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Abstract

We study the influence of spatial heterogeneity on the antiviral activity of
mouse embryonic fibroblasts (MEF) infected with influenza A. MEF of type
Ube1L−/− are composed of two distinct sub-populations, the strong type that
sustains a strong viral infection and the weak type, sustaining a weak viral
load. We present new data on the virus load infection of Ube1L−/−, which
have been micro-printed in a checker board pattern of different sizes of the
inner squares. Surprisingly, the total viral load at one day after inoculation
significantly depends on the sizes of the inner squares. We explain this obser-
vation by using a reaction diffusion model and we show that mathematical
homogenization can explain the observed inhomogeneities. If the individual
patches are large, then the growth rate and the carrying capacity will be
the arithmetic means of the patches. For finer and finer patches the average
growth rate is still the arithmetic mean, however, the carrying capacity uses
the harmonic mean. While fitting the PDE to the experimental data, we also
predict that a discrepancy in virus load would be unobservable after only half
a day. Furthermore, we predict the viral load in different inner squares that
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had not been measured in our experiment and the travelling distance the
virions can reach after one day.

Keywords: Virus load, spatial viral distribution, Homogenization method,
Fisher-KPP equation, Arithmetic mean, Harmonic mean

1. Introduction

In experiments of mouse embryonic fibroblasts (MEF), we infected MEF
of type Ube1L−/− with influenza A virus to observe their susceptibility and
resistance to viral infection. The fibroblast population is bimodal, consist-
ing of cells that sustain a strong or weak virus infection, respectively (Now
and Yoo, 2016). In typical cell experiments, these cells are mixed, forming
a homogeneous population. The importance and correlation between the
virus infection and population with heterotypic patterns has been studied
in (Snijder et al., 2009). However, the effects of spatial complexity between
heterogeneous populations has not been explored yet. Therefore, it is of in-
terest to understand whether the viral susceptibility changes when the spatial
distribution of the sub-populations becomes heterogeneous.

To analyse this question, (Park et al., 2017) employed a brand new cell-
printing method, which allowed printing of cell cultures in a checker board
pattern, where the two cell populations are separated into little squares (see
Figure 1 (A)). The size of the inner squares can be adjusted from almost
complete separation (large squares), to finely mixed (small squares), to fully
mixed. In Park et al. (Park et al., 2017), the experimental plates had 50% of
A549 human alveolar lung epithelial cells, and 50% of HeLa cervical cancer
cells. These two cell lines are known to possess relatively “strong” and “weak”
infectivity to influenza A, respectively (Li et al., 2009; De Vries et al., 2011).
To their surprise, the total virus load did “ not arise as a simple arithmetic
summation of the individual cellular activities”. Here we repeat the exper-
iments with mouse embryonic fibroblasts (MEF) of type Ube1L−/− using
50% ”weak infectivity” sub-type and and 50% ”strong infectivity” sub-type.
Similar to the experiments of (Park et al., 2017) we also find that the total
virus load after one day of inoculation depends on the spatial arrangement
of the cells. The finely mixed and fully mixed plates had a much reduced
total viral load as compared to the large scale patterns (see data in Figure 1
(B) ), suggesting a strong dependence of the total viral load on the spatial
arrangement.
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In this paper we use mathematical modelling to explain the spatial de-
pendence of the virus load data. Mathematical modelling of virus load is
an active field of research (see Smith and Perelson (2011); Beauchemin and
Handel (2011); Gallagher et al. (2018); Smith (2018)). While most of these
models are based on ordinary differential equations, a few approaches use
spatial modelling (Gallagher et al. (2018); Wodarz et al. (2012); de Rioja
et al. (2016)). Here we base our model on a Fisher-KPP reaction-diffusion
model (Murray, 2007) and we use homogenization methods and numerical
methods to analyze the model. To say it upfront, while going from coarse to
fine mixture, we observe a transition from an arithmetic mean of two steady
state virus load levels to a harmonic mean of these values. As the harmonic
mean is always smaller than the arithmetic mean, it explains the observed
reduction in virus load for the finer mixed experiments. As we calibrate
the model to our experimental data we find that the model can not only
explain the observed virus load data, it can also predict values that were
not measured in the experiments. Moreover, we found the spatial viral load
distribution across the periodic domain by solving the mathematical model
numerically.

Our analysis shows a simple but relevant example of the effect of spatial
heterogeneity on cell responses to virus infection. It shows that measure-
ments done on cell populations in isolation cannot simply be carried over
to a heterogeneous mixture of cells. The spatial arrangement seems to be
important.

