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 30 

Abstract 31 

 32 

 Synthetic chemicals, such as pesticides, have increased faster than other agents of global 33 

change have, yet their ecological impacts remain understudied.  Additionally, agricultural 34 

expansion to address human population growth and food shortages is predicted to increase the 35 

use of pesticides, some of which have been linked to increases in infectious diseases of humans, 36 

such as schistosomiasis, which infects >250 million people worldwide.  Previous work revealed 37 

that ecologically relevant concentrations of organophosphate and pyrethroid insecticides are 38 

highly toxic to crayfish.  Whether these same insecticides are also highly toxic to 39 

Macrobrachium rosenbergii and M. vollenhovenii prawns, which are closely related to crayfish 40 

and are important predators on snails that transmit schistosomiasis in Asia and Africa, 41 

respectively, is unknown.  We performed laboratory dose-response studies for M. rosenbergii 42 

using three pyrethroid (esfenvalerate, λ-cyhalothrin, and permethrin) and three organophosphate 43 

(chlorpyrifos, malathion, and terbufos) insecticides.  Pyrethroid LC50 values were consistently 44 

several orders of magnitude lower than for organophosphate insecticides.  Pyrethroids also had a 45 

greater likelihood of field runoff at levels lethal to prawns.  To corroborate these findings in 46 
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natural settings, we experimentally tracked survival of individually caged M. vollenhovenii at 31 47 

waterways in West Africa that varied widely in their insecticide use.  Consistent with laboratory 48 

results, pyrethroid insecticide use in these villages was positively associated with 49 

Macrobrachium mortality when controlling for village-level and prawn-level attributes, 50 

including levels of organophosphate applications.  Villages with the most pyrethroid use had 51 

lower prawn survival, despite using on average 20% less total insecticides than villages with 52 

high prawn survival.  Our findings suggest that pyrethroid insecticides widely used in sub-53 

Saharan Africa have strong non-target effects on Macrobrachium spp. prawns, with possible 54 

implications for human schistosomiasis.  Thus, regulations or incentives to avoid high-risk 55 

insecticides, especially near waterways, could have important human health implications in 56 

countries undergoing agricultural expansion in schistosomiasis-endemic regions. 57 

 58 

1. Introduction 59 

 The growing use of synthetic chemicals, including pesticides, meets all criteria for 60 

classification as a driver of global change according to the Millennium Ecosystem Assessment 61 

(Bernhardt, Rosi, & Gessner, 2017; MA, 2005). Moreover chemical use has outpaced other 62 

agents of global change, such as increasing atmospheric CO2 and the loss of both habitat and 63 

biodiversity (Bernhardt et al., 2017).  The use of pesticides is expected to increase by 2-5 fold, 64 

particularly in developing countries of Africa where the human population will double to > 2 65 

billion by 2050 (Tilman, Balzer, Hill, & Befort, 2011; UN, 2020).  Use of pesticides increased 66 

harvest value by approximately one-third across several sub-Saharan African countries (Sheahan, 67 

Barrett, & Goldvale, 2017).  Most food production is by smallholder farmers (Salami, Kamara, 68 

& Brixiova, 2010), and spraying organophosphate or pyrethroid insecticides is the most common 69 
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method of controlling insect damage to crops in this region (Atwood & Paisley-Jones, 2017).  70 

Organophosphates are a class of insecticides that act by inhibiting the enzyme 71 

acetylcholinesterase (Newman & Unger, 2003), whereas pyrethroids interfere with voltage-gated 72 

sodium channels (Soderlund & Bloomquist, 1989).  Although application of both insecticide 73 

classes can help fight malnutrition by improving food production, pesticide pollution can have 74 

non-target ecological effects that can negatively impact public health in these same locations 75 

(Bertrand, 2019).  Unfortunately, the ecological impacts of pesticides are far less studied than 76 

other agents of global change, and adverse effects of pesticides found under laboratory 77 

conditions remain largely unverified in the environment (Bernhardt et al., 2017).  Importantly, 78 

pesticide use has recently been positively associated with infectious diseases of humans (Rohr et 79 

al., 2019), including human schistosomiasis that is transmitted by parasites released from 80 

freshwater snails.   81 

 82 

 Two genera of freshwater snails in Africa, Bulinus and Biomphalaria, are responsible for 83 

transmitting human schistosomiasis, a disease that infects more than 250 million people 84 

worldwide, nearly 200 million in sub-Saharan Africa, and causes approximately 200,000 deaths 85 

in Africa annually (Adenowo, Oyinloye, Ogunyinka, & Kappo, 2015; Vos et al., 2016).  While 86 

many countries are making progress towards elimination of schistosomiasis, disease control in 87 

Africa has been hampered by limited access to clean water and sanitation (Grimes et al., 2014).  88 

