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Abstract 
 
Biological information can be encoded in the dynamics of signaling components which has been 
implicated in a broad range of physiological processes including stress response, oncogenesis, 
and stem cell differentiation. To study the complexity of information transfer across the eukaryotic 
promoter, we screened 119 dynamic conditions—modulating the frequency, intensity, and pulse 
width of light—regulating the binding of an epigenome editor to a fluorescent reporter. This system 
revealed highly tunable gene expression and filtering behaviors and provided the most 
comprehensive quantification to date of the maximum amount of information that can be reliably 
transferred across a promoter as ~1.7 bits. Using a library of over 100 orthogonal epigenome 
editors, we further determined that chromatin state could be used to tune mutual information and 
expression levels, as well as completely alter the input-output transfer function of the promoter. 
This system unlocks the information-rich content of eukaryotic epigenome editing.  
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Introduction 
 
There is ample evidence that biological information can be encoded in the dynamics of signaling 
components and not just in their biochemical identities (Behar and Hoffmann, 2010; Cai et al., 
2008; Dalal et al., 2014; Hansen and O'Shea, 2013; Hao et al., 2013; Imayoshi et al., 2013; Inoue 
et al., 2016; Purvis et al., 2012). Cells, with a limited number of components, utilize dynamic signal 
processing to perform sophisticated functions in response to complex environments. 
Transcription factors (TF) may be a particularly important archetype for this type of information 
transmission, as they are relatively low in diversity but must command many distinct and complex 
gene expression programs (Lee and Young, 2013). Indeed, through chemical and optogenetic 
approaches, the dynamics of TF nuclear-cytoplasmic translocation has been shown to control 
gene expression levels and population noise (An-adirekkun et al., 2020; Chen et al., 2020; 
Hansen and O'Shea, 2013; Rademacher et al., 2017). There is also evidence different promoters 
can transduce dynamic TF input signals into distinct output responses (Chen et al.; Hansen and 
O'Shea, 2016; Harton et al., 2019). Thus, developing a quantitative understanding of how dynamic 
TF signals are ultimately interpreted and processed by individual genes and promoters is clearly 
important. 
 
Compelling analogies can be drawn: to information theory, with promoters analogous to 
information transfer channels; and to process control, with promoters acting as unit processes 
with dynamic input-output transfer functions. The nature of these channels or transfer functions 
might even be tunable by parameters such as promoter sequence, chromatin state, or three-
dimensional chromatin topology. However, developing this type of robust quantitative framework 
poses considerable challenges. Mapping the transfer function of a single promoter seems 
ostensibly simple but faces the inherent technical difficulties of controlling dynamic properties of 
biological systems. The complex diversity of eukaryotic chromatin presents yet another formidable 
barrier. More specifically, there are three particularly pressing challenges. First, there is a broad 
range of dynamic input and output parameters that is technically challenging to access, control, 
and characterize. Second, as each individual promoter can be regulated by multiple distinct TFs 
and chromatin regulators (CRs), pleiotropic effects can confound global perturbations to nuclear 
TF levels or chromatin state. Finally, there are hundreds of distinct CRs that can alter how 
promoters interpret TF signals, resulting in a large experimental space to explore (Kouzarides, 
2007; Li et al., 2007).  
 
To address these challenges we engineered both dynamic and static epigenome editors that 
bypass pleiotropic issues due to their locus specificity and thereby provide insight into the causal 
impacts of CRs and TFs on transcription (Bintu et al., 2016; Keung et al., 2014; Park et al., 2019; 
Polstein and Gersbach, 2015). To study the effects of TF signal dynamics on transcription, we 
employed an optogenetic system that dynamically recruited the transactivator VP16 to a 
genomically-integrated reporter. By pairing the optogenetic system with programmable Arduino-
controlled LED arrays and single-cell fluorescence measurements by flow cytometry, we were 
able to efficiently capture and screen a large parameter space of dynamic inputs.  
 
Using this experimental platform, we comprehensively mapped transcriptional outputs in 
response to 119 different optogenetic inputs that modulated the amplitude, frequency, and pulse 
width of VP16 recruitment. Input conditions with the same total signal but different dynamic 
parameters yielded outputs with over an order of magnitude difference and, therefore, acted as a 
filter. A kinetic model was developed to describe the complex transfer function captured by the 
experimental data, including the filtering behavior. To further understand the reliability of the 
information transfer, we applied information theory to the single cell distribution data and 
estimated the maximum amount of information transmittable through each input mode—as well 
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as with all input modes combined—with frequency modulation carrying the greatest amount of 
transmittable information and amplitude the least. Finally, we asked if co-recruitment of CRs to 
the promoter could alter its transfer function without any alteration to the promoter sequence. 101 
CRs were constitutively recruited to the promoter. Many of them altered the transcriptional 
response to dynamic VP16 inputs, including exhibiting new complex types of transfer functions 
such as band-pass, low-pass, and high-pass frequency filtering. In addition, co-recruiting CRs 
with VP16 tuned the maximum amount of information that was transmittable through the single 
promoter. This study reveals the information-rich nature of eukaryotic transcription even at just a 
single promoter, implicates an important interplay between dynamics and chromatin, and also 
provides quantitative synthetic biology, modeling, and information theory frameworks to 
understand and predict complex transcriptional transfer functions.  
 