1.1. Outline

The paper is organized as follows: In the next section (Section 2) we
explain the experimental set up and the data collection. In Section 3 we
introduce the mathematical model. We chose a very classical Fisher-KPP
reaction-diffusion equation (Murray, 2007), which is quite sufficient for our
purpose. We then perform the spatial homogenization as it is relevant for our
problem. From this analysis the dichotomy between arithmetic and harmonic
means arises. In Section 4 we fit our model to our virus-load data using a
log-likelihood method, thereby explaining the observed virus load dependence
on the spatial arrangement. In Section 5 we present numerical solutions of
the corresponding model, which show the spatial distribution of the viral
infection across the checker board pattern. We close with a discussion in
section 6.
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2. Influenza A Infection Experiments

We consider mouse embryonic fibroblast (MEF) of Ube1L−/−, where
Ube1L stands for a ubiquitin like modifier activating enzyme for ISGyla-
tion protein that conjugates an Interferon (IFN) stimulated gene 15 (ISG15)
to target proteins. The Ube1L−/− are null mutations of Ueb1L, where
the Ueb1L production is deactivated. Studying these cells, we found that
Ube1L−/− populations are bimodal, with two sub-populations of differential
antiviral activity (Now and Yoo, 2016). Ube1L−/−(S) and Ube1L−/−(W )
designates those subpopulations with strong and weak infectivity, respec-
tively. The viral infection data for each population in isolation are listed in
the Appendix A in Tables A.5 and A.6.

To study the influence of the spatial distribution patterns on the virus
load of the population as a whole, we printed Ube1L−/−(S) and Ube1L−/−(W )
cells in a regular checker board pattern by using the inkjet bio-printing sys-
tem (Park et al., 2017). While fixing the size of the checker board square to
30×30 mm2, the size of the inner squares was varied using side lengths of 1.5
mm, 3 mm, 5 mm, and fully mixed, (see Figure 1 (A)). Thus, the geometric
separation of Ube1L−/−(S) and Ube1L−/−(W ) cells is increased as the size of
the inner squares is increased. The mixed case of 50/50 of Ube1L−/−(S) and
Ube1L−/−(W ) cells is used as a control group. In each of these experiments,
the cells on the checker board and the mixed plate were infected with In-
fluenza A virus and incubated for 24 hours. The inoculation was performed
unifromly over the entire domain to avoid spatial heterogeneities through the
inoculation process. The infected cells were harvested and the total amount
of intracellular viral genome was measured using the real time quantitative
PCR method (Figure 1 (B)). All experiments use the inkjet printing method
that was developed in Park et al. (2017), The experiments for the cell cul-
tures in isolation were carried out twice for each cell type, and in each case
three plates were inoculated with a density of about 6 × 106 cells/mL. The
homogeneous cell populations were printed with the same set up as for the
1.5 mm checker board printing, however, each square would carry the same
cell type (all black or all white, respectively). The results for the homoge-
neous populations are reported in Tables A.5 and A.6. The checker board
measurements were also repeated three times, and the results are shown in
A.7.

The method of Livak (Delta Delta CT) has been used to compute the
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Figure 1: (A): Design of cell-printing pattern, (B): Viral load measurement after 24h.

relative quantification (gene expression)

RQ = 2−(∆∆CT ),

where CT represents the cycle number where the fluorescence that is gener-
ated by the PCR of the influenza A gene is distinguishable from the back-
ground noise cycle threshold (CT) of our sample. We measure ∆CT by the
following formula

∆CT = CT (target gene)− CT (reference gene).

Here, our target gene is influenza A hemagglutinin (HA) gene and the refer-
ence gene is the mouse glyceraldehyde 3-phosphate dehydrogenase(mGAPDH)
gene. Thus, we can compute ∆∆CT as the following

∆∆CT = ∆CT (experimental sample)−∆CT (control sample),

The full data set is shown in Appendix A.5 and A.6 for the homogeneous
populations and in A.7 for the checker board data. The data from A.7 are
shown in Figure 1 (B).

Looking at the virus load data in Figure 1 (B), we can see clearly a
mismatch in the viral load depending on the inner square size from mix, to
1.5 mm, to 3 mm and to 5 mm. However, each experiment has the same ratio
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and the same mass of Ube1L−/− (W) and (S) cells. Therefore, the antiviral
activity of the cell population as whole is not a simple summation of the
individual cellular activities.

3. A Mathematical Model

Reaction diffusion equations (RDE) are a powerful tool whenever the
spatial spread of a population is of importance. One of the simplest examples
of a RDE equation is the Fisher-KPP equation

∂

∂t
v(x, t) = D

∂2

∂x2
v(x, t) + µ(x)v(x, t)

(
1− v(x, t)

K(x)

)
, (1)

where v(x, t) is the viral density at time t and location x, D is the diffusion
coefficient, describing the spatial spread of the virions, µ is the population
growth rate of the virus, and K is the population carrying capacity. The viral
infection and replication inside the cells is a multilayered processes. First,
virions enter the cell through endocytosis. Then, after virion uncouating,
the virus RNA replicates and is reassembled into new virions. Virions are
released through a number of processes, such as exocytosis and cell lysis.
In the case of lysis the cell membrane breaks down, releasing virions into
the extracellular fluid. Biologically, the virion growth rate parameter µ in
our model can be seen as an effective growth rate, combining the details
of viral replication inside cells. While, the diffusion coefficient describes
the free virions spread. Since the model is used to describe the spatially
varying checker board patterns, we assume that the growth rate µ(x) and
the virus carrying capacity K(x) are spatially dependent. We assume that
the transport of virus from cell to cell is the same for all cell types, hence
we assume D is not spatially dependent and it is constant. The model can
be considered for the case of D(x) as well (see Shigesada et al. (1986, 2015);
Maciel and Lutscher (2013)), but the model with constant D is sufficient to
explain our data. Moreover, we have no biological indication to assume that
the diffusivities should be different, hence we assume they are the same.