In many African countries, collecting water for drinking and washing household items at local, 89 

and sometimes polluted, lakes and rivers is a daily part of life.  Excreta (urine or feces) of 90 

humans with schistosome eggs enter freshwaters by hygienic washing or urination when 91 

swimming (Coulibaly et al., 2013).  Such contamination infects intermediate host snails that 92 
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subsequently produce thousands of free swimming parasites into the water each day for up to a 93 

year (Mutuku et al., 2014).  Free swimming parasites penetrate human skin when people enter 94 

the water, and thus disease control is very difficult when intermediate snail hosts occur in 95 

contaminated waters (King & Bertsch, 2015).  Schistosomiasis is especially prevalent in rural 96 

areas where agricultural expansion has occurred (Rohr et al., 2019), suggesting that 97 

agrochemical pollution of waterways might be one important factor contributing to disease risk.  98 

Recent experimental evidence suggests that insecticide runoff into aquatic systems can foster 99 

snails, and schistosomiasis transmission risk, by killing important snail predators (Halstead et al., 100 

2018).  101 

  102 

Widespread loss of wild prawns that eat snails is associated with increased 103 

schistosomiasis prevalence, which is problematic given that half the global human population at 104 

risk of schistosomiasis live in regions where prawns are native (Sokolow et al., 2017).  The river 105 

prawns M. vollenhovenii and M. rosenbergii, native to Africa and the Indo-Pacific region, 106 

respectively, are both key invertebrate predators of snails that transmit schistosomiasis 107 

(Sokolow, Lafferty, & Kuris, 2014), and may represent an important nexus between insecticide 108 

use and human schistosomiasis prevalence (Hoover et al., 2019).  While M. rosenbergii is not 109 

native to Africa, it is physiologically very similar to native M. vollenhovenii (FAO, 2012) and 110 

has already been successfully introduced to parts of Africa within aquaculture facilities (New & 111 

Valenti, 2000).  Monosex M. rosenbergii that are unable to interbreed with M. vollenhovenii 112 

(Savaya-Alkalay et al., 2018) are being considered as biological control agents for 113 

schistosomiasis in Africa (Levy et al., 2019).  Top-down effects of invertebrate snail predators 114 

have also been negatively associated with snail parasite production (Haggerty et al., 2020).  115 
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Thus, interventions that release prawns at local water points might benefit public health (Hoover 116 

et al., 2019).  Recent experimental work has demonstrated that environmentally common 117 

insecticide concentrations reduce survival of invertebrate snail predators, including the crayfish 118 

Procambarus alleni (Halstead, Civitello, & Rohr, 2015) and M. lar from the Philippines (Bajet, 119 

Kumar, Calingacion, & Narvacan, 2012).  P. alleni is a crayfish that is ecologically and 120 

morphologically similar to Macrobrachium, having two chelae or claws used for foraging on 121 

plants or animals, and that was previously used in several mesocosm experiments examining the 122 

effects of insecticides on snails and Schistosoma parasites (Halstead et al., 2015; Halstead et al., 123 

2018).  However, it is unclear whether insecticides used by rural communities in developing 124 

countries are reducing the survival of the two Macrobrachium species that are among the most 125 

important biological control agents of human schistosomiasis.  126 

This study aimed to address the above knowledge gaps by using a laboratory LC50 study 127 

to determine the relationship between concentrations of six insecticides, three organophosphates 128 

and three pyrethroids, and survival of M. rosenbergii.  We then performed a field study using 129 

caged M. vollenhovenii placed into 31 waterways in Senegal, Africa that varied in 130 

organophosphate and pyrethroid applications in their surrounding landscape.  Based on previous 131 

work using similar invertebrate snail predators and insecticides (Bajet et al., 2012; Halstead et 132 

al., 2015), we hypothesized that both insecticide classes would lower Macrobrachium survival 133 

relative to controls, but that pyrethroids would be associated with greater mortality than 134 

organophosphates. 135 

 136 

2. Material and Methods 137 

 138 
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2.1 Lab Study 139 

  140 

2.1.1. Experimental Design 141 

 142 

To perform a dose-response study of the six insecticides, we procured juvenile M. 143 

rosenbergii (25 – 40 mm) from a commercial supplier (Aquaculture of Texas, Inc., Weatherford, 144 

TX, USA).  During the experiment, prawns were maintained individually in artificial spring 145 

water (ASW) (Table S1; (Cohen & Neimark, 1980) in the laboratory at a pH of 7.7, temperature 146 

of 23.5 °C, and 3.3 mg/L oxygen.   147 

Three organophosphate (chlorpyrifos, malathion, and terbufos) and three pyrethroid 148 

insecticides (esfenvalerate, λ-cyhalothrin, and permethrin) were selected for this study.  149 

Technical grade insecticides were used for all trials (purity >98%; Chemservice, West Chester, 150 