 
Results 
 
Optogenetics provides complete access to the dynamic parameter space (Figure 1 and S1) 
We developed an optogenetic system to recruit epigenome editors to a synthetic transcriptional 
reporter in arbitrary dynamic patterns (Figure 1A). A CYC1 promoter drove expression of an 
mCherry reporter and was integrated into the LEU2 locus of Saccharomyces cerevisiae. The 
CYC1 promoter contained two identical binding sites (GAGTGAGGA) recognized by an 
engineered zinc finger (ZF) array “ZF43-8” and an orthogonal binding site recognized by ZF array 
“ZF97-4” (TTATGGGAG) (Keung et al., 2014; Khalil et al., 2012). In addition, we fused ZF43-8 to 
cryptochrome 2 (ZF-CRY2) and cryptochrome-interacting basic helix-loop-helix to the 
transcriptional activator VP16 (CIB1-VP16) and placed their expression under ATC and IPTG 
control (Keung et al., 2014), respectively. CRY2 binds CIB1 when exposed to blue light and 
dissociates upon light removal (Kennedy et al., 2010; Liu et al., 2008). This system has high 
temporal resolution with an association half-life of seconds and dissociation half-life of ~5 minutes 
(Rademacher et al., 2017). We also tested other optogenetic systems, different N-C terminal 
fusions, and several induction drug concentrations (see Figure S1). The final system was chosen 
for its robust activation with light and minimal activation without light. To deliver the light signals, 
an Arduino Due controlled individually addressable blue LEDs (wavelength= 455-465 nm) in a 
96-well format.  
 
To accurately map the effects of different dynamic input light patterns on eukaryotic transcription, 
the system must operate at sub-saturation. Therefore, we first determined the dynamic range of 
the system and identified sub-saturation light amplitudes (i.e. intensities). We exposed the cells 
to a range of light pulse amplitudes that were constantly on for 14 hours. The resultant fold change 
was measured by flow cytometry and was defined as the median fluorescence of cells incubated 
with a given light pattern divided by the median fluorescence of cells incubated without light 
(Figure 1B). The output signal saturated at intensities above 6x1010 au. Importantly, control cells 
expressing only ZF-CRY2 or ZF-CRY2 with CIB1 exhibited much lower levels of activation, 
especially at sub-saturating levels. For further studies modulating all three dynamic parameters 
(amplitude, frequency, and pulse width), we chose sub-saturation amplitudes below 6x1010 au to 
ensure both comprehensive coverage of the dynamic parameter space and to minimize any 
activation due to ZF-CRY2 alone.  
 
119 dynamic signals provide comprehensive map of a eukaryotic transfer function (Figure 
2 and 2S) 
Frequency, amplitude, and pulse width modulation (F, A, and PW, respectively) present a large 
combinatorial space which is challenging to capture experimentally; yet, it is crucial to do so in 
order to understand the transfer functions of eukaryotic promoters and to generate quantitative 
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and predictive models. With the programmable LED array paired with flow cytometry, we delivered 
119 distinct input signal patterns to yeast cultured in 96-well format and measured mCherry 
reporter end-point fluorescence after 14 hours. These patterns included 5 sets of conditions with 
PW held constant at 5, 120, 600, 1800, or 3600 seconds. We chose this range of PWs to include 
timescales similar to those found for several pulsatile TFs in S. cerevisiae (Dalal et al., 2014). For 
each PW, four amplitudes (6x109, 1.2x1010, 4x1010, and 6x1010 au) and 5-6 frequencies (between 
2x10-5 and 1x10-1 sec-1) were delivered to the cells. We defined the total input signal, or area 
under the curve (AUC), as the product of F, A, and PW for the duration of the experiment. The 
throughput of the system allowed us to measure thousands of cells as well as four biological 
replicates per condition.  
 
As expected, mCherry expression increased with A, F, PW, and AUC (Figure 2A-B). However, 
while F and PW had strong effects on mCherry output (Figure 2A, left column), A had much 
weaker effects at both low and high regimes of mCherry output (middle column). To quantify the 
relative effect of each light parameter on mCherry expression, we first standardized the A, F, PW, 
and resulting mCherry fold change using z-transformation. This allowed comparison between the 
coefficients of each input mode within a regression model (Schielzeth, 2010). We then fit the 
standardized data to a linear regression model, given in Figure 2C (R2=0.92, p=5.29e-57). This 
linear model confirmed that frequency had the largest coefficient and therefore greatest effect on 
fold change, while amplitude had the weakest effect. 
 
The fact that the system did not respond equally to each mode of modulation suggested that the 
system might exhibit filtering behaviors, where input signal patterns that share identical input 
AUCs but through different weightings of A, F, and PW, could yield distinct output levels. 
Indeed, this signaling filtering property was observed over a wide range of AUCs (Figure 2A and 
2B, right column). This indicates that this system has inherent signal-filtering capabilities because 
F, PW, and A do not have equally proportional effects on mCherry expression. We found that 
filtering was not an artifact of measuring mCherry fluorescence at different time points after the 
last light pulse was delivered; the same filtering was observed even when the timing of the last 
light pulse was shifted relative to the end of the experiment (Figure S2).  
 
Model captures system behavior and filtering (Figures 3 and S3) 
To our knowledge, our experimental system provided the largest and most comprehensive set of 
dynamic data to date. We therefore asked if it could inform the development and architecture of 
mass action models of eukaryotic transcription, and if this model could subsequently provide 
additional insights into the filtering property of the system. We tested several previous models 
(Benzinger and Khammash, 2018; Chen et al., 2020; Hansen and O'Shea, 2013; Harton et al., 
2019) along with some modifications and found that a four state model (probability of each state 
is represented by Punbound, Pbound, Pinactive, and Pactive) best fit the experimental data with R2=0.835 
(Figure 3, Figure S3). Compared to a similar prior model that differed in the number of Hill 
functions incorporated into the rate constants (Hansen and O'Shea, 2013), this model exhibited 
less intense fluorescence oscillations over time, producing a ‘smoother’ response (Figure S3B). 
Because we did not see large differences when light pulses were shifted to all start (Figure 2) or 
end (Figure S2) at the same time, we determined that the actual fold change did not exhibit large 
oscillations and was better represented by this four-state model. We did explore incorporating 
various numbers of Hill functions into the model as was done in other models of eukaryotic 
transcription (Figure 3C). We found that the inclusion of a single Hill function yielded the best fit. 
 