Fisher proposed equation (1) in his paper “The wave of advance of ad-
vantageous genes” in 1937 (Fisher, 1937). He studied the diffusion of species
in one dimension and its traveling wave solutions with considering the re-
action term being logistic. In the same year, Kolmogorov, Petrovsky, and
Piskunov studied the reaction diffusion equation in two dimensions and with
more general monostable reaction term (Kolmogorov et al., 1937).
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We chose the Fisher-KPP equation for our modelling problem for several
reasons. Firstly the available data on virus load on checker board patterns
are limited to the total virus load at a few time points (0, 6h, 12h, 24h).
No microscopic measurements are performed, hence no details on the virus
replication inside cells, the cell bursting, number of released virions, trans-
port of virions inside the cell tissue, and cell death are available. It would be
fantastic to include those details in a more sophisticated modelling frame-
work, but at this stage this is neither possible nor needed. We find that the
simple Fisher-KPP approach is entirely sufficient to explain the phenomenon
on a macroscopic level. A second reason to use Fisher-KPP is that it has
proven useful in many applications before, it is simple, and the behavior
of this model is well understood (Murray (2007)). There are certain model
characteristics we can use immediately. For example the invasion speed of
the Fisher-KPP model (1) is

c = 2
√
Dµ. (2)

The parameters of the Fisher-KPP equation (1) D,µ,K will be estimated
based on the data from the experiments which we presented in the previous
Section 2.

3.1. Homogenized Fisher KPP Model

The experimental set up as described above is a paradigm for a homoge-
nization problem. A microscopic scale (inner squares) is varied on a finer and
finer scale, until in the limit, a homogeneous mixture arises. We are in the for-
tunate position, that not only the separated and fully mixed states are mea-
sured, but also several intermediate values for intermediate mixture types.
While homogenization is a well known scaling method in physical applica-
tions (Pavliotis and Stuart, 2008; Holmes, 2012), it has only recenlty been
used for ecological problems in (Garlick et al., 2011; Maciel and Lutscher,
2015; Yurk, 2018; Yurk and Cobbold, 2018). To our knowledge, this method
has never been used in the microbiological context considered here.

Due to the symmetry of the problem, we present the argument in a one-
dimensional setting. The scaling method applies to higher dimensions as
well, but the one-dimensional setting is sufficient for our purpose. To model
the specific checker board pattern, we divide the real line into small inter-
vals of equal length, which separates weak and strong infectivity populations
(see Figure 2). On this periodic domain we consider the spatial dependent
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Fischer-KPP equation (1), where the virus growth rate µ(x) and the virus
load carrying capacity K(x) vary between cell types, i.e.

K(x) =

{
KW , x ∈ patch of type weak
KS, x ∈ patch of type strong

(3)

µ(x) =

{
µW , x ∈ patch of type weak
µS, x ∈ patch of type strong.

We use W to indicate the Ube1L sub-population of weak infectivity and
S for strong infectivity. For the general analysis we simply consider periodic
functions K(x), µ(x).

 

μ

K K K

W S

carrying capacity

growth rate

patch S W

W

S WW

W S

μ μ

W

Figure 2: Sketch of a periodic patchy environment of two cell types.

We distinguish between two relevant spatial scales, the scale of the in-
dividual patches y, represented by the inner squares and the global scale of
the whole experiment x, represented by the checker board printing. Also, we
assume that there is a small parameter ε > 0 such

y =
x

ε
,

where ε represents the ratio between the local and global scales. In the
experiment,

ε =
the size of inner square

the size of the checker board
.

Thus, we can compute the ε for the 5 mm, 3 mm, and 1.5 mm inner squares
as ε = 1/6, 0.1, 0.05, respectively.

We use standard assumptions in homogenization (see e.g. (Pavliotis and
Stuart, 2008)) and assume that the growth rate µ(y) and the carrying ca-
pacity K(y) change only on the small scale y and they do not vary on the
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large scale x. The virus load depends on both scales, v(x, y, t) and the partial
derivatives change as

d

dx
v(x, y(x), t) =

∂

∂x
v(x, y, t) +

1

ε

∂

∂y
v(x, y, t)

If we introduce this assumption into (1) we get the multiscale reaction-
diffusion equation

∂

∂t
v(x, y, t) =

D

ε2

∂2

∂y2
v(x, y, t) +

2D

ε

∂2

∂x∂y
v(x, y, t) +D

∂2

∂x2
v(x, y, t)

+µ(y)v(x, y, t)

(
1− v(x, y, t)

K(y)

)
. (4)

We are seeking here a leading order approximation (v0) to compute the viral
load which is valid for small ε. To analyze this equation we use a perturbation
expansion in the small parameter ε� 1:

v(x, y, t) = v0(x, y, t) + εv1(x, y, t) + ε2v2(x, y, t) + · · · , (5)

where all functions vj(x, y, t), j = 0, 1, 2, . . . are assumed to be periodic in y
of period 1.

We substitute this expansion (5) into (4) and collect terms of equal order
in ε. The leading order term is of order ε−2:

• ε−2 : We obtain 0 = D ∂2

∂y2
v0(x, y, t), which leads to a general form

v0(x, y, t) = c1(x, t)y + c2(x, t)

Since v0(x, y, t) is periodic in y, the first term c1 = 0 and we find that
v0 does not depend on y. We write v0(x, t) instead of using c2(x, t).