PA, USA).  To select experimental concentrations, we determined the likely concentration of 151 

runoff generated from applying these insecticides on crops in accordance with instructions on the 152 

product label (Table S2).  We used corn exposure scenarios on insecticide labels as inputs to 153 

generate 150 simulated annual peak estimated environmental concentrations (EECs) for these 154 

insecticides using United States Environmental Protection Agency (US EPA) software, all as 155 

described in Halstead et al. (2015).  Corn application rates were used to reduce variation in 156 

application that would exist had we used application rates of different crops and because label 157 

rates for corn were available for all six insecticides.  A range of experimental concentrations for 158 

each insecticide was selected that spanned the EECs as well as known LC50 values of related 159 

species for these or related insecticides (Table S3).   160 
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Our LC50 experiment used a static, nonrenewal (no water changes) dose-response design 161 

for this study with five concentrations of each insecticide, in addition to a solvent control (12 162 

mL/L acetone).  We used five replicates of each insecticide concentration and 10 replicates of the 163 

control and conducted trials in March 2017.  Each replicate consisted of a single M. rosenbergii 164 

in a 500 mL glass jar, filled with 400 mL of ASW, and capped with a screen.  Each individual 165 

was fed 0.16 g of shrimp pellets (Cobalt International, South Carolina, USA) ad libitum.  166 

Survival was assessed 3, 12, and 24 hours after insecticide application, and daily thereafter for 10 167 

days.   168 

 169 

2.1.2. Data Analysis 170 

 171 

We used the drc package (Ritz, Baty, Streibig, & Gerhard, 2015) in R statistical software 172 

(RCoreTeam, 2018) to generate dose-response curves and estimate LC50 values. Two-parameter 173 

logistic models were used to estimate 96-h and 10-d LC50 values, and we approximated 95% 174 

confidence intervals around each LC50 value using the variance of the estimate and then back-175 

transforming from the log scale used for concentrations (Ritz et al., 2015).  We then determined 176 

the proportion of the simulated EEC values that exceeded the US EPA’s level of concern (0.5 x 177 

LC50) for each LC50 estimate (USEPA, 2020).   178 

To determine if differences in prawn survival was most associated with either individual 179 

chemicals or chemical class, we performed a Cox mixed effects model using package survival 180 

(Therneau, 2020).  We converted all concentrations to toxic units (TUs) using SPEAR Calculator 181 

software (v0.8.1, Department System Ecotoxicology – Helmoltz Center for Environmental 182 

Research, 2014) to account for variation in absolute toxicity among chemicals.  Standardized 183 
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chemical concentration was used as a continuous fixed effect in the model, and random 184 

intercepts for each chemical were nested within their respective chemical classes (pyrethroid or 185 

organophosphate).  Coefficients of the random effects were used to determine the contribution of 186 

each chemical and chemical class to overall mortality risk.  187 

 188 

2.2. Field Study 189 

 190 

2.2.1. Study area and village selection 191 

 192 

 Our field study took place at 31 water points across 16 villages in Northern Senegal, a 193 

schistosomiasis hyper-endemic region experiencing rapid agricultural expansion.  All of our sites 194 

were located along the Senegal and Lampsar Rivers and the shore of Lac de Guiers 195 

(16°15′N 15°50′W).  Our study region was once populated by M. vollenhovenii before the 196 

construction of the Diama dam that prevented prawn breeding migrations to estuaries, which led 197 

to the loss of prawns upstream of the dam (Savaya Alkalay et al., 2014).  Shortly after the dam 198 

was constructed, and its associated environmental changes materialized, schistosomiasis 199 

infection increased and lead to perennially high infection levels (Steinmann, Keiser, Bos, Tanner, 200 

& Utzinger, 2006; I. Talla, Kongs, & Verlé, 1992; Idrissa Talla et al., 1990).   201 

 202 

2.2.2. Insecticide use 203 

 204 

 We conducted a survey of 663 households at the 16 study villages in 2016 to collect data 205 

on the area of crop land where different types of insecticides were used.  A respondent from each 206 
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household was asked to report the area of cultivated land they controlled as well as their use of 207 

insecticide on their land.  We then calculated the total area on which each class of insecticide 208 

was applied in each village.  Household surveys were approved by Internal Review Board of the 209 

University of California, Santa Barbara (Protocol # 19-170676) and in Senegal by the National 210 

Committee of Ethics for Health Research from the Republic of Senegal (Protocol #SEN14/33). 211 

 212 

2.2.3. Prawn survival 213 

 214 

 To investigate prawn survival, we captured wild M. vollenhovenii downstream of the 215 

Diama dam and temporarily housed them in an outdoor freshwater pond located nearby in St. 216 

Louis, Senegal.  A subset of mature prawns were collected from the holding pond and 217 

transported to experimental cage enclosures at village water points.  The average weight of 218 

prawns used in the experiment (± 1 SD) was 23.3 g (±9.2).  We released adult M. vollenhovenii 219 

individually into small known-fate enclosures made of a fishing-net overlaid upon a metal frame 220 

that was approximately 30 x 30 x 60 cm in size.  The cages were not baited and thus prawns 221 

were allowed to forage upon prey that naturally entered the cage over time.  We deployed one 222 

cage for each water access point of each village (n = 31 water access points).  The status of 223 

prawns in each cage was checked daily by a local villager who was compensated for their effort.  224 

