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21 Abstract 

22 Essential oil (EO) was extracted from Callistemon citrinus leaves by hydro-distillation. 

23 The extracted oil was analysed by GC and Mass Spectroscopy. Analysis report showed that the 

24 major constituent of the essential oil was eucalyptol (40.44%). The EO of C. citrinus exhibited 

25 100% fumigation toxicity (adult mortality) against adult and 95.8% larvicidal activity against 

26 Tribolium castaneum at 160 µL/L (12 hrs) and 320 µL/L (48 hrs), respectively. The effective 

27 concentration of 37.05 µL/L (adult) and 144.31 µL/L (larva) at 24 and 48 hrs respectively. A 
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28 100% repellent activity was observed at 20 µl for adult beetles and 93.3% for larvae of T. 

29 castaneum at 20 µl after 24 h. Exposure to C. citrinus EO significantly reduced beetle fecundity, 

30 ovicidal activity, egg hatching, larvae survival, and emergence of adult. The effect of EO on 

31 detoxification enzymes of T. castaneum adults was examined. Results indicated that the activity 

32 of detoxification enzymes drastically varied when compared with control. This EO had toxicant 

33 effects on all stages of the life of T. castaneum. Hence it may be used as fumigant instead of the 

34 use of using synthetic chemical fumigants. 

35 Key Words: Tribolium castaneum; essential oil; fumigation; detoxification; enzymes; IPM.

36 Introduction

37 Insect infestation on stored grains, pulses, and their processed products is a major 

38 problem that results in significant economic losses and reduces the quality as well as the quantity 

39 of stored food products. Stored grains can be infested by several insect pests that cause severe 

40 damage. Storage pests alone damaged 14-17 million tonnes of food grains and nearly 15 insect 

41 species have been are listed as major stored grain pests in India [1]. Amongst, Tribolium 

42 castaneum, listed in the major pest category of stored grains, although predominantly found in 

43 tropical countries. Both larvae and adult of T. castaneum feed grains, seeds, and milled 

44 commodities. This beetle is responsible for approximately 10-40% of post-harvest losses 

45 worldwide [2], while in India estimates of losses range from 7-10% [3]. 

46 Fumigation is an effective method of pest management in stored grains. This method is 

47 used to control all stages of insects in stored grains and is cost effective, rapidly killing insects 

48 and leaving residues [4]. Currently, methyl bromide (CH3Br) and alumium phosphide (AlP) are 

49 approved for use on stored grain and are used as synthetic fumigants. However, Methyl 

50 bromides, has ozone depleting properties [5-7]. and insect resistance to phosphine has been 
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51 documented [8-9]. Application of fumigants leads to increasing pest resurgence, deleterious 

52 effects on beneficial organisms, as well as raising the levels of toxicity [10]. To address these 

53 problems naturally biodegradable plant products have been evaluated. 

54 Interestingly, plant leaves were used as a stored grain protectant in ancient times. 

55 Traditionally, plant-derived oils were used to protect stored pulses. More recently, essential oils 

56 (EOs) derived from plant have been receiving more attention as an alternatives to synthetic 

57 fumigants. Plant products protect food grains through their insecticidal and repellent properties. 

58 Plant-derived products are also generally harmless to flora and fauna in the environment. Thus, 

59 many researchers tested the plant essential oils for their biological potential against pests of 

60 stored food grains [11-14]. Essential oils have been extracted from members of the Myrtaceae, 

61 Lauraceae, Umbelliferae, Lamiaceae, Asteraceae, and from conifers [15-16].  

62 Essential oils can exhibit fumigation toxicity, repellent activity, pupicidal activity, 

63 ovicidal, and oviposition deterrents against insect pests of stored grains [17-22]. Hence the 

64 present investigation was aimed to evaluate toxicity effect of Callistemon citrinus essential oil 

65 against Tribolium castaneum.

66 Materials and Methods

67 Culture of insect

68 The Tribolium castaneum, was maintained in Insectarium, Department of Zoology, 

69 University of Madras, and cultured on wheat flour. Freshly laid eggs, emerged larvae, and adults 

70 were used in the experiments.

71 Chemicals

72 The chemical used in the study were analytical grade and were purchased from Sigma-

73 Aldrich and Sisco Research Laboratories Pvt. Ltd. (India).
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74 Oil Extraction and GC-MS analysis 

75 Callistemon citrinus (Bottle brush) was collected from the campus of University of 

76 Madras. The oil was extracted from freshly-collected plant leaves by hydro-distillation, then it 

77 was subjected to GC-MS analysis.