• ε−1 : In this case we find

0 = D
∂2

∂y2
v1(x, y, t) + 2D

∂2

∂x∂y
v0(x, t).

Since v0 does not depend on y, the second term is zero. Hence the first
term is zero as well. Again arguing with periodicity, we find that also
v1 is independent of y and we write v1(x, t).
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• ε0 : Here we find

∂

∂t
v0(x, t) = D

∂2

∂y2
v2(x, y, t) + 2D

∂2

∂x∂y
v1(x, t) +D

∂2

∂x2
v0(x, t)

+µ(y)v0(x, t)

(
1− v0(x, t)

K(y)

)
. (6)

Instead of solving this equation for v2 we simply integrate over one
period y ∈ [0, 1]: Since v0 and v1 do not depend on y, and since v2 is
periodic, several terms simplify. We find the homogenized equation:

∂

∂t
v0(x, t) = D

∂2

∂x2
v0(x, t) +

∫ 1

0

µ(y)dy v0(x, t)−
∫ 1

0

µ(y)

K(y)
dy v2

0(x, t).

(7)

To understand (7) we introduce the arithmetic mean and the harmonic mean
as

〈µ〉a =

∫ 1

0

µ(y)dy, 〈K〉h =

(∫ 1

0

1

K(y)
dy

)−1

and we consider three cases:

Case 1: Consider K(y) = K constant. Then (7) becomes a standard
Fisher-KPP equation

∂

∂t
v0 = D

∂2

∂x2
v0 + 〈µ〉av0

(
1− v0

K

)
, (8)

where the homogenized growth rate 〈µ〉a = 1
2
(µS+µW ) is the arithmetic

mean of µ(y).

Case 2: Consider µ(y) = µ constant. In this case (7) becomes

∂

∂t
v0 = D

∂2

∂x2
v0 + µv0

(
1− v0

〈K〉h

)
, (9)

where the carrying capacity arises as harmonic mean of K(y):

〈K〉h =
1

1
2

(
1
KS

+ 1
KW

) .
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Case 3: We can also write the general homogenized equation (7) as a
Fisher-KPP equation, however, with less intuitive average terms as

∂

∂t
v0 = D

∂2

∂x2
v0 + 〈µ〉av0

(
1− v0

〈µ〉a
(
〈 µ
K
〉a
)−1

)
. (10)

Here the effective growth rate and effective carrying capacity are

µ̃ = 〈µ〉a, K̃ =
〈µ〉a
〈 µ
K
〉a
. (11)

Figure 3: Sketch of a period patchy environment and the homogenization limit.

As illustrated in Figure 3, the fine printing of the virus hosts in patches
of different sizes leads to different averaging. If the individual patches are
large, then they can be considered as almost independent, and the growth
rate and the carrying capacity will be the arithmetic means 〈µ〉a, 〈K〉a of
the patches. On the other hand, for finer and finer patches we have shown
that the average growth rate is still the arithmetic mean 〈µ〉a, however, the
carrying capacity uses the harmonic mean. For example in Case 2 above it
is 〈K〉h and it is known that

1

1
2

(
1
KS

+ 1
KW

) = 〈K〉h ≤ 〈K〉a =
1

2
(KS +KW ), (12)

where equality is satisfied when KS = KW . Hence a reduction of the overall
carrying capacity for finer patches is a direct consequence of the averaging
procedure.

4. Application to the Fibroblast Experiments

Case 1, where K(y) =const., cannot describe the observed data, since the
averaging of the growth rate does not change from coarse to fine experiments.
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However, Cases 2 and 3 can. Since Case 2 is nested in Case 3, and since Case
2 is sufficient to explain the observed phenomenon, we focus our analysis on
Case 2, where the virus growth rate µ is (almost) constant between the two
cell types, while the carrying capacities are significantly different:

µ = µS = µW , and 〈K〉h =
1

1
2

(
1
KS

+ 1
KW

) .
4.1. Fitting with PDEs

The above formulas (12) only give information about the mixed case and
the most separated case. However, they do not give information about the
intermediate scales such as the 1.5 mm and 3 mm experiments. To fit those
data as well, we employ the Fisher-KPP model (1). Details of the numerical
solution are given in Section 5.

We use a least-squares approach to estimate the error

E =
4∑
i=1

(Mi value− PDEi value)2, (13)

where i= 1,2,3,4 represent the inner squares sizes: mix, 1.5 mm, 3 mm, and 5
mm respectively. Mi denotes the measurement value and PDEi the integral
of the solution curve of the PDE.

4.2. Calibration I: Naive Approach

Based on the above calculations it is straight forward to simply compare
the arithmetic means and harmonic means with the available data. In Table
1 we show the virus load data at t = 24h that correspond to the data shown
in Figure 1 (B). The raw data are in Table A.7.

Inner Square Mix 1.5 mm 3 mm 5mm
Mean 1.2957 1.3305 1.9304 3.3996

Stand. Dev. 0.2002 0.2917 0.8111 0.9968

Stand. Error 0.1156 0.1684 0.4683 0.5755

Error Bar [1.1801, 1.4113] [1.1621, 1.4989] [1.4621, 2.3986] [2.8241, 3.9751]

Table 1: Virus load data, standard deviation, standard error and error bars.

