,Ulls — M21s, H12s — /'1’228) T 7]' (25)

a Vvvar(Ars) var(Aas) B Vvar(pits — pio1s) var(pios — Hozs) S 1-4

The correlation of Os in (23) can be similarly derived as in (24) and (25).
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D ICC underestimation for a contrast between two conditions

The extent of ICC underestimation follows a similar derivation for the case of a contrast between two
conditions as that of a single condition effect. Based on the distribution assumption yers¢|ar, by, Trs, Ars, 00 ~
N(ay + bp I+ 7rs + Mrsle, 0(2)) in the LME model (12) and the homoscedasticity assumption oy, = oy, = o,

we have

_ _ 1

Yirs. *y2rs-|br7)\r570'0 NN(bT+)\T57 %0—8)7 r= 1a2;

Var(@i1s. — Ta1s) = Var(@oss. — Tass) = 03 + —0%;
ar(Yi1s. — Ya1s.) = Var(Yars. — Yaos.) = 0x + 7 00

Cov(Y11s. — Yots Yois — Yazs.) = Cov(Ais, Azs) = p103.

Plugging the above results into the definition of ICC for the condition contrast, we immediately see the amount

of ICC underestimation,

Cov(Yq1e. — T Yo1.. — T 2 1
ICC(3,1) _ OVEy113~ 79213.7 ?/21i ?/22i) _ 2P10'2>\ s = T Up,
\/V&r(yns- —Yors.) Var(Pors. — Uoos.)  Oxt 5,00 1+5V

where V = g—g is the variability ratio and U = is the underestimation rate.

1
The underestimation of ICC formulation can be conceptually corrected as well. If the cross-trial variability
o0 is known, we could restore the accuracy of ICC by removing the trial-related variance component o3 from

the denominator of the ICC formulation,

’52
o3+ 02— Zo§
The underestimation of ICC for the average effect between the two conditions can be similarly derived. In

fact, all the formulas remain the same as long as we replace the symbols b, A and p; by a,, 7 and pp.

E Simulations of trial-level LME modeling for a condition contrast

Simulations for TRR with a condition contrast under the LME model (12) are similar to the situation
with a single condition but with a slightly higher complexity. With the correlation structure C' in (22) across
the four condition-level effects (p11s, p12s, M21s, M22s) and the assumption of homoscedasticity in (21):
q11 = ¢21 = qu2 = q22 = 1, the cross-session reliability or TRR in the LME model (12) for the average
and contrast between the two conditions can be simulated per the formulas (24) and (25). Below are the
manipulation parameters:

1) 4 simulated TRR values p; = 0.3, 0.5, 0.7 and 0.9 that, respectively, correspond to four sets of correlation

structure C' in (22): (w, 6, n) = (0.7, 0.5, 0.55), (0.7, 0.5, 0.45), (0.7, 0.5, 0.35), (0.7, 0.5, 0.25).

2) 4 different numbers of subjects: n = 20, 40, 100 and 200,

3) 4 different numbers of trials per session: m = 20, 40, 100 and 200,

4) 4 different ratios of cross-trial variability o relative to cross-subject variability o: Z—g = 1,4, 7 and 10,
5) 2 different sets of population-level effects across the two sessions, (a11, a12, a21, ag) = (0, 0, 0, 0) and

(1.0, 0.9, 0, 0).
6) 3 different approaches to assessing cross-session reliability:
(a) conventional ICC based ANOVA/LME (2) through aggregation across trials and conditions;
(b) cross-session reliability p; based on the LME formulation (12);

2
(¢) conventional ICC adjusted by removing the cross-trial variability 2% per formula (15).
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Each of these 4 x 4 x 4 x 4 x 2 x 3 = 1536 combinations was simulated 1000 times. During each simulation,
data were randomly drawn through the following steps:
)T

~

1. For each subject p, obtain subject-level effects during the two sessions: (w115, H12s, H21s, 225
N((a11, aia, as1, az)’, P), where P = C.