78 Toxicity Study

79 Fumigation toxicity of C. citrinus EO was tested in the laboratory using filter paper 

80 method on adult insect at 28 ± 2ºC and 60–70% RH [23]. Two different ranges of concentrations 

81 such as 40, 80, 120, 160 and 200 μl/L, and 40, 80, 120, 160, 200, 240, 280, and 320 μl/L air were 

82 evaluated for fumigation toxicity on adults and larvae, respectively. Ten freshly-emerged 3-7-

83 day-old adult/10-12 days, old larvae were released in a bottle along with a small amount of flour 

84 as feed. The EO was poured on filter paper and it was adhered inside the screw cap of the bottle 

85 then closed tightly. Without treatment of essential oil to be consider control. Five replications 

86 were made for all treatments and controls. Mortality of adults and larvae were recorded after 3, 

87 6, 9, 12, 24, 36, and 48 h commencement of treatments. Dead insects were counted, if there were 

88 no antennal or leg movements. Mortality was calculated using the Abbott formula [24].

89  Repellency - Larvae 

90 The repellency of EO was measured using the diet impregnation method on larvae. 

91 Twenty-five larvae per Petri dish and replicated five times. After 2, 4, 6, 12 and 24 h of treatment 

92 the number of larvae present in the treated and control diets were counted.

93 Repellency - adult

94 The repellency effect of EO was evaluated with the help of glass olfactometer (Y- tube) 

95 on adult insect. Two grams of medium was mixed with different concentration of 5, 10, 20, and 

96 30 µl of EO individually in each vial and attached into an arm of the olfactometer. Medium 
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97 without essential oil was used as a control. All the glass vials attached to the arms and then fifty 

98 freshly-emerged adults were released into the olfactometer via the central opening. The number 

99 of beetles found in each vial was recorded after 24 hrs [25]. The percentage of repellent activity 

100 was calculated [26].

101 % of repellency = C−T/C + T X 100

102 C- control; T- treatment 

103 Fecundity and knock-down effect

104 Ten adults were released into Petri dish (100 ml) with known quantity of wheat flour. 

105 Filter paper (Whatman No. 1) discs measuring about 2 cm dia, were impregnated with different 

106 concentrations (5, 10, 20 and 30 µL/L) of C. citrinus EO. At 24 hrs after treatment the adult were 

107 transferred to new Petri dish with food. The Petri dishes were carefully examined and recorded 

108 the number of eggs laid in control and treatments for a period of 2 days by using compound 

109 microscope. Knock-down adults were counted separately and recorded as a knock-down effect. 

110 Five replications were used for each treatment and the control group.

111 Growth  inhibition effects 

112 Fifty adult beetles released in a Petri dish containing known quantity of wheat flour. 

113 After 48 h, the adult beetles were removed and numbers of eggs laid in each Petri dish were 

114 counted. Subsequently, the filter paper treated with different sub-lethal concentrations of EO was 

115 placed inside a Petri dish. Filter paper discs devoid of any volatiles were used as a control. The 

116 experiments were replicated five times for both treatments and control. The eggs hatched in each 

117 Petri dish was recorded daily and were maintained continuously on wheat flour. The larval 

118 survivability & per cent adult emergence (F1) were recorded.

119  
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120  Sample preparation for biochemical studies

121 Adult insects were treated with sub-lethal concentrations of 5, 10 and 20 µL/L of EO. 

122 The live insects were used in the biochemical analysis which consisted of three replicates. 

123 Treated adults (10 individuals for each concentration) were transferred separately and 

124 homogenized with 500 μl of ice-cold phosphate buffer (20 mM, pH 7.0) using a Teflon, hand 

125 homogenizer to estimate  the total protein, esterase, phosphatase, and Glutathione-S-Transferase 

126 activity. The homogenates were centrifuged at 15,000 rpm at 4 ºC for 20 min. and the clear 

127 supernatants were stored at -20 ºC until used. The supernatants were used for both qualitative 

128 and quantitative analyses.