We assume for now that the 5 mm plate corresponds to the separated
case, i.e. 〈K〉a = 3.3996, while the mixed case corresponds to the harmonic
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mean 〈K〉h = 1.2957. To find KS, KW we then simply solve the two equations
for the means (12) to find

KW = 0.7252, and KS = 6.0740.

To investigate the agreement with the intermediate cases of 1.5 mm and
3 mm, we solve the full PDE (1). For this we also need the diffusion constant
D and the virus growth rate µ. From the data in Tables A.5 and A.6, we
found a range of values of the growth rate for the virus in weak and strong
infectivity cells. While µW ∈ [0.1155, 0.3547], we found µS ∈ [0.1155, 0.4722].
Therefore, we choose the intermediate value 〈µ〉a = 0.23 per hour.

We do not have any direct information from the data to estimate the
value of the diffusion coefficient D. de Rioja et al. (2016) use a similar spatial
virus model for cancer viral therapy, and they use a diffusion coefficient of
DRioja = 0.0144 mm2 per hour. This corresponds to an invasion speed of
c = 0.115 mm per hour, resulting in a distance travelled in 24h of 2.76 mm.
This seems too small for our situation. If the travel distance is 2.76 mm in
24h, then the 3 mm and 5 mm cases would not have been able to effectively
communicate viral load values over a time range of 24 h. Hence to explain
the observed homogenization effect, we expect a significantly larger diffusion
coefficient than 0.0144. Consequently, we take the diffusion coefficient as an
unknown variable and compute the error (13) to the measurements. In Table
2 we vary D from 0.02 to 0.6 mm2 per hour and we solve the Fisher-KPP
equation (1) as described in Section 5. We observe that for increasing D the
fit for 1.5 mm gets better, the 3 mm fits well throughout, and the 5 mm fit
gets worse. Hence in the end we do not observe a usable fit from this (naive)
procedure. We show the data for the case of D = 0.5 as red curve in Figure
4 (A).

D 0.02 0.05 0.1 0.3 0.5 0.6 Measurements
Mix 1.2365 1.2365 1.2365 1.2365 1.2365 1.2365 1.2957± 0.1156
1.5mm 2.3060 2.0169 1.7582 1.4590 1.3800 1.3590 1.3305± 0.1684
3mm 2.5734 2.4397 2.2762 1.9069 1.7304 1.6737 1.9304± 0.4683
5mm 2.6757 2.6031 2.5175 2.2945 2.1431 2.0830 3.3996± 0.5755
Fitting Data No No No No No No

Table 2: Simulated virus load data when D is varied at t=24 hour.
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Figure 4: (A): Measurement values of virus load for the various checker board patterns.
Overlaid is the naive fit for D = 0.5 in red and the best fit using a hypothetical 15 mm
experiment in blue, (B): Comparison of the estimated carrying capacities KW ,KS with
the virus load data of each cell type in isolation. The horizontal lines indicate the levels
KW = 0.6713 (blue), and KS = 18.529 (orange). The data from Tables A.5 and A.6
are presented as (X,black)= weak cells experiment 1, (X,red)= weak cells experiment 2,
(circle,blue)= strong cells experiment 1 and (circle,green)=strong cells experiment 2.

4.3. Calibration II: Extension to a 15 mm Case

The above mismatch for the 5 mm plate is related to the fact that the
5 mm squares are still relatively mixed, and they might not correspond to
the fully separated state. Hence, numerically, we test this hypothesis by
including a hypothetical 15 mm case, where the cell types are separated into
one compartment for cells of weak infectivity and one compartment for cells
of strong infectivity.

The corresponding virus load has not been measured (due to technical
limitations of the bio-printing method), but we can still solve the PDE for
this case. We define a maximal error tolerance of Emax = 0.1, which is the
smallest error bar from the data (see Table 1). As we vary the values for
D ∈ [0.02, 0.6] mm2 per hour and K15mm ∈ [5.5, 12] we see in Figure (5 (A))
that the error is decreasing for increasing D and K15mm. The first value
that is below the error tolerance of 0.1 is the choice of D = 0.5 (red marker
in Figure 5 (A)). For larger values of D we still can decrease the error. A
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full minimization is, however, not very meaningful, since the fitting errors
become much smaller than the measurement errors of the data. For fixed
D = 0.5 we have a range of suitable values for K15mm. Here we can find a
clear minimizer at K15mm = 9.6 with an error of E = 0.0974. (see Figure 5
(B)). Hence for the purpose of our modelling we chose

D = 0.5 and 〈K〉a = K15mm = 9.600, (14)

which, using (12) leads to

KW = 0.6713, and KS = 18.529. (15)

These results suggest that strong infectivity cells can support about 25 times
more virus than weak infectivity cells.

(A)

(B)
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Figure 5: (A): Error values at 24h when K15mm and D are varied. The red marker
indicates D = 0.5 and K15mm = 9.6 which we chose as most suitable model parameter,
(B): Optimization of K15mm for fixed D = 0.5.