Prawns that died were replaced as needed at the end of each month from the start of the study in 225 

March until the end in October 2019 (8 months).   Before each prawn was placed in a cage, we 226 

recorded its mass (g), sex, and number of claws.  We also recorded the water temperature (°C) at 227 

the cage during the prawn release. 228 
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 We flew a drone with a 12.4 MP camera above each water access point in July 2019 to 229 

estimate aquatic vegetation cover because it is very dense in our study region and might intercept 230 

insecticide runoff or change abiotic conditions near prawn cages.  The drone flew at an altitude 231 

of approximately 150 m above the prawn cages, and travelled in all four cardinal directions from 232 

those locations, capturing images every 5 seconds to a distance of 300 m from the water access 233 

point.  All images for each village were aligned using Agisoft Photoscan Professional to create 234 

both an orthomosaic and a digital elevation model (DEM).  We used the orthomosaic (16 cm/pix 235 

resolution) in QGIS 3.2 to estimate the amount of emergent vegetation within a 100-m buffer 236 

around each prawn cage.  To characterize site topography, we used the DEM (6 m/pix 237 

resolution) in QGIS 3.2 to estimate percent slope from each prawn cage to the nearest planted 238 

field.  Finally, we took the average values of each predictor per village because insecticide use 239 

was only available at the village-level.  To compare abiotic conditions of sites descriptively in 240 

terms of their suitability for prawns, we also visited each waterway in July 2019 to record 241 

average salinity and dissolved oxygen values at each village using a YSI Pro multimeter.  242 

 243 

2.2.4. Data analyses 244 

 245 

 All statistical analyses were conducted with R statistical software (RCoreTeam, 2018).  246 

To predict prawn survival, we performed a Cox proportional hazards regression analysis using 247 

the survival package in R and including a single survival time value for each prawn (n = 225 total 248 

prawns).  One assumption of the Cox model is that risk is consistent throughout the study.  249 

However, that assumption is unlikely to be true in this system because insecticide exposure will 250 

temporally vary with rainfall or application times.  In addition, exploratory data analyses showed 251 
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that prawn survival was dependent upon month.  Thus, a stratified Cox model was fit by 252 

including a strata term for month, which fits separate baseline hazard functions for each month.  253 

Beta coefficients (and associated hazard ratios) optimized for all strata are then fitted.  In a 254 

stratified Cox model, it is not possible to test for differences among levels of the strata term (here 255 

month).  The term +cluster(village) was included to account for clusters of correlated 256 

observations at the village-level and produce robust estimates (standard errors adjusted for the 257 

non-independence) using the grouped jackknife method.  We fit an initial global using all village 258 

and prawn-level predictors mentioned above, and present parameter estimates for both this 259 

model and a a final model were reached by sequentially dropping the least significant predictor 260 

until all terms were significant.    261 

 262 

3. Results 263 

 264 

3.1. Lab Study 265 

  266 

  We found that LC50 values of pyrethroid insecticides were generally an order of 267 

magnitude lower (greater toxicity) than LC50 values of organophosphate insecticides (Table 1).  268 

Overall, the LC50 (95% CI) of the most toxic pyrethroid and organophosphate were 0.25 μg/L 269 

(0.07 - 0.43) for esfenvalerate and 16.73 μg/L (7.86 - 25.60) for chlorpyrifos, respectively (Table 270 

1).  Greater toxicity of pyrethroid than organophosphate insecticides for M. rosenbergii in our 271 

laboratory experiment is consistent with data from the US EPA's Ecotox database for other 272 

Macrobrachium species (Table 1, Table S3).   273 

 274 
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 We found that EEC values of each pyrethroid tested commonly exceeded the EPA's level 275 

of concern, defined as half the LC50 value (Fig. 1).  In contrast, we found that organophosphates 276 

rarely exceeded the EPA's level of concern for M. rosenbergii (Table 1). Among 277 

organophosphates, only chlorpyrifos generated EEC simulations that exceeded the EPA's level of 278 

concern, which spanned only three percent of the simulations (Table 1).  For the three 279 

pyrethroids, 17-81% of the exposure simulations exceeded the EPA's level of concern (Table 1).  280 

Thus, pyrethroids had a consistently greater chance of exceeding levels of concern than 281 

organophosphates (Fig1; Table 1).  282 

 283 

 A Cox mixed-effects survival model indicated that insecticide class accounted for 70.7% 284 

of the variance in prawn mortality.  After 96 hours of exposure, the three most deadly 285 

insecticides (i.e., highest hazard ratios or risk per μg/l) were the two pyrethroids esfenvalerate 286 

and λ-cyhalothrin, and the organophosphate chlorpyrifos (Table 2).  Converting all 287 

concentrations to toxic units (TUs) using the SPEAR Calculator software revealed that, on 288 

average, pyrethroid insecticides led to 275% more mortality than organophosphates (Table S4).  289 