2. Draw simulated data per the LME formulation (10): yerst ~ N (fters, 02), ¢ = 1,2; r = 1,2; s =
1,2, ..,n; t=1,2,..,m.

3. Solve the two LME models, (2) and (12), using the function imer in the R package Ime4.

4. Recover the simulated parameters including the three reliability estimates. Specifically, the conventional
ICC is obtained through the formula (3) while the cross-session reliability p; is estimated through the
LME model (12). In addition, adjusted ICC is obtained per formula (15).

The simulation results for a condition contrast largely follow a similar pattern to the situation for a single
condition effect (Fig. 9).

F Hyperpriors adopted for BML modeling

The prior distribution for all the lower-level (e.g., subject) effects considered here is Gaussian, as specified
in the respective model; for example, see the distribution assumptions in the BML models (16, 17, 18, 19).
In addition, prior distributions (usually called hyperpriors) are needed for three types of model parameters
in each model: (a) population effects or location parameters (e.g., population-level intercept and slopes),
(b) standard deviations or scaling parameters for lower-level effects, and (c) various parameters such as the
covariances in a variance-covariance matrix and the degrees of freedom in Student’s ¢-distribution. Noninfor-
mative hyperpriors are adopted for population-level effects. In contrast, weakly-informative priors are utilized
for standard deviations of lower-level parameters such as varying intercepts and slopes at the subject level,
and such hyperpriors include a Student’s half-¢(3,0, 1) or a half-Gaussian Ay (0,1) (a Gaussian distribution
with restriction to the positive side of the respective distribution). For variance-covariance matrices, the LKJ
correlation prior (Lewandowski et al., 2009) is used with the shape parameter taking the value of 1 (i.e., jointly
uniform over all correlation matrices of the respective dimension). Lastly, the standard deviation o for the
residuals utilizes a half Cauchy prior with a scale parameter depending on the standard deviation of the input
data. The hyperprior for the degrees of freedom, v, of the Student’s ¢-distribution is I'(2,0.1). The consistency
and full convergence of the Markov chains were confirmed through the split statistic R being less than 1.1
(Gelman et al., 2013). The effective sample size (or the number of independent draws) from the posterior
distributions based on Markov chain Monte Carlo simulations was more than 200 so that the quantile (or

compatibility) intervals of the posterior distributions could be estimated with reasonable accuracy.

G Flanker Image acquisition and preprocessing

Image Acquisition Neuroimaging data were collected on a 3T GE Scanner using a 32-channel head coil.
After a sagittal localizer scan, an automated shim calibrated the magnetic field to decrease signal dropout
from a susceptibility artifact. Four functional runs, each consisting of 170 whole-brain (forty-two 3-mm axial
slices) T*2-weighted echoplanar images were acquired at the following specifications: TR = 2s, TE = 25, flip
angle = 60°, 24 field of view, 96 x 96 matrix. The first 4 images from each run were discarded to ensure that
longitudinal magnetization equilibrium was reached. A structural MPRAGE sequence in the sagittal direction
was acquired for co-registration with the functional data at the following specifications: TI/TE = 425/min
full, 1-mm slices, flip angle = 7°, 256 x 256 matrix.

Image Preprocessing Neuroimaging data were analyzed using AFNI version 20.3.00

(http://afni.nimh.nih.gov/afni/; Cox, 1996) with standard preprocessing including despiking, slice-timing
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Figure 9: Simulation results for a condition contrast. The four columns correspond to the sample size of subjects and
trials while the four rows are the varying standard deviation ratios of Z>. The x- and y-axis are the simulated and
recovered TRR, respectively. Each data point is the median among the 1000 simulations with the error bar showing
the 90% highest density interval. The dashed purple diagonal line indicates the perfect scenario.

correction, distortion correction, alignment of all volumes to a base volume with minimum outliers, nonlinear

registration to the MNI template, spatial smoothing with a 6.5mm FWHM kernel, masking, and intensity
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scaling. Final voxel size was 2.5 x 2.5 x 2.5 mm. We excluded any pair of successive TRs in which the sum
head displacement (Euclidean norm of the derivative of the translation and rotation parameters) between those
TRs exceeded 1 mm. TRs in which more than 10% of voxels were outliers were also excluded. Participants’
datasets were excluded if the average motion per TR after censoring was greater than 0.25 mm or if more
than 15% of TRs were censored for motion or outliers. In addition, 6 head motion parameters were included

as nuisance regressors in individual-level models.
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