In Table 3 and Figure 4 (A) we compare the measured values to the
optimized PDE results and also record the error and relative error when
K15mm = 9.6 at t=24. We see that the model results are very close to the
measurement, well within the error bars. A fit of this level of accuracy is
quite uncommon for biological data, and we are confident that the chosen
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Size of Inner Square Measurement PDE Error2 Relative Error
Mix 1.2957 1.2365 0.0035 4.6 %

1.5mm 1.3305 1.4635 0.0177 10 %
3mm 1.9304 2.1889 0.0669 13.4 %
5mm 3.3996 3.3033 0.0093 2.8 %

Least Square Error 0.0974

Table 3: Comparison of the measurements with the optimized PDE model.

PDE model does explain the data well. We summarize the calibrated model
parameters in Table 4.

Parameter Description Value Unit
D Diffusion coefficient 0.5 mm2per hour
〈µ〉a Arith. mean growth of rate 0.23 per hour
KW Carrying capacity of weak infectivity cells 0.6713 viral load
KS Carrying capacity of strong infectivity cells 18.529 viral load
KMix = 〈K〉h Carrying capacity of mixed plate 1.2957 viral load
K15mm = 〈K〉a Carrying capacity of 15 mm printed plate 9.600 viral load

Table 4: Summary of calibrated model parameters.

We further use our optimized PDE model to investigate the virus load
after 12 hours as well. For the mix, 1.5 mm, 3 mm, and 5 mm we find simu-
lated virus load numbers of 0.7372, 0.7643, 0.8183, and 0.8766, respectively.
Although there is a slight increase from mixed to separated, the difference
is small and would not be observable within measurement tolerances. Hence
the homogenization effect would not be observed after 12h, an observation
that has been confirmed in our experiments (experimental values not shown).
The typical replication process of virus inside cells takes between 5 and 12
hours (Boianelli et al., 2015). Hence at 12h only a few cells would have re-
leased their virus contents, and the homogenization effect will not yet have
kicked in.

4.4. Comparison to Experiments of Homogeneous Populations

We compare these results (15) with the experiments of viral load infec-
tions on each cell type in isolation. In Figure 4 (B) we plot the virus load
data from tables A.5 and A.6 as functions of time. We use symbols and
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colors to distinguish between the cell types and experiments as (X, black)=
weak cells experiment 1, (X, red)= weak cells experiment 2, (circle, blue)=
strong cells experiment 1 and (circle, green)=strong cells experiment 2. In
addition we plot the estimated KW and KS from (15) as horizontal lines.

We observe that there is a large difference in the virus load data between
experiment 1 and 2 for each of the weak and strong cases. Hence the data do
not seem to be directly comparable. The virus load of the strong responders
is certainly one or two orders of magnitude larger than those of the weak
responders, and our estimates reflect this fact nicely. However, the data do
not allow a quantitative comparison.

5. Numerical Analysis of the PDE Model

The above results are based on numerical solutions of our PDE model
(1), which we performed as follows.

5.1. Mix Plate

Since µS = µW , we can solve the homogenized equation (9) for the Case
2 by a Forward-Time-Central-Space method (Smith, 1985). As µ and K
are constant and the initial condition is non-negative, the solution should
converge to the carrying capacity KMix = 〈K〉h = 1.2957, which has been
confirmed numerically as shown in Figure 6 (F).
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(A) (B) (C)

(D) (E) (F)

Figure 6: Numerical simulation when µS = µW = 0.23 and D = 0.5 with v(x, 0) = 0.1,
and vx(0, t) = vx(30, t) = 0 for (A): 15 mm intervals, (B): 5 mm intervals, (C): 3 mm
intervals, (D): 1.5 mm intervals, (E): 1 mm intervals, (F): mix plate. Note that the z-axis
changes between these figures.

5.2. Spatially Printed Plates

For the spatially printed plates, we consider two patch types, ”strong”
which represent strong infectivity cells and ”weak” which represent weak in-
fectivity cells. Accordingly, the carrying capacity is spatially constant within
a patch but different between patches. While, the diffusion coefficient D
and growth rate µ are the same in the two patches. We partition the entire
interval into sub-intervals (’patches’) (yi−1, yi), i ∈ N. Thus, we have

∂vi
∂t

= D
∂2vi
∂y2

+ µivi

(
1− vi

Ki

)
, for y ∈ (yi−1, yi).

Since the diffusion coefficient does not vary between the patches, the flux is
continuous across an interface

∂yv(y+
i , t) = ∂yv(y−i , t).

Here, y+
i and y−i denote right and left sided limits at yi. The probability of

a virion at interface yi moving to the right or left is the same and equal to
0.5. Thus

v(y+
i , t) = v(y−i , t),
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which ensures continuity of the solution at the interfaces.
The simulations in Figure 6 confirm our model assumption as only in

the 15mm case (Figure 6 (A)) the carrying capacity of KS = 18.529 of the
strong infectivity cells is reached. In the other simulations (B)-(F), the inner
maxima, corresponding to the strong cell type, are much lower than the
carrying capacity of 18. We see the homogenization effect in action, as the
relative differences between local maxima and local minima are flattened for
decreasing inner interval sizes. We also observe an overshoot at the right
boundary, which is due to the chosen Neumann boundary conditions.