The coefficients of random effects suggest that variation among individual insecticides within 290 

the organophosphate class was largely driven by the lack of risk presented by malathion (Table 1 291 

and 2).   292 

 293 

Table 1.   LC50 (μg/L) values for M. rosenbergii after 96-h or 10-d exposure to multiple 294 

concentrations of three pyrethroid (esfenvalerate, λ-cyhalothrin, and permethrin) and three 295 

organophosphate (chlorpyrifos, malathion, and terbufos) insecticides.  The second column for 296 

each endpoint reports the proportion out of 150 annual peak estimated environmental 297 
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concentrations (EEC) calculated from the US EPA Pesticide in Water Calculator (v.1.52) that 298 

exceeded the US EPA level of concern defined as one-half the estimated LC50. 299 

   96-h endpoint     10-d endpoint   
Chemical class 

Chemical LC50 (95% C.I.) 
EEC > 0.5 
x LC50 

 
LC50 (95% C.I.) 

EEC > 0.5 
x LC50 

Pyrethroid Esfenvalerate 0.49 (0.12 - 0.86) 0.71 
 

0.49 (0.12 - 0.86) 0.71 
Pyrethroid λ-cyhalothrin 0.97 (0.55 - 1.39) 0.81 

 
0.97 (0.55 - 1.39) 0.81 

Pyrethroid Permethrin 5.21 (1.31 - 9.12) 0.17 
 

5.21 (1.30 - 9.12) 0.17 
Organophosphate Chlorpyrifos 132.70 (18.12 - 47.28) 0.06 

 
22.40 (11.50 - 33.31) 0.03 

Organophosphate Malathion 4238.6 (1999.60 – 6477.60) 0.00 
 

4238.60 (1999.6 - 6477.6) 0.00 
Organophosphate Terbufos 197.40 (61.52 - 333.28) 0.00   114.07 (51.28 - 176.85) 0.00 
 
 

 
 

   300 

Figure 1.  Dose-response curves for Macrobrachium rosenbergii after 96-h of exposure to three 301 

pyrethroid (a-c) and three organophosphate (d-f) insecticides. The horizontal bar represents the 302 

95% confidence interval around the LC50 estimate, with the estimate itself at the point where the 303 

confidence interval intersects the curve.  The shaded areas represent concentrations above the US 304 

EPA’s level of concern of 0.5 x LC50 (medium gray) for acute high risk to aquatic organisms.  305 

The light gray and dark gray regions represent the area of concern calculated from the lower and 306 

upper 95% confidence limits of the LC50 estimate, respectively.  The dashed curves give the 307 

kernel density estimates from 150 simulated annual peak environmental concentrations (EECs) 308 

in ponds determined from the US EPA Surface Water Calculator (SWCC) for each insecticide.  309 

Thus, those portions of the curve within the shaded areas of each plot indicate simulated peak 310 

EECs above the US EPA’s level of concern.  The open and black triangles along the x-axes 311 

indicate the median and maximum EECs, respectively, from the SWCC simulations.  312 
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 313 

Table 2. Cox survival analysis for Macrobrachium rosenbergii exposed to multiple 314 

concentrations of three pyrethroid (esfenvalerate, λ-cyhalothrin, and permethrin) and three 315 

organophosphate (chlorpyrifos, malathion, and terbufos) insecticides for 10 days. Positive 316 

coefficients (coef) indicate that the probability of prawn mortality during the study increased 317 

with chemical exposure. The hazard ratio is the exponent of the coefficient and indicates the 318 

probability of an increase in mortality for every 1 µg/L increase in concentration. For example, 319 

the hazard ratio of 1.051 for esfenvalerate indicates that every 1 µg/L increase in esfenvalerate 320 
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increases the probability of mortality during the study increases by 5.1%. The 95% confidence 321 

intervals are provided for the hazard ratio. 322 

Chemical Z p coef SE Hazard Ratio 95% CI 

Esfenvalerate 6.62 <0.001 4.98E-02 7.09E-03 1.051 1.037 - 1.065 

λ-cyhalothrin 6.69 <0.001 6.27E-01 9.37E-02 1.872 1.688 - 2.056 

Permethrin 1.80 0.072 2.93E-01 1.63E-01 1.340 1.021 - 1.660 

Chlorpyrifos 7.02 <0.001 1.56E-01 2.36E-02 1.169 1.123 - 1.215 

Malathion 6.42 <0.001 3.05E-05 4.74E-06 1.000 1.000 - 1.000 

Terbufos 4.60 <0.001 1.46E-02 3.18E-03 1.015 1.008 - 1.020 

 323 

3.2. Field Study 324 

 325 

 We documented a total of 1,515 ha of agricultural fields using our social survey in the 16 326 

villages we sampled in Senegal (average Table 3).  Insecticides were applied to 60% of the total 327 

planted field area and there was an average of 47.8 ha of insecticide application per village.  The 328 

organophosphate dimethoate and the pyrethroid deltamethrin together made up 78% of the total 329 

area where insecticides were applied.  Each village received an average of 14.1 prawns (± 1.4 330 