The filtering behavior observed in the experimental data, was an interesting feature of our 
optogenetic system. We therefore asked if our four-state model also captured this behavior. 
Indeed, our model reflected this filtering behavior closely (Figure 3C). Interestingly, the model 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.05.425451doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425451


suggested that filtering may arise from a combination of different mechanisms, as a variety of 
distinct input patterns with the same AUC gave rise to distinct outputs (Figure 3D). One contributor 
may be that the decay of promoter occupancy is not immediate, and so at high F there is an 
accumulation of ‘extra’ promoter occupancy (Figure 3E).  
 
Single cell measurements capture total population noise (Figure 4) 
While understanding and mapping the transfer functions of a system is important, the reliability in 
achieving the same output repeatedly over time or within a population of cells in response to the 
same input signal is equally important. This reliability is characterized by the noisiness of gene 
expression. Gene expression noise is an important and inherently stochastic process due to the 
low copy number of genes (Eldar and Elowitz, 2010; Elowitz and Leibler, 2000; Maheshri and 
O'Shea, 2007) and, together with cell-to-cell variability in general cellular components, creates a 
distribution of single-cell outputs for each unique input (Elowitz and Leibler, 2000; Grabowski et 
al., 2019; Gregor et al., 2007; Rosenfeld et al., 2005; Tkacik et al., 2009). As noise plays an 
important role in determining the reliability of a system and the fidelity of transmitted information, 
we first quantified how noise in our system was affected by F, A, and PW modulation. We 
calculated the robust coefficient of variation (CV) of the population for all 119 input light conditions 
(Figure 4). Of note, the CV was much lower and nearly constant for all AUCs and Fs when 
mCherry fluorescence was normalized by size using FSC-A (Figure S4). This phenomenon 
agrees with prior work showing cell size as a major contributor to noise (Bar-Even et al., 2006; 
Newman et al., 2006), with removal of this noise due to size also providing an estimation of 
intrinsic noise (Newman et al., 2006). 
 
Quantifying the contribution of signaling dynamics to maximum mutual information 
(Figure 5) 
With an understanding of the noise within our system, we next used the fluorescence distributions 
to determine the reliability of information transfer. Borrowing concepts from information theory, 
the capacity or reliability of an information transmission system can be quantified as the maximal 
mutual information (MI) (Shannon, 1948). In previous studies, MI has been used to quantify the  
signaling fidelity in terms of the maximum number of input values a cell can accurately resolve in 
the presence of noise (Cheong et al., 2011). Systems with MI less than 1 bit have a significant 
amount of overlap in their gene expression output distributions and can only resolve two inputs. 
In contrast, systems that can resolve multiple inputs have minimal overlap in the output 
distributions and have MI greater than 1 bit (Figure 5A). Recently, Hansen and O’Shea used MI 
to characterize the response to Msn2p signaling using F or A modulation. They observed that a 
single promoter could reliably distinguish three states (~1.58 bits) (Hansen and O'Shea, 2015). It 
is unclear if this was the maximum possible for a single promoter, and whether combining modes 
of modulation could provide a higher estimate of information limits. 
 
As we have mapped a large number of input-output responses for all three dynamic modes of 
modulation (F, A, and PW), we asked what the information capacity limit of our single promoter 
was. To do this, we randomly selected subsets of the 119 different input signaling patterns and 
calculated the MI. Importantly, the same overall dynamic range of mCherry expression was 
maintained for all subsets of signal input patterns. We repeated this process for increasing 
numbers of input signaling patterns per subset and found that the MI started around 1.45 bits and 
increased before plateauing near an MI of 1.7 bits (Figure 5B). This indicated that the MI was 
dependent on the number of inputs and required a large screen of the parameter space to 
measure.  
 
Biological signaling pathways can encode information through the A, F, or PW of a shared 
signaling molecule (Batchelor et al., 2011; Hao and O'Shea, 2012; Purvis and Lahav, 2013). 
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However, it is unclear which method is the most reliable. Hansen and O’Shea showed that 
promoters that bind Msn2p have higher information transduction capacities using A rather than F 
modulation (Hansen and O'Shea, 2015). However, we found that the MI for each mode of 
modulation (M) depended on the constant values of the other two parameters (Figure 5C). For 
example, the MIAM increased at low F and leveled off at a F dependent upon the PW (Figure 5C, 
top-left). As the PW increased, the F with the highest MIAM decreased. For F modulation, there 
was a less pronounced increase in MIFM as A or PW increased. MIPWM showed little increase with 
A but a large increase with F.  
 
When comparing the maximum MI for each mode of modulation, AM was less reliable (1.12 bits) 
than PWM (1.23 bits) and FM (1.48 bits). This agrees with our previous assessment that F had 
the greatest effect on fold change. The histograms of the outputs provide some insight into why 
AM had relatively low MI (Figure 5D). For AM, the amplitudes of 1.2x1010, 4x1010, and 6x1010 au 
had a high degree of overlap and were near saturation when the PW and F were at high values. 
Additionally, the 6x109 au histogram had a very broad peak (CV=0.57±0.02, s.e.m.), which 
decreased the MI. In fact, low A conditions exhibited broad distributions in general. In contrast, 
both PWM and FM outputs were more distinguishable, even when the other parameters were at 
their maximum values. They also exhibited tighter distributions, and therefore had higher MIs. The 
differences between our system and Msn2p of Hansen and O’Shea could be attributed to several 
factors, including: 1) different mechanisms of activation of Msn2p and VP16; 2) different promoter 
sequence structure, e.g. location of binding sites relative to transcription binding site; 3) 
differences in the binding kinetics; and 4) different genomic location of the reporter and therefore 
different initial chromatin state of the promoter. 
 
Chromatin regulators tune maximum information content 
We were able to map the transfer function and quantify the reliability of information transfer for 
our single synthetic promoter. However, prior work has shown that distinct promoters can exhibit 
different regulatory behaviors including distinct dynamic ranges of expression, activation kinetics, 
and noise (Hansen and O'Shea, 2013, 2015; Hao et al., 2013), with a likely explanation for these 
differences being distinct chromatin states. Yet, an individual promoter can also exist in diverse 
chromatin states that might alter the way it responds to input signals (Hansen and O'Shea, 2013; 
Li et al., 2007). We hypothesized that chromatin state, defined by a complex combination of 
features including nucleosome positioning, nucleosome modifications, three-dimensional 
topology, and the presence of diverse chromatin regulating proteins could alter both the maximum 
information transmittable by a single promoter and the nature of its transfer function without any 
change to its DNA sequence. 
  