6. Conclusion

In this paper, we apply the method of homogenization to a spatially
structured Fisher-KPP model for the virus-load of a virus infection of cell
cultures. The method of homogenization is well known in physics (Pavliotis
and Stuart (2008)) and ecology (Yurk and Cobbold (2018); Garlick et al.
(2011)), but here we apply it in a new way to microbiological data. We
found a biological situation where the averaging matters. Where both, the
arithmetic mean and the harmonic mean, provide valid information about
viral load and they are not the same. It is the first experiment we know
where the type of averaging matters for the infectivity of cell populations.

These observations have been made possible through the revolutionary
technique of inkjet bioprinting as pioneered by Park et al (Park et al., 2017).
Besides checker-board patterns, also other patterns, such as the Eiffel Tower
for example, can be printed and analysed. This opens the door for modelling
of more realistic heterogeneous tissue such as lung tissue for example.

The calibrated PDE model has been used to compute scenarios, which
were not done experimentally, and hence serve as predictions, such as the
1 mm and 15 mm cases, as well as the homogenization effect after 12h.
The viral load in the 1 mm inner square is reduced dramatically compared
to the 5 mm and 15 mm and being very close to the measurement value
of the mixed case. Also, using the formula for the invasion speed (2) we
are able to compute the invasion speed in our experiment. For D = 0.5 and
µ = 0.23 we find an invasion speed of c = 2

√
Dµ = 0.68 mm per hour. Which

means in 24h virions travel a distance of 16.3 mm, which is about half of the
domain size. Hence the travel distance within 24h is on the macroscopic
scale of the experiment. This agrees well with the underlying assumption of
homogenization that two spatial scales are considered.
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Our observations are based on highly controlled experiments with two
cell types and a clear geometric setup. Nevertheless, the effect of popula-
tion mixing versus segregation on total viral load is likely to be present also
in more natural occuring tissues. One such area would be viral therapy of
cancer (Wodarz et al., 2012; de Rioja et al., 2016), where a heterogeneous
cancer might react quite differently to viral therapy as compared to a ho-
mogeneous cancer. We found a 8 times increase of viral load from mixed to
fully segregated. This can have a drastic impact on tissue response and re-
sulting patient health. For example in a recent study by Néant et al. (2021)
(Supplement Figure S1), on SARS-CoV-2 infection in France, a threshold
of 106 was identified as a predictor of COVID-19 mortality. A factor 8, as
we found here, can easily make a difference in the infection outcome. The
spatial distribution of SARS-CoV-2 virus in tissue has been studied in Getz
et al. (2020), again, identifying to a highly heterogeneous lung tissue.

It should be noted that our model is spatially one dimensional, while the
experiments are two dimensional. We argue that due to model symmetry a
one-dimensional approach is sufficient. In fact, the model performs well, all
results are within error tolerances, and we do not expect any further gain
through a two dimensional version.

Still, there is always room for improvement. While we built the model
exclusively for the available data, it would be worthwhile to include more
of the viral infection dynamics, such as endocytosis, viral reproduction, ex-
ocytosis, as well as cell death (see Getz et al. (2020)). Also the transport
of virions from cell to cell can be formulated in a much more detailed way,
using cell membranes, fluid flow around the cells and possible ”intracellular
connections”, which are know to transport virions as well (Roberts et al.,
2015). Here we get away with a simple effective diffusion process to explain
the observed data.

Another way to evaluate the diffusion coefficient D is by applying the
Stokes-Einstein equation for the diffusion coefficient D of a spherical parti-
cle of radius r in a fluid of dynamic viscosity η at absolute temperature T
(Murray and Jackson, 1992), which in our case becomes

D =
kBT

6πηr
= 0.02 mm2 per hour,

where kB is Boltzmann’s constant, r = 50 nm is a typical virus size,
and η = 0.00094 pa. s is the viscosity of DMEM (10 % FBS) medium at
T = 25oC (Fröhlich et al., 2013). However, the simulation results show that
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this value is very low and it does not fit the data. We believe that a reason
for this discrepancy is the formation of capillaries between cells that are
touching along cell membranes. Breugem (2007) showed that depending on
the capillary pore size, the diffusivity could increase by orders of magnitude.
Again, in our case we have no information about the pore sizes between the
cells in our experiments.

Biologically, our results are surprising because it means in viral infection,
spatial separation between the cell sub-populations is not beneficially to the
cell population as a whole. Therefore, for overall fitness of cell population, it
is better to be mixed. We believe that this is a strategy the nature chooses
to increase fitness.

Data Availability:

Data are in Appendix A
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Appendix A. Experimental Data

Here we present the raw-data as measured in our viral load experiments.
Table A.5 and A.6 represent the kinetics of influenza A virus separately in
the homogeneous cell populations in a first and second experiment with trip-
licated data sets. In both experiments, the CT (HA) gene expression, CT
(mGAPDH) gene expression, ∆CT , ∆∆CT and RQ have been measured for
weak and strong infectivity cells at t=0, t=6, t=12 and t=24 hours respec-
tively. The viral load is represented by the RQ value, where the RQ is the
relative quantification as we mentioned in section 2.
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Sample name CT (HA)
(Target gene)

CT (mGAPDH)
(Reference gene)