SE) during the study, dependent upon number of water access points. 331 

 Given that LC50 values for pyrethroids were one to two orders of magnitude lower than 332 

LC50 values for organophosphates and the laboratory hazard ratios suggested that pyrethroids 333 

were generally more toxic in nature than organophosphates, we hypothesized that pyrethroid use 334 

would be more positively associated with prawn mortality in Senegalese waterbodies than 335 

organophosphate use.  As predicted, when accounting for significant covariates in the final 336 

model (Table S5), M. vollenhovenii mortality was positively associated with total pyrethroid 337 

applications (ha) (Fig. 2a), but was not significantly related to organophosphate applications 338 

(Table 3). In villages with pyrethroid use, prawn survival decreased rapidly in the first few days 339 

after prawn release, consistent with the 96-h results of the LC50 trials.   340 
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Prawn mortality was also associated with several covariates.  For example, prawn 341 

mortality was positively associated with water point temperature at release (Table 3; Fig. 2b; 342 

mean water temperature: 28.2° C, range: 20 - 32.6° C), and the average amount of emergent 343 

vegetation within 100 m of cages (Fig. 2d).  Male prawns experienced significantly higher 344 

mortality than female prawns (Table 3; Fig. 2c).  Finally, prawn mortality was negatively 345 

associated with dissolved oxygen (Fig. 2e), whereas mortality was positively associated with 346 

salinity (Fig. 2f). 347 

 348 

 349 

 350 

Table 3 Average values and cox model results for prawn field study prior to model selection 351 

(Wald tests substituted for LR tests to provide robust variances). 352 

Experimental level Predictor Average (± 1 SE) z-statistic Robust SE p-valu
Village Total organophosphate use (ha) 32.3 (7.5) 1.174 0.010 0.2
Village Total pyrethroid use (ha) 5.2 (1.3) 2.724 0.033 0.0
Prawn Water point temperature (°C) 28.2 (0.5) 2.479 0.103 0.0
Prawn Sex of the prawn (male)  2.017 0.206 0.0
Prawn Weight of the prawn (g) 23.3 (0.6) 0.145 0.006 0.8
Prawn Number of prawn claws 1.4 (0.1) -0.513 0.080 0.6
Village Average percent slope cage to nearest field 4.1 (0.6) -0.442 4.844 0.6
Village Average distance nearest field to water (m) 18.1 (2.2) -0.432 0.033 0.6
Village Average distance cage to nearest field (m) 4.1 (0.6) -0.317 0.004 0.7
Village Average emergent vegetation in 100m 11,150.6 (898.3) 3.161 0.000 0.0
Village Average dissolved oxygen (ppm) 0.5 (0.5) -2.130 0.151 0.0
Village Average salinity (ppt) 0.1 (0.0) 1.404 7.455 0.1

 353 

 354 
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 355 

Fig. 2. Partial residual plot of the final Cox model (after model selection) showing the 356 

association between prawn mortality (log(hazard ratio)) and pyrethroid use (a), water 357 

temperature (b), sex of the prawn (c), average emergent vegetation with 100m of the prawn cage 358 

(d), average dissolved oxygen (e), and average salinity (f).  Plots were generated in the R 359 

package visreg. 360 

 361 

   362 

4. Discussion 363 

 364 

Synthetic chemicals are important agents of global change, but adverse effects of 365 

pesticides observed in laboratory studies are rarely verified in the wild (Bernhardt et al., 2017).  366 

Our laboratory and field experiments support the hypothesis that pyrethroid insecticides pose a 367 
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high mortality risk for two Macrobrachium species, which might increase their snail prey, and 368 

ultimately, global schistosomiasis infections because millions of people at risk of schistosomiasis 369 

live in areas with native prawns (Sokolow et al., 2017).  We found that M. rosenbergii LC50 370 

values for three pyrethroids were consistently lower by one or more orders of magnitude than 371 

organophosphate insecticides, in agreement with previous laboratory studies of other invertebrate 372 

snail predators (Bajet et al., 2012; Halstead et al., 2015).  Importantly, expected concentrations of 373 

pyrethroid insecticides in waterbodies are more likely to exceed LC50 values of Macrobrachium 374 

prawns than expected field concentrations of organophosphate insecticides.  Thus, in nature, 375 

pyrethroid use may be more deadly to prawns than organophosphate use.  We corroborated these 376 

laboratory findings in a natural setting by documenting that caged M. vollenhovenii survival at 377 

water points was best predicted by reported pyrethroid rather than organophosphate applications 378 

on crop fields near these water points.  Thus, prawn survival was negatively associated with 379 

pyrethroid and not organophosphate use, despite our study sites actually averaging more total 380 

organophosphate than pyrethroid insecticide applications reported by households living nearby.  381 