To determine if the chromatin landscape could change the MI without altering the promoter 
sequence, we created a library comprised of ZF97-4 fused to each of 101 chromatin regulators 
(CRs) chosen for a diversity of putative activities and membership in a variety of protein 
complexes, e.g. SAGA, TFIID, SWI/SNF. These CRs were constitutively recruited to the CYC1 
promoter (Figure 6A). VP16 was then dynamically recruited. Given the large number of yeast 
strains in this library, we focused on varying F while keeping A and PW constant, as frequency 
had yielded the greatest MI when VP16 was recruited alone. Four input Fs were measured: 0 (i.e. 
dark), 6.7x10-4, 3.3x10-2, and 1x10-1 sec-1. A and PW were held constant at 6x1010 au and 5 sec, 
respectively. 
 
With these experimental conditions, we obtained an MIFM value for the promoter with each distinct 
CR recruited (Figure 6B). The MIFM ranged from 0.064±0.02 (s.e.m.) for Caf40p to 1.34±0.04 for 
Arp8p. The values of MIFM  in Figure 6 are lower than those shown in Figure 5 because only four 
distinct input light conditions were tested for each CR instead of the 6-7 used in Figure 5. To 
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provide a means for mutual comparison, each MIFM was normalized to the MIFM of the yeast strain 
without ZF97-4. Of note, there were strains with large MIFM variability among the biological 
replicates (for example, Hir2p and Nap1p). This is not unexpected because the VP16-only strain 
exhibited relatively large variability when fewer inputs were used to calculate MI. As more inputs 
were included, the MI became more consistent between replicates (Figure 5B). However, even 
with only four distinct inputs, it was apparent that CRs affected the MIFM  (p=1.18x10-7, ANOVA). 
This suggests that chromatin may regulate how “fine-tunable” a gene is and how much information 
can be transmitted reliably via transcription. To gain further insight, we also clustered CRs that 
had low (less than 0.5) and high (above 1.15) MIFM. Through gene ontology, we found significant 
enrichment within the low MIFM cluster of CRs involved in RNA catabolic process, mitochondrion 
organization, organelle fission, peroxisome organization and regulation of translation (Fisher 
exact test with Bonferroni correction, p<0.05). Although not statistically significant, CRs involved 
in DNA recombination and response to DNA damage had a the highest MIFM values, suggesting 
these CRs may be recruited in natural situations to enhance the reliability of signals to induce 
DNA repair (See Figure S5). 
 
Chromatin regulators diversify the transfer functions achievable by a single promoter 
Previous studies have shown that different promoters can exhibit distinct transfer functions 
(Hansen and O'Shea, 2013, 2016; Harton et al., 2019), not just alterations in MI. We asked if 
constitutive recruitment of CRs could alter the transfer function of a single promoter without 
changes to the DNA sequence. In particular, we asked whether CRs alter the qualitative signal 
filtering properties of the promoter. For example, can CRs allow the promoter to respond 
preferentially to low or high frequency input signals, and not just shift the dynamic range of the 
output response? 
 
To address this question, we clustered all sets of biological replicates by their pattern of output 
responses to low, medium, and high frequency input signals. This was performed in an 
unsupervised manner using k-means clustering. Each cluster exhibited different filtering 
behaviors: low pass, linear, band-pass, saturation, and band-stop. To our knowledge, this is the 
first demonstration that the same promoter can exhibit multiple types of filtering, tunable by CRs. 
Example CRs for each cluster are shown in Figure 6C-F. It should be noted that only Hda3p had 
all of its biological replicates grouped into the band-stop cluster which may be a relatively rare 
filtering property. Furthermore, band-stop transfer functions (e.g. Hda3p) had significantly lower 
MIFM than the other clusters (Figures 6 D-F); this is most likely due to the narrow dynamic range 
and high noise. The noise of each strain was generally inversely proportional to the fold change 
(Figure 6D) and therefore also exhibited filtering behavior. When assessing the MI for each 
cluster, the trend suggested that CRs may need to sacrifice MI and information transmission 
capacity to achieve more exotic signal filtering properties like low pass and band stop filtering 
(Figure 6E-F). 
 
 
Discussion 
Many transcription factors exhibit pulsatile behavior in response to stress. We addressed the 
question of how an individual gene interprets this type of dynamic input signal. Using optogenetics 
to induce 119 distinct dynamic input signals, we comprehensively mapped the transfer function 
of an individual promoter as well as the associated noise and reliability of information transmission 
as a function of dynamic parameters. A four-state kinetic model was able to capture this complex 
transfer function and signal filtering across a broad range of total input AUCs. We further showed 
that both the qualitative nature of the transfer function and the quantitative maximum information 
content of the gene could be dramatically tuned by constitutive recruitment of chromatin regulators 
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to the promoter. This work directly demonstrates the deep signal processing potential of a single 
individual gene and develops molecular and computational tools that can be used to harness it. 
 
Epigenome editors, chromatin regulators fused to DNA-binding domains, are an increasingly 
important tool in both biological research and therapeutic development (Adamson et al., 2016; 
Keung et al., 2014; Liu et al., 2018; Park et al., 2019; Thakore et al., 2016). Their functions have 
been largely viewed as inducing static changes in state, for example in which alteration of histone 
modifications or recruitment of a transactivator/repressor might lead to up- or down-regulation of 
transcription. However, it is now clear that both the dynamic recruitment of editors themselves as 
well as their impact on the interpretation and processing of other dynamic signals can have 
profound regulatory effects, including the filtering of different types of dynamic signals well beyond 
just monotonic on or off control. Such properties have previously been shown to be tunable 
through mutations in proteins or alterations of protein scaffolds (Bashor et al., 2019; Hao et al., 
2013). It is now evident that altering the epigenome can also regulate filtering properties in a 
potentially reversible way without changing gene or protein sequences. This could be used to 
confer useful functions such as expressing therapeutic proteins only within a specific range of 
input signals.  
 
It is also clear that while the expression strength of an output signal can be tuned by altering the 
concentration of an input epigenome editor or TF using conventional inducible systems (i.e. LacI 
or TetR), this type of amplitude-based control may not always be ideal. For example, we found 
frequency modulation was able to confer a similar output dynamic range as amplitude modulation 
but with tighter population distributions and therefore greater mutual information and reliability. 
Furthermore, when combining all three dynamic parameters, mutual information was further 
increased, enhancing the amount of information that could reliably be transmitted by the gene. By 
achieving more possible output states for a limited number of inputs, tighter control over output 
responses is possible and may be particularly important in applications that are sensitive to 
expression levels such as regulating immune responses. 
 
In addition to informing the design of synthetic biological tools like epigenome editors, this work 
suggests consideration of how both the fidelity and inherent transfer functions of natural signaling 
systems may exhibit considerable differences between cell types and/or over time. The transfer 
functions and the mutual information of the same individual genes may switch how they interpret 
dynamic signals in distinct cell types or in distinct cell states—or during the progression of cancer, 
aging, or normal development. Many natural systems shown to interpret dynamic signals may 
also alter their interpretations or transfer functions depending on time and space, including neural 
cell fate decision making (Imayoshi et al., 2013; Marshall, 1995) and cancer proliferation (Bugaj 
et al., 2018). Many other biological processes have been linked to dynamic pulsing, such as B-
cell activation (Inoue et al., 2016) and responses to radiation (Purvis et al., 2012).  
 
The exploration of dynamic signaling provides opportunities to continue shifting biological 
engineering to quantitative frameworks borrowed from disciplines in the physical sciences and 
engineering, but it also contributes new insights for those frameworks due to the distinctive 
properties of biological systems. For example, this work presents analogies to the concept of 
dynamic transfer functions common in process control theory, which formalizes the description 
and prediction of how outputs are controlled by input signals; yet, as we showed, a gene regulated 
by chromatin is a highly complex ‘unit process’ that can intriguingly morph its transfer function to 
have distinct filtering properties, without a change in gene sequence. Something analogous in a 
conventional unit process like a chemical reactor might, in contrast to a biological system, require 
drastic actions like altering the reactor’s material properties or shape.  
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Information theory also provides a theoretical basis to move from phenomenological frameworks 
of dose-dependent gene responses that assumes continuous and graded control over gene 
expression levels, to thinking about true information transmission more rigorously. Interestingly, 
we and others (Billing et al., 2019; Cheong et al., 2011; Dubuis et al., 2013; Grabowski et al., 
2019; Hansen and O'Shea, 2015; Harton and Batchelor, 2017; Jetka et al., 2019; Selimkhanov et 
al., 2014; Tkacik et al., 2009; Tudelska et al., 2017; Uda et al., 2013) have shown that these 
biological unit processes have relatively low information content of less than 1.5 bits (i.e. ~3 
states). This may initially present a conundrum for how biological systems can exert such high-
level functions within highly variable and complex environments. However, each gene can 
respond to multiple TFs and other factors including nucleosome remodelers while three-
dimensional topology also impacts gene expression. Many promoters especially in mammalian 
systems can be quite large, promoting the ability to sense additional inputs. The diversity of 
multiple inputs could further increase the MI of genes. Furthermore, linking multiple components 
into higher order circuits can yield overall greater information transmission as well as lend 
precision or robustness to input-output responses (Barkai and Leibler, 1997). For all of these 
reasons, the MI of biological systems may be much higher than currently measured. As a case in 
point, the simple addition of just one additional input factor, recruiting CRs such as Arp8p or Rxt3p, 
was able to increase the MI of the reporter in our system (Figure 6). The ability to increase MI 
could lead to more complex biological sensors, while reducing MI could provide expression 
systems that are more robust to environmental stressors (Billing et al., 2019).  
 
There are many exciting avenues to expand into and explore. In our work, to be able to screen 
large numbers of input signal patterns as well as CRs, we relied on endpoint measurements that 
could be rapidly measured by flow cytometry. However, information can also be stored in the 
dynamics of the output signal, e.g. the production rate, time-delay of repression/activation, or 
oscillatory behavior. High throughput approaches that can track the output dynamics of thousands 
of cultures would unlock this potential space for investigation. We also investigated a single 
promoter while different promoter structures would likely confer distinct transfer functions (Hansen 
and O'Shea, 2016). Additional factors that could be explored include the effect of gene 
duplications, tuning the binding kinetics and/or cooperativity of TFs, assessing species 
differences, and exploring the contribution of multiple inputs which would already have nice 
quantitative frameworks to build upon from process control theory (i.e. multiple input multiple 
output or “MIMO” control). Continued advances in experimental and computational systems that 
can handle the large parameter space of dynamic signals will unlock our ability to measure, 
quantify, and understand information transmission in biological systems, and reveal the 
underpinnings of how limited numbers of components can give rise to the rich complexity of 
biological functions.  
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STAR methods 
Resource Availability 
Lead contact 
Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the Lead Contact, Albert J. Keung (ajkeung@ncsu.edu). 
Materials availability 
Plasmids and plasmid maps generated in this study will be deposited to Addgene upon 
publication. 
Data and code availability 
Data and code are available at github.com/keung-lab/Dynamic-Transfer-Functions. 
 
Experimental model and subject details 
Cell culture 
The background cell line for all experiments in this study was YPH500 ( a, ura3-52, lys2-801, 
ade2-101, trp1D63, his3D200, leu2D1) (Stratagene). Cells were cultured in synthetic drop-out 
media or complete media made (Sunrise Scientific) with YN-B from Sigma and 2% w/v glucose. 
Our host strain was generated by genomically integrating an expression cassette that 
constitutively expresses TetR, LacI, and GEV (Louvion et al., 1993)(cloned into single-integrating 
plasmid pNH607 [HO]). Constitutive expression of the repressors in glucose-containing media 
ensured low basal levels of expression of ZF-CRY2 and CIB1-VP16 from the engineered GAL1 
promoters, which was relieved by the respective addition of the chemical inputs, ATc and IPTG, 
along with b-estradiol to the medium.  
 
Method details 
Cloning and plasmid construction 
All plasmid constructs were created using standard molecular biology techniques and Gibson 
isothermal assembly. Plasmids were grown and prepared from either NEB Turbo or Stable 
competent cells. The CR plasmid library was synthesized as previously described (Keung et al., 
2014). In short, primer sequences were obtained from the Saccharomyces Genome Database 
(SGD). These primers (synthesized by Integrated DNA Technologies) were used to amplify full 
length CR ORFs from wild-type yeast (BY4742). SbfI and NotI flanking restriction sites were used 
to ligate the PCR products to the C-terminus of (3xFLAG)-(nuclear localization sequence)-(97-4 
zinc finger array)-(17 amino acid glycine-serine linker) using plasmid pJL50. 
 
Cell strain generation 
Strains were constructed by sequential plasmid transformations using standard lithium acetate-
based transformation techniques. Plasmids were first linearized using PmeI or SbfI.  Following 
transformation, cells were grown on selective auxotrophic minimal media (Sunrise). Strains are 
listed in Table 1 while plasmids are listed in Table 2. 
Table 1. Yeast strains and integrating plasmid constructs. 

 Marker loci  
Strain ID HO URA3 TRP4 * LEU2 HIS3 Figure 
Y11 pNH607     1B, 2, 3, ,4, 5, 6 
JY28 pNH607   pJL29   
JY29 pNH607 pJL30  pJL29  1B 
JY138 pNH607 pJL30  pJL29 pNL2 1B 
JY145 pNH607 pJL30 pJL38 pJL29 pJL32 1B, 2, 3, 4, 5, 6 
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CR 
library 

pNH607 
pJL30 

pJL50-
EE pJL29 pJL32 5, 6 

JY30 pNH607 pJL30  pJL29 pJL32  
* Trp4 auxotrophic marker constructs were integrated into AmpR of the LEU2 plasmid. 
 
LED matrix construction and calibration 
Three LED matrices were made. Each had a LED housing unit 3D printed using black polylactic 
acid plastic. Each housing unit was designed to fit a standard 96-well plate with a single, 
programmable LED for each well. The plans for the housing unit were created in TinkerCad and 
are available upon request. Female socket pins were glued to the housing unit to connect to each 
LED. 60 or 92 blue LEDs (Chanzon, 100F5T-YT-WH-BL) were connected to 220 Ω resistors 
before being connected to 16-channel servo driver breakout boards (PCA9685, Adafruit). Three 
or five breakout boards were used for each 60 LED or 92 LED matrix, respectively. In addition, 
12 LEDs were controlled directly from the PWM pins (0-11) on the Arduino Due. Each matrix was 
controlled by an Arduino Due, using I2C. Arduino code was written using the Arduino IDE to 
control the pulse width, intensity, and frequency of light pulses.  

Calibration of the LEDs was done by attaching each LED matrix to a black 96-well plate 
with a flat, clear bottom (Corning, 3788) and taking 59 images across each well using a 
microscope (Nikon Ti-Eclipse, 20x SP objective, z=4486 µm) through a DAPI filter cube (Chroma 
Technology, 96360) with exposure time set to 100ms. The pixel intensity was extracted using a 
custom Matlab code. For a single well, pixel intensities for each image were read using the imread 
function. The total pixel intensities for each image were summed and then divided by the number 
of images. The average intensity was also determined for a well without an LED. This value was 
subtracted from all wells’ intensities to get the working LED intensity. This was done for three 
Arduino inputs and fit to a line for each well. The calculated values were used as initial inputs for 
the intensities used for the experiments. The intensities were then checked and adjusted before 
each experiment to be within 20 percent of the desired intensity.  
 
LED intensity measurement with power meter 
The LED intensities can be converted to nW using Figure S1 panel G. The power meter 
measurements were taken using a PM100D power meter (ThorLabs) with a S140C probe. A 
M134L01 fiber patch cable (0600 µm core, 0.5 NA, FC/PC to SMA, 1 m length) was connected to 
the probe via the FC/PC connector. For each well, the SMA connector was held against the 
bottom of a clear, flat-bottom plate (Corning, 3788) connected to the LED matrix. Multiple readings 
were taken at various locations for each well, and the mean was plotted and fitted to a line as 
shown in Figure S1 panel G. 
 
Flow cytometry 
Yeast colonies were picked from plates and cultured 24-48 h in the appropriate auxotrophic SD 
media. Cultures were diluted to ~0.1 OD600 with auxotrophic dropout media that contained 0.4 
µg/mL ATc, 10mM IPTG, 5µM of beta-estradiol, and 0.02 mg/mL adenine. Cells were incubated 
at 30OC and 900 RPM, in the dark, for 8-9 h to allow for expression of ZF-CRY2 and CIB1-VP16. 
Cells were then diluted 1:30 with 200 µL SD-complete media, containing the same chemicals as 
above, into U-bottom, black 96-well plates (Costar, 3792). Samples were prepared as much as 
possible in a red light environment to reduce premature binding of CIB1 and CRY2. Plates were 
attached to the LED matrices and incubated at 30OC for 14 h at 500 RPM. Replicate plates were 
grown in the dark. The shaking speed was reduced to prevent damage of the LED matrices. 
 Prior to flow cytometry, 100 µL of 0.03 mg/mL of cycloheximide was added to each 
sample. Samples were then incubated in the dark at room temperature for 1 h to allow for mCherry 
maturation. Fluorescent measurements were taken using a MACSQuant VYB (Miltenyi Biotec). A 
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maximum of 20,000 events were collected per sample.  Plates were stored at 4OC while waiting 
for other plates to be run on flow cytometer. All samples were run within 8 h of adding 
cycloheximide.  
 All samples were gated using SSC-A and FSC-A, using a custom MATLAB code based 
on methods described previously (Newman et al., 2006). To summarize, the FSC-A and SSC-A 
were natural log transformed. Cell outside a circle of radius 0.7 around the median FSC-A and 
SSC-A were excluded from further analyses. Any gated samples with less than 250 events were 
also excluded from further analyses. 
 
 
Quantification and statistical analysis 
 
Fold change and noise calculation  
The population medians of the fluorescence distributions were calculated for the gated 
populations. The autofluorescence value of S. cerevisiae YPH500 cells harboring no genomic 
integrations was subtracted from these values. “Fold change” values were calculated as the ratio 
of fluorescence values from cells exposed to a given blue light pattern to those from cells grown 
without blue light. Four isogenic strains were grown for each light condition. The “coefficient of 
variation”, or CV is the robust CV calculated using the equation: 0.5 * [intensity(at 84.13 percentile) 
- intensity(at 15.87 percentile)] / median. Outliers were identified using MATLAB’s isoutlier 
function, which classifies values as an outlier if it is more than three scaled median absolute 
deviations away from the median fold change or CV. Any outliers were excluded from the means 
graphed in Figures 2-3.   
 To minimize the variability due to the large number of plates in the CR screens (Figure 6), 
each plate with blue light was normalized to the strain with VP16 only (JY145) with light always 
on and light intensity at 6x1010 au, which was grown in the same plate. Each plate without blue 
light was normalized to VP16 only (JY145) with no light, grown in the same plate. Population 
medians were used to calculate the fold change, which is the fluorescence of the strain with light 
divided by fluorescence of strain without light. 
 
Maximal mutual information calculation 
The maximal mutual information was found as previously described in (Cheong et al., 2011; 
Hansen and O'Shea, 2015; Shannon, 1948). For each sample, events were gated as described 
in the Flow Cytometry section. Then the mCherry measurements were normalized to the FSC-A 
measurements. The responses were discretized using logarithmically sized bins. The mutual 
information I(R;S), measured in bits, was calculated by  

𝐼(𝑅; 𝑆) = ∑ 𝑝(𝑅+, 𝑆-)𝑙𝑜𝑔1 2
3(45,67)
3(45)3(87)

9+,-     (1) 

where S is the signal input and R is the observed response output. The response distribution is 
given by p(R), and p(s) is unknown. The maximal mutual information was found by solving the 
optimization in Equation 2. 
 𝑀𝐼(𝑅; 𝑆) = max

3(6)
𝐼(𝑅; 𝑆) for ∑ 𝑝(𝑆+) = 1; 			𝑝(𝑆+) ≥ 0.+   (2) 

The above optimization was solved using the Blahut-Arimoto algorithm from code written by 
Piyush Singh (Singh, 2015). The MI was corrected for bias due to the number of bins by varying 
the number of bins from 5 to 50. The unbiased MI was calculated as the mean of MIs calculated 
using 21-41 bins, which is within the plateau region of MI versus number of bins. The MI was then 
corrected for under-sampling using jackknife sampling as described previously (Cheong et al., 
2011; Hansen and O'Shea, 2015; Slonim et al., 2005). The means shown in Figures 5 and 6 are 
of the unbiased MIs from 3-4 isogenic strains. 
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Determining signal filtering clusters 
Clustering was completed on individual replicates for all the epigenome editors. To discover the 
clusters depicted in Figure 6, strains that had low fold change and low variability of fold change 
among frequencies were removed. The fold changes were then logarithmically transformed. The 
remaining strains were grouped into 5 clusters using the kmeans function in MATLAB with 
correlation as the distance metric. The centroids from the resulting clusters were slightly modified 
to fit the behaviors in Figure 6C. The centroids are as follows: Cluster 1: 0.756341421875678, -
0.3, -0.338099818683020; Cluster 2: -0.736510820962514, 0.102405013200597, 0.65; Cluster 
3: -0.351484685217366, 0.769986528990965, -0.418501843773599; Cluster 4:  -
0.775512363928304, 0.550835601762814,0.3; Cluster 5: 0.0178768566235528, -
0.685625005390339, 0.667748148766786. The fold changes were then reclustered using these 
centroids with the pdist2 function, again with correlation as the distance metric. 
 
Statistical analyses 
N-way ANOVA tests were performed using the nanova function in MATLAB. For the comparison 
among multiple conditions, a Tukey’s honest significant difference criterion (T-K analysis) was 
used via the multcompare function in MATLAB with a 95 percent confidence interval. The analysis 
of covariance (ANCOVA) was performed using the aoctool function. 
 
Model Selection 
Seventeen different three state and four state models were tested with a variety of architectures 
and between 5 and 9 fitted parameters. The models were validated using two metrics: first, the 
residual sum of the squares on the model outputted endpoints and experimental endpoints; and 
second, cross validation to the expected time course curve shape based on literature (Hansen & 
O’Shea 2013, Harton 2019, Benzinger & Khammash 2018). We found that a prior three-state 
model did not provide a sufficiently smooth output curve as compared to a four-state model 
(Figure S3B). We also varied the number and placement of Hill functions between models and 
found that only using a Hill function to describe the transition between Pubound and Pbound was able 
to best replicate the endpoint behavior seen at low PWs (Figure S3C).  
 
Deterministic Model Construction 
To better understand the relationship between dynamic inputs and gene expression outputs in 
our system, a deterministic kinetic model was created, which is described by the following set of 
ODEs:  

CDEFGHEFI
CJ

= dLPNOPQC −
STU(J)F

VFWU(J)F
PPQNOPQC	    (3) 

CDGHEFI
CJ

= STU(J)F

VFWU(J)F
PPQNOPQC + d1PYQZ[JY\] − (dL + k1)PNOPQC	 (4) 

CD_F`ab_cd
CJ

= k1PNOPQC + dePZ[JY\] − (d1 + ke)PYQZ[JY\]     (5) 
CD`ab_cd

CJ
= kePYQZ[JY\] − dePZ[JY\]     (6) 

C[ghij]
CJ

= klPZ[JY\] − dl[mRNA]           (7) 
C[gpq]rrsT]

CJ
= kt[mRNA] − dt[mCherryL]   (8) 

C[gpq]rrsz]
CJ

= k{[mRNA] − dt[mCherry1]         (9) 
Here, d1 and k1 are the transition rates between the unbound and bound states, d2 and k2 are the 
transition rates between the bound and inactive states, and d3 and k3 are the transition rates 
between the inactive and active states. The transcription, translation, and maturation rates are k4, 
k5, and k6, respectively. The mRNA and mCherry degradation rates are d4 and d5. 8 were 
experimental constants, d1, k1, n, K, d4, k5, d5, and k6, and 5 were model fitted parameters, d2, k2, 
d3, k3, and k4. The fit of the model was assessed using the coefficient of determination. Punbound, 
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Pbound, Pactive, and Pinactive represent the probability of the promoter being in a given state and are 
each between 0 and 1 and must sum to 1 at any point in time. A Hill function was used to describe 
the transition between Punbound and Pbound. The input function is I(t), and is based on the PW, A, 
and F of the light condition. The light inputs were smoothed to prevent discontinuities and 
undefined values in the code, and the input amplitudes were 6e1 to 6e2 au rather than 6e9 to 
6e10 au to prevent overflow error. Periods of the light being on were described by A(1 − e|[J), 
where A is the desired amplitude of the light condition and c = 0.6, for the entire pulse width 
(Hansen & O’Shea 2013). At the end of the pulse, the light was smoothed off using Be|[J, where 
B is the maximum amplitude reached during the pulse and c = 0.6, for the entire duration of the 
dark period (Hansen & O’Shea 2013).   
 
Parameter Screen and Model Fitting   
To fit the model to the data, sets of parameters fit by the model (d2, k2, d3, k3, and k4) were 
stochastically generated using Latin Hypercube Sampling (LHS). The ODEs were solved 
numerically using odeint in Python, and the model output at 14 hours was compared to the 
experimental value using the residual sum of the squares. The fitting was performed in two steps: 
initially, 1000 randomly generated sets of parameters, each sampled over a range of 0.0002 – 
0.02 sec-1, was run through the model. Then, the parameter set that resulted in the highest R2 
value was used to “fine-tune” the LHS sampling range, and 100 new sets were generated and run 
through the model. The fine-tuning processes was repeated four times, resulting in a R2 of 0.835 
(Figure 3B). The model fitted parameters are shown in Figure S3A. 

The experimental parameters unique to mCherry (d4, k5, d5, and k6), were found by 
randomly sampling within ranges provided by literature and fit to the 5 sec, 120 sec, and 600 sec 
PW experimental data while all other parameters were held constant. 1000 parameter sets were 
tested, with d4 ranging from 0.0012 – 0.023 sec-1, k5 from 0.2 – 0.3 sec-1, d5 from 0.000017 – 
0.0013 sec-1, and k6 from 0.00084 – 0.002 sec-1 (Hansen & O’Shea 2013), and the best parameter 
set was chosen by comparing model to experimental endpoints. Experimental parameters unique 
to the blue light optogenetic system (d1, k1, n, and K) were fit based around the literature ranges 
of the dissociation and association rates of the system. d1 was found by sampling within 0.003 - 
0.004 sec-1 and comparing the model and experimental endpoints. 11,000 parameter sets were 
generated with d1 and other model fitted parameters changing, and the parameter set that resulted 
in the highest R2 value for the entire data set was used to find the value for d1, which remained 
fixed for all fine-tuning parameter sets. The total forward on rate between and Punbound and Pbound 
has been reported around 0.054 – 0.11 sec-1, K between 100 – 2500 and n between 0.5 – 4 
(Rademacher 2017, Hansen & O’Shea 2013, Gonze & Abou-Jaoude 2013). k1 was fixed at 1.184 
sec-1, K at 1400, and n at 1.5 so that the total forward rate was 0.01 sec-1 at I(t) = 60 au and 0.26 
sec-1 at I(t) = 600 au. All model fitted parameters used in Figure 3B, as well as the experimental 
constants, are shown in Figure S3A.  
 
 
KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
None   
   
Bacterial and Virus Strains  
NEB Turbos   
NEB Stables   
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Biological Samples   
None   
   
Chemicals, Peptides, and Recombinant Proteins 
Anhydrotetracycline Fisher Scientific Cat# 50-595-757 
IPTG Fisher Scientific Cat# BP175510 
Beta-estradiol Fisher Scientific Cat#AAL0380103 
Cycloheximide Fisher Scientific Cat#AAJ6690103 
YNB+nitrogen Sigma Cat# Y0626 
CSM Sunrise Scientific Cat#1001-100 
CSM-LEU Sunrise Scientific Cat#1005-010 
CSM-LEU-URA Sunrise Scientific Cat#1038-010 
CSM-LEU-HIS Sunrise Scientific Cat#1011-010 
CSM-LEU-HIS-URA Sunrise Scientific Cat#1015-010 
CSM-LEU-HIS-URA-TRP Sunrise Scientific Cat#1002-010 
Adenine hemisulfate Sunrise Scientific Cat#1905-010 
   
Critical Commercial Assays 
None   
   
Deposited Data 
Github.com/keung-lab/Dynamic-Transfer-Functions   
   
Experimental Models: Cell Lines 
None   
   
Experimental Models: Organisms/Strains 
YPH500 Stratagene  
   
Oligonucleotides 
See Oligonucleotides table   
   
Recombinant DNA 
See Plasmids table   
   
Software and Algorithms 
MATLAB 2018b MathWorks https://www.mathw

orks.com/downloa
ds/ 

Arduino IDE Arduino https://www.arduin
o.cc/en/Main/Softw
are 

TinkerCAD