∆CT ∆∆CT RQ

Weak 0h-1 32.906 13.687 N.D N.D N.D
Weak 6h-1 22.480 16.430 6.0500 0.1090 0.9272
Weak 12h-1 20.533 15.500 5.0330 -0.9080 1.8764
Weak 24h-1 20.008 14.719 5.2890 -0.6520 1.5713
Weak 0h-2 33.670 14.912 N.D N.D N.D
Weak 6h-2 22.681 16.685 5.9960 0.0550 0.9626
Weak 12h-2 20.690 15.757 4.9330 -1.0080 2.0111
Weak 24h-2 20.184 14.417 5.7670 -0.1740 1.1282
Weak 0h-3 33.175 15.184 N.D N.D N.D
Weak 6h-3 22.137 16.360 5.7770 -0.1640 1.1204
Weak 12h-3 20.611 15.687 4.9240 -1.0170 2.0237
Weak 24h-3 19.864 13.947 5.9170 -0.0240 1.0168
Strong 0h-1 33.714 14.757 N.D N.D N.D
Strong 6h-1 21.071 15.869 5.2020 -0.7390 1.6690
Strong 12h-1 9.745 15.780 3.9650 -1.9760 3.9340
Strong 24h-1 17.433 13.385 4.0480 -1.8930 3.7141
Strong 0h-2 34.002 13.825 N.D N.D N.D
Strong 6h-2 20.420 15.398 5.0220 -0.9190 1.8908
Strong 12h-2 19.875 15.901 3.9740 -1.9670 3.9095
Strong 24h-2 18.039 14.757 3.2820 -2.6590 6.3160
Strong 0h-3 34.402 14.588 N.D N.D N.D
Strong 6h-3 20.254 15.299 4.9550 -0.9860 1.9807
Strong 12h-3 19.902 15.728 4.1740 -1.7670 3.4035
Strong 24h-3 18.447 14.939 3.5080 -2.4330 5.4002

Table A.5: The growth rate of influenza A virus in weak and strong population in first
experiment with three data sets for one day. N.D means not determined
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Sample name CT (HA)
(Target gene)

CT (mGAPDH)
(Reference gene)

∆CT ∆∆CT RQ

Weak 0h-1 N.D 13.927 N.D N.D N.D
Weak 6h-1 24.539 19.245 5.2940 -0.3600 1.2834
Weak 12h-1 18.613 15.948 2.6650 -2.9890 7.9390
Weak 24h-1 20.678 14.778 5.9000 0.2460 0.8432
Weak 0h-2 N.D 14.059 N.D N.D N.D
Weak 6h-2 23.796 17.951 5.8450 0.1910 0.8760
Weak 12h-2 19.146 16.261 2.8850 -2.7690 6.8164
Weak 24h-2 20.581 15.002 5.5790 -0.0750 1.0534
Weak 0h-3 37.975 14.316 N.D N.D N.D
Weak 6h-3 23.748 17.925 5.8230 0.1690 0.8895
Weak 12h-3 19.805 17.057 2.7480 -2.9060 7.4950
Weak 24h-3 20.570 14.960 5.6100 -0.0440 1.0310
Strong 0h-1 N.D 14.942 N.D N.D N.D
Strong 6h-1 21.493 16.308 5.1850 -0.4690 1.3841
Strong 12h-1 16.076 14.713 1.3630 -4.2910 19.576
Strong 24h-1 15.642 14.052 1.5900 -4.0640 16.726
Strong 0h-2 36.907 14.285 N.D N.D N.D
Strong 6h-2 21.513 16.950 4.5630 -1.0910 2.1302
Strong 12h-2 16.607 15.885 0.7220 -4.9320 30.527
Strong 24h-2 16.010 13.580 2.4300 -3.2240 9.3437
Strong 0h-3 N.D 13.836 N.D N.D N.D
Strong 6h-3 20.211 15.401 4.8100 -0.8440 1.7950
Strong 12h-3 15.965 14.355 1.6100 -4.0440 16.495
Strong 24h-3 15.060 13.967 1.0930 -4.5610 23.605

Table A.6: The growth rate of influenza A virus in weak and strong population in second
experiment with three data sets for one day. N.D means not determined

Table A.7, represents the viral load for the checker board experiments at
one day with three independent samples. In the micro-pattering experiment,
the CT (HA) gene expression, CT (GAPDH) gene expression, RQ and the
average RQ (average viral load) have been measured in the mix plate, 1.5
mm, 3 mm and 5 mm, respectively.
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Size of inner square CT (HA) CT (GAPDH) RQ Average RQ

Mix-1 15.366 15.157 1.0669
Mix-2 14.849 15.013 1.3816 1.2957
Mix-3 14.695 14.917 1.4387
1.5 mm-1 15.148 14.845 1.0000
1.5 mm-2 15.172 15.395 1.4396 1.3305
1.5 mm-3 15.461 15.793 1.5520
3 mm-1 14.621 15.638 1.7034
3 mm-2 15.266 15.087 1.2569 1.9304
3 mm-3 14.440 15.294 2.8308
5 mm-1 14.191 15.060 2.2519
5 mm-2 14.948 16.609 3.8978 3.3996
5 mm-3 14.547 16.262 4.0492

Table A.7: The influenza A viral load on the micro-patterning for the different inner square
sizes with three samples at one day.
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