Our findings suggest that the impact of the predicted rise in insecticide use associated with 382 

human population growth (Tilman et al., 2011), could depend upon which insecticides are 383 

adopted.  If pyrethroids are heavily used, this might affect schistosomiasis by reducing survival 384 

of an important native predator of the snail intermediate hosts in coastal Africa, where the vast 385 

majority of global schistosomiasis cases occur (Steinmann et al., 2006). 386 

Introducing Macrobrachium prawns into waterways has recently been proposed as a 387 

public health intervention in our study region (Sokolow et al., 2017), and identifying abiotic 388 

factors that affect prawn survival in the wild will be very important to the success of such 389 

interventions.  Consistent with previous studies (Cheng, Liu, & Kuo, 2003), we found that 390 
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oxygen was a strong positive determinant of Macrobrachium survival.  Prawn mortality 391 

increases quickly below 2 mg/L oxygen (Ferreira, Bonetti, & Seiffert, 2011), and approximately 392 

25% of our field measurements were below this threshold.    Temperature increases the 393 

metabolic rate of ectotherms, with optimal temperatures being approximately 30°C for both M. 394 

rosenbergii and M. vollenhovenii (Akinwunmi, Bello Olusoji, & Sodamola, 2014; New, 1995).  395 

Prawns in our experiment were likely acclimated to ambient temperatures in our outdoor 396 

growing ponds but could not migrate to more favorable temperatures in waterways once placed 397 

in experimental cages.  Summer water temperatures in the Senegal River Basin can reach 32°C 398 

(Sane, Ngansoumana, Arfi, Samb, & Noba, 2017), with air temperatures reaching 40°C (Cheikh, 399 

Moctar, & Raymond, 2013).  Given that each degree Celsius rise in temperatures increases 400 

oxygen demand by increasing prawn metabolism (Manush, Pal, Chatterjee, Das, & Mukherjee, 401 

2004; Xi-lin et al., 1999), water temperatures at release sites may have increased prawn mortality 402 

by raising oxygen demands.   403 

Prawn- and village-level characteristics may also influence prawn responses to abiotic 404 

conditions in Senegalese waterways.  Male M. vollenhovenii could be more sensitive to oxygen 405 

because they reach a larger size (Olele & Kalayolo, 2012), and body size in crayfish determines 406 

oxygen consumption (Armitage & Wall, 1982).  Unlike temperature, salinity does not impact 407 

oxygen stress in M. rosenbergii (Ern, Huong, Nguyen, Wang, & Bayley, 2013).  All salinity 408 

values that we observed were freshwater (<0.5 ppt) and suitable for adult prawns (New, 1995).  409 

However, salinity is strongly associated with dissolved ions or conductivity, the latter of which is 410 

an indicator of agricultural runoff (Harwell, Surratt, Barone, & Aumen, 2008).  Eutrophication 411 

associated with nutrients in runoff can increase the chances of hypoxia at sites (Dodds & Whiles, 412 

2019) and eutrophication from nutrients has been observed in our study system (Cogels, 413 
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Frabouiet-Jussiia, & Varis, 2001).  Fertilizers, which are used at all 16 villages, are also 414 

positively associated with invasive macrophytes, such as Typha spp., that were the most common 415 

emergent aquatic plant in our study and are distributed worldwide (Bansal et al., 2019).  416 

Emergent plants such as Typha spp. can shade waterways, limiting photosynthesis by algae or 417 

submerged plants that produce oxygen.  Typha spp. can also create leaf litter that lowers 418 

dissolved oxygen as it decays (Bunch, Allen, & Gwinn, 2010, 2015).  Although no previous 419 

study has, to our knowledge, examined prawns in relation to emergent plants, Typha spp. 420 

invasion can lead to aquatic communities dominated by hypoxic-tolerant species (Schrank & 421 

Lishawa, 2019).  Crayfish, which are phylogenetically and functionally similar to prawns, will 422 

feed on a variety of aquatic plants but do not readily consume Typha (Bolser, Hay, Lindquist, 423 

Fenical, & Wilson, 1998).  This might suggest that Typha may also provide little direct benefit to 424 

Macrobrachium. Together, these findings suggest that prawn- and site-level factors can influence 425 

prawn mortality that, in turn, can have important impacts on population densities of intermediate 426 

host snails of human schistosomiasis.  427 

 Extrapolating hazards among insecticide classes from laboratory to field settings is key to 428 

understanding the effects that different insecticide classes might have on Macrobrachium 429 

biocontrol of schistosomiasis.  Our laboratory M. rosenbergii LC50 values for three 430 

organophosphates were generally within the 95% CIs of the LC50's reported for P. alleni from 431 