129 Biochemical analyses

130 Biochemical studies were carried out using previously described methods. The Bradford 

131 assay was used to determine total protein [27], acetylcholinesterase activity [28-29], α and β 

132 carboxylesterase [30] activity was estimated [31], levels of acid phosphatases (ACP) and alkaline 

133 phosphatises [32] were determined using the method of Koodalingam et al. [31] and Glutathione-

134 S-Transferase activity was measured by Brogden and Barber [33] method.

135 Estimation of biochemical components

136 The total protein, acid & alkaline phosphatases and ß-carboxylesterase of adult were 

137 examined by discontinuous PAGE gel using non-denatured conditions. The gel electrophoresis 

138 was run by using 5% stacking gel (pH 6.8) and 8% separating gel (pH 8.8) in Tris-glycine buffer 

139 (pH 8.3). The page was provided constant current of 4 mA per sample at 10°C on a slab gel; then 

140 it was stained.
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142 Estimation of esterase and phosphates activity

143 The α & β-carboxylesterase activity were detected by using separated protein bands by 

144 the method of Kirkeby and Moe [34]; Argentine and James [35]. Acid and alkaline phosphatase 

145 activitied were analysed as describe by Houk and Hardy [36].

146 Statistical analysis

147 Student’s ‘t’ test was carried out to determine the significant differences between the 

148 biochemical constituents and enzyme activity in the treatments and control. Differences between 

149 means were considered as significant at p ≤ 0.05. All statistical analyses done original data (after 

150 transformed also the data did not showed significant distribution Shapiro wilk test). The probit 

151 analysis was done for fumigation toxicity. Significant different between the treatment group was 

152 calculated Duncans test followed by F-Test.  The SPSS software, version 25was used for 

153 analysis.

154 Results

155 Oil yield

156 EO of C. citrinus was extracted from the leaves using a Clevenger apparatus at 65 ºC for 

157 3 h. Initially the oil was whitish in colour but later turned a pale yellow. The maximum yield of 

158 650 µL/100 g (fresh weight of leaves) was obtained.

159 Chemical composition of essential oils

160 Chemical composition of the C. citrinus EO was analysed by GC-MS and identified 10 

161 different compounds in varying quantities. Among the 10 compounds, eucalyptol represented the 

162 major constituent (40.44%), followed by linalool (27.35%), and alfa- Pinene (17.36%) (Table 1).
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164 Toxicity Study

165 Fumigation toxicity of EO was evaluated against adults at 40, 80, 120, 160 and 200 µL/L 

166 concentrations. At 160 µL/L of EO showed 100% of adult beetle’s mortality at 9 h of treatment. 

167 More than 91.56% of mortality recorded at 120 µL/L concentration during 24 h observation 

168 period. At the lowest concentration (40µL/L) of C. citrinus oil exhibited 50% mortality after 24 h 

169 of exposure, and there was a gradual increase in insect mortality while increasing concentrations 

170 of EO. The lethal concentration (LC50) of C. citrinus oil against T. castaneum adults after 24 h of 

171 exposure was 37.05 µL/L (Table 2a). The overall results, C. citrinus essential oil showed a time 

172 and concentration related effect against T. castaneum.

173 Repellency - Larvae

174 Larvicidal activity of EO was studied at different concentrations viz., 40, 80, 120, 160, 

175 200, 240, 280 and 320 µL/L. Maximum larvicidal activity of 95.78% was observed at 320 µL/L 

176 concentration on 48 hrs after exposure period, while the lowest concentration (40 µL/L) 

177 exhibited 16.89% larvicidal activity. More than 50% larvicidal activity was recorded at 160 µL/L 

178 during 48 h after treatment. The lethal concentration (LC50) of C. citrinus oil against T. 

179 castaneum larvae was 144.31 µL/L for 48 h of exposure (Table 2b). The fumigation toxicity of 

180 C. citrinus EO was concentration and time dependent against T. castaneum larvae, however, the 

181 larvae appeared to be more tolerance to the EO than adults. 

182 Repellency - adult

183 Repellent activity of four different concentrations (5, 10, 15 and 20 μL/L) of C. citrinus 

184 EO was evaluated against T. castaneum adults using a Y-arm olfactometer. A 100% adult 

185 repellent activity was observed at 20 μL concentrations after 24 h. The lower concentration of 

186 EO exhibited more than 31.1% repellent activity (Table 3).   
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187 The larval repellency was conducted in Petri dishes using a choice-based method at 5, 10, 

188 15 and 20 μL concentrations and different observation period of 2, 4, 6, 12, and 24 h. The 

189 maximum repellency (93.3%) was observed at 20 μL concentrations at 24 h observation. Lowest 

190 concentration showed 30% repellent activity against T. castaneum larvae at 24 h (Table 3). 

191 Overall, the results indicate that the EO exhibited good repellence potential on both larvae and 

192 adults. 

193 Fecundity and knock-down activity

194 The oviposition study was carried out at 5, 10, 20 & 30 µL/L concentrations of EO by 

195 fumigation toxicity. Fecundity in the control beetle group laid on an average of 5.8 eggs per 

196 individual. The concentration of 20 & 30 µL/L showed 2.6 and 1.4 eggs. In terms of per cent 

197 reduction; 20 & 30 µL/L concentrations showed 55.17 & 75.86% reduction in fecundity, 

198 respectively. C. citrinus EO significantly reduced oviposition deterrence activity at 20 & 30 µL/L 

199 (Table 4).  Knockdown effect was increased according the increasing concentration. Maximum 

200 knockdown activity of 35.5% was observed at 30µL/L.

201 Growth inhibition effects

202 Ovicidal activity and egg hatchability 

203 The ovicidal activity of C. citrinus, EO was studied against T. castaneum at four different 

204 concentrations. Maximum ovicidal activity of 91.49% was observed at 30 µL/L concentration of 

205 EO. 

206 The 5 µL/L concentration exhibited egg hatchability of 56.55% while control exhibited 

207 89.15% egg hatchability. The minimum egg hatchability of 8.51% was recorded at 30 µL/L 

208 concentration (Table 5).
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210 Larvae survival and adult emergence 

211 Larval survival, and adult emergence (F1 generation) were 86.96% and 80.58%, 

212 respectively in the control group. In contrast, the 30 µL/L concentration of EO exhibited larval 

213 survival 42.54%, and it was notably lower than the control. The 30 µL/L treatment allows 5.15% 

214 of adult to emerge, when compared to control concentration A significant reduction in adult 

215 emergence 5.15% was observed at 30 µL/L.

216 Quantitative analysis of T. castaneum adult biochemistry

217 Based on the obtained results, sub-lethal concentrations (5, 10 and 20 µL/L) were used to 

218 study the impact of C. citrinus EO on various biochemical constituents in adult T. castaneum 

219 beetles. Results indicated that the biochemical constituents measured in T. castaneum adult 

220 beetles can significantly vary after exposure to sub-lethal concentrations of EO for 24 h. The 

221 total protein content of T. castaneum adult was highly and significantly reduced relative to the 

222 control value of 7.43 mg/mL of protein to 6.19 mg/mL, 5.72 mg/mL, 5.32 mg/mL in adults 

223 exposed to different concentrations (5, 10 and 20 µL/L) of EO, respectively (Fig. 1a). 

224 Acetylcholinesterase activity dramatically increased in the 10 and 20 µL/L, treatments when 

225 compared to the control; while, at 20 µL/L concentration treatment reduced Acetylcholinesterase 

226 activity (Fig. 1b).

227 The level of α-Carboxylesterase activity was significantly increased at three of the 

228 selected sub-lethal concentrations of EO, compared to the control (Fig. 1c).  β-carboxylesterase 

229 activity level was also drastically elevated in the 5, 10 and 20 µL/L treatments compared to the 

230 control, however, no significant difference was observed between the different sub-lethal 

231 treatments (Fig. 1d).
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232 Exposure of T. castaneum adults to C. citrinus EO resulted in decreased level of acid 

233 phosphatase at selected concentrations when compared to control group (Fig. 1e). Alkaline 

234 phosphatase activity was significantly reduced in the 5 µL/L treatment and drastically elevated in 

235 the 10 µL/L treatment. Significantly lower activity was recorded in the 20 treatment when 

236 compared to the control group (Fig. 1f). Glutathione-S-Transferase levels significantly increased 

237 in the 10 and 20 µL/L treatments, relative to the control group, but was significantly lower, 

238 relative to the control, in the 10 µL/L treatment (Fig. 1g).

239 3.9 Qualitative analysis of T. castaneum adult biochemistry

240 A qualitative analysis of total proteins was analysed using the native PAGE method. 

241 Protein extracted from T. castaneum adults treated with sub-lethal concentrations of C. citrinus 

242 EO showed a reduction in the number protein bands, relative to the control (Fig. 2a). The 

243 intensity of the esterase band of β-Carboxylesterase isoenzyme was modulated by the 

244 concentration of EO. The intensity of the band was lowered in the 10 treatment but increased 

245 gradually as the concentration of EO increased. The two lower isoenzyme bands decreased in 

246 their intensity, relative to the control, at the lower concentrations of EO and gradually increased 

247 when beetles were exposed to higher concentration of EO (Fig. 2b). Electrophoretic analysis of 

248 acid and alkaline phosphatase enzyme activity in adult beetles was not affected by exposure to 

249 the range of sub-lethal concentrations of EO used in the experiment (Fig. 2c,d).

250 Discussion

251 Botanical pesticides have the potential to eradicate pests without causing harm to the 

252 environment and non-target organisms. Since botanicals are generally biodegradable and do not 

253 leave persistent residue, they have been increasingly used in recent years. Essential oils obtained 

254 from plants have been shown to be very effective on insect pests, especially in stored grains. 
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255 Since they are generally volatile in nature, essential oils are very easy to use and kill the pests of 

256 stored grains. In the present study, essential oil extracted from C. citrinus leaves was tested for 

257 its potential against the larvae and adult beetles of T. castaneum. 

258 GC-MS analysis of C. citrinus revealed six different compounds, in which eucalyptol was 

259 the major constituent (40.44%), followed linalool (27.34%), and alfa- Pinene (17.46%).  

260 However, GC-MS analysis of EO from the same plant from Ethiopia revealed 15 different 

261 compounds, which also included eucalyptol as the major constituent (76.9%)  [37]. In contrast, 

262 EO extracted from the same plant growing in Western Himalayas contained only 9.8% 

263 eucalyptol [38]. These data clearly indicated that the level and type of constituents in EO 

264 extracted from this plant varies depending on where the plant was collected, and most likely the 

265 climate and ecology of that region. These results are in accordance with Misharina [39], Souza 

266 and Vendramim [40], Isikber et al. [41],who indicated that the variations in extracted 

267 compound’s, could be associated with geographical location, collection time, amount of sunlight, 

268 length of storage, temperature, and extraction methods.

269 Fumigation is one of the most effective, practically feasible, and rapid methods that can 

270 be used to protect feedstuffs, stored food grains and other agricultural products from pest 

271 infestation [42-43]. Many plant essential oils and their constituent compounds have been 

272 reported to have fumigant activity. Essential oils of Artemisia annua [44], Lipia alba [45], 

273 Curcuma longa [46], Cinnamomum camphora, Eucalyptus globules [47], Boswellia carterii [48], 

274 C. camphora, Myristica fragrans, Rosmarinus officinalis [11] and Mentha piperita [13], are 

275 reported to have biocidal activity against stored grain pests. Bioactivity can vary greatly, 

276 however, due to the variability in chemical composition of each EO and the stage of plant growth 

277 and plant organ that was used for extraction. In the present study, fumigation with EO extracted 
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278 from leaves of C. citrinus resulted in 100% mortality in adult beetles of T. castaneum at 9 hrs 

279 after treatment at a concentration of 160 µL/L. Similar results were obtained from the use of 

280 Coriandrum sativum seed oil, where mortality in C. maculatus and T. confusum increased with 

281 the use of increasing concentrations of EO from 43 to 357 μL/L air [49]. The EO used in our 

282 study exhibited different levels of toxicity to larvae vs. adult beetles. In general, fumigation 

283 toxicity was lower against larvae than adult beetles. Earlier, Liu and Ho [50]; Huang et al. [51], 

284 Tripathi et al.[46]; Isikber et al. [41] have been reported similar results.

285 Several plant essential oils exhibit feeding deterrence, acute toxicity, repellency and 

286 developmental disruption in many storage insect pests due to the complex combinations of 

287 monoterpenoids and allied phenolic compounds present in essential oils [52-55]. β-pinene has 

288 been reported to exhibit strong toxicity and repellent activity against T. castaneum adults [56]. α-

289 cymene, α-terpinene, α-terpeneol, and terpine-4-ol exhibited fumigant activity against S. oryzae 

290 [57]. In general, the major volatile components in an essential oil are responsible for its activity. 

291 As demonstrated by Maciel et al. [58], eucalyptus oil, in which1, 8-cineole is the major 

292 component, exhibited strong biological activity. Our results are in accordance with earlier 

293 literature where e it stated that eucalyptol, linalool, and terpine-4-ol are present as major 

294 constituents of the selected EO. Thus, a very high degree of fumigation, repellent, and other 

295 biological activity was observed.

296 The number of eggs laid by adult beetle was significantly (P < 0.05) lowered by exposure 

297 of adult beetles to cardamom oil at 16 and 21 mg/cm2 concentrations [59]. In the present study, a 

298 significant reduction in oviposition was recorded when adult beetles were exposed to different 

299 concentrations of EO. Similarly, Moura et al. [22] also reported that EO derived from Vanillosn 

300 opsis arborea reduced the level of oviposition when compared to control. A previous report 
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301 indicated the decreased oviposition (28%) at 5.2 mg/cm2 concentration when the adult beetles 

302 were exposed to EO derived from leaves of C. loga. The reduction in oviposition was probably 

303 due to physically weakened insects as well as lesser surviving insects [46].

304 The inhibition of egg hatchability or ovicidal activity was rapidly exhibited by exposure 

305 to the EO without any direct contact with the eggs due the volatiles released by the EO. The 

306 vapour of essential oils has been shown to diffuse through the permeable membranes of insect 

307 eggs into the chorion and vitelline membrane [60-61]. The diffusion of essential oil vapours into 

308 the eggs results in a disruption in normal physiological and biochemical processes [62].The 

309 ovicidal activity observed in the present study confirms the above statements, as the tested EO 

310 resulted, 91.49% ovicidal activity in T. castaneum.

311 The suppression and reduction of the F1 generation could be due to the toxicity of EO to 

312 all of the all life stages of the insect, from eggs to adults, via both fumigant and possibly stomach 

313 action [59]. In the present study, a drastic reduction (94.85%) was observed in adult emergence 

314 when the eggs were exposed to EO.

315 Proteins are the most abundant organic compounds in the insect body as they provide 

316 structure and muscle to the insect body, transport substances into the haemolymph, provide 

317 energy, and catalyse chemical reactions in the form of enzymes [63-64]. Decreasing protein 

318 content is commonly occurs when the insects treated with lethal compounds [65]. Protein 

319 synthesis may be reduced or inhibited in response to prolonged toxic stress [66-68].  Insects 

320 degrade the protein content into amino acid and the release energy to compensate the lowering 

321 energy level during stress condition by Nath et al. [69]. Reductions in protein levels were 

322 observed in the present study and has been previously reported that protein content was reduced 

323 due to the toxicity of plant product [70-72,25]. 
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324 Esterases are synthesized in insects during various development stages. The level of 

325 esterase activity is not constant throughout the life cycle. In the present study, AChE activity was 

326 inhibited by the higher concentrations of C. citrinus oil. Saponins are able to inhibit AChE and 

327 the inhibition increases with increasing concentration [73]. Inhibiting AChE results in the 

328 accumulation of acetylcholine at cholinergic synapses and causes hyper excitation of cholinergic 

329 pathways [74].  

330 Carboxylesterase activity can be altered by plant secondary metabolites. Phenolic 

331 glycoside significantly increased the level of Carboxylesterase in Lymantria dispar [75]. A 

332 higher level of CarE activity was recorded in Sitobion avenae fed on diet with high in indole 

333 alkaloid content [76]. In the present study, both α- CarE and β- CarE levels increased in adult 

334 beetles exposed to C. citrinus EO.

335 Hydrolytic cleavage of phosphoric acid esters is catalysed by Phosphatase enzymes that 

336 are classified into "acid" or "alkaline" phosphatases based on their pH [77]. Acid phosphatases 

337 are alysosomal marker enzyme whose active site is in the gut of insects [78-82]. Alkaline 

338 phosphatases are a brush border membrane marker [83]. Exposure to plant compounds reduced 

339 the acid and alkaline phosphatises content in Cnaphalocrocis medinalis larvae [84]. A 

340 methanolic extract of Melia azedarach reduced the acid and alkaline phosphatises in fourth instar 

341 larvae of C. medinalis [85]. Similarly, C. citrinus EO also reduced both acid and alkaline 

342 phosphatase activity in a concentration dependent manner.

343 Glutathione transferases are the enzymes that catalyse the detoxification of insecticides 

344 typically after the phase-I metabolic process [86]. In the present study, elevated GST levels were 

345 observed in adult beetles exposed to the higher concentrations of C. citrinus EO. Shojaei et al 
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346 [87] reported that adults of Tribolium castaneum exposure to Artemisia dracunculus EO 

347 enhanced the level of Glutathione-S-Transferase in a concentration dependent manner.

348 5. Conclusion 

349 Essential oils exhibits wide range of biological activities which includes fumigant, 

350 repellent, oviposition and growth inhibitory activity, and act up on all insect development stages. 

351 Therefore, the potential of resistance development is very low. The present study provided 

352 promising results on the use of an EO extracted from leaves of C. citrinus against all life stages 

353 of the beetle, T. castaneum. Importantly, this potent essential oil may be useful for controlling 

354 beetle infestations in stored grains. However, further research will be required to address safety 

355 concerns regarding its effect on human health and the environment, as well to develop suitable 

356 formulations that improve insecticidal activity and reduce production costs.
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