Halstead et al. (2015).  Similar to Halstead et al. (2015), we found that the two insecticides with 432 

the lowest hazard ratios were the organophosphates malathion and terbufos, whereas chlorpyrifos 433 

posed a higher risk among the organophosphates.  Additionally, previous laboratory studies 434 

support our finding of greater toxicity of pyrethroid than organophosphate insecticides to 435 

crayfish and Macrobrachium prawns (Bajet et al., 2012; Halstead et al., 2015; Halstead et al., 436 
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2018).  Pyrethroids, including deltamethrine, the most common pyrethroid reported in our 437 

household surveys in Senegal, had such a high toxicity to M. lar in the Philippines that 438 

pyrethroid environmental concentrations actually exceeded LC50 values in the laboratory (Bajet 439 

et al., 2012).  Environmental exposure simulated in our study, using EPA software showed 440 

patterns consistent within insecticide class and with previous studies (Halstead et al., 2015).  441 

However, we are the first to provide evidence from nature supporting all of these laboratory 442 

findings.    443 

The loss of river prawns in the Senegal River Delta following agricultural projects that 444 

coincided with disease outbreaks (Sokolow et al., 2017; Steinmann et al., 2006) emphasizes the 445 

need to identify low-risk insecticides for increasing crop yields without harming native prawns.  446 

Successfully re-introducing Macrobrachium prawns for biocontrol of schistosomiasis will 447 

require identifying low-risk insecticides in endemic and developing regions undergoing 448 

agricultural expansion.  Among organophosphates, we found that malathion has a particularly 449 

low toxicity to prawns, consistent with experiments using the prawn species M. lar (Bajet et al., 450 

2012) and the crayfish P. alleni (Halstead et al., 2015).   As the M. rosenbergii used in our 451 

laboratory study were commercially bred for human consumption in a hatchery, they had no 452 

known previous exposure to insecticides in their familial history, which strongly suggests that 453 

the displayed resistance by Macrobrachium prawns to malathion is innate.  Thus, our results 454 

suggest that malathion may be a particularly useful insecticide to protect crops from pests 455 

without increasing the spread of human schistosomiasis. Although the pyrethroids we tested 456 

were generally more toxic than organophosphates, the pyrethroid permethrin had a lower chance 457 

of reaching EPA levels of concern (EEC > 0.5 x LC50) than λ-cyhalothrin or esfenvalerate 458 

pyrethroids.  Permethrin also has the lowest desorption rate among pyrethroids we examined 459 
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(Fojut & Young, 2011), which could be important for lowering its bioavailability in agricultural 460 

regions where organic carbon levels are low (Fojut & Young, 2011).   461 

Our study has several limitations that could influence our understanding of insecticide 462 

effects on prawn biocontrol agents in field settings.  We did not have spatial information on the 463 

agricultural area reported in our social surveys.  Thus, we assumed that villages with more fields 464 

also have more fields near their water access points. However, some fields reported in our 465 

surveys were likely too distant generate runoff into waterways.  In this case, village-level survey 466 

data might not capture the agricultural runoff that occurs at prawn cages as accurately as had we 467 

known where each field location in relation to the cages.  An additional caveat to our field study 468 

is that we did not have insecticide application rate data, and, thus, we assumed that chemical 469 

application rates were comparable among the study villages.  Quantifying chemical 470 

concentrations in waterways each month could have potentially addressed both of the above 471 

limitations but is also logically challenging and costly.  Future studies that can address the 472 

limitations of our field study may be able to further improve our understanding of insecticide 473 

risks. 474 

In conclusion, our findings suggest that levels of different insecticide classes used by 475 

rural subsistence farmers near waterways may adversely affect the biocontrol of schistosomiasis.  476 

Importantly, previous mesocosm and modeling studies demonstrated that loss of snail predators 477 

arising from insecticide toxicity can increase snail densities and the risk of snail-transmitted 478 

disease (Halstead et al., 2018; Rohr et al., 2008).  Thus, our findings offer one potential 479 

explanation for the positive links between schistosomiasis transmission and agricultural 480 

expansion and can help inform future Macrobrachium prawn introductions to control snails.  Our 481 

findings further suggest that prawn natural recolonization in aquatic systems may be hampered 482 
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by insecticide runoff.  While insecticides will remain essential in developing countries (Snyder, 483 

Smart, Goeb, & Tschirley, 2015), educating farmers about the risks of particular insecticides 484 

(particularly pyrethroids) for native fauna may be warranted.  Future studies are needed to 485 

examine the effects of farmers’ switching from pyrethroids to alternative insecticides with fewer 486 

impacts on crustacean predators of snails, such as malathion.  Careful choice of insecticides may 487 

be needed to reduce crop pests without increasing the risk of disease in areas endemic for 488 

schistosomiasis.   489 

 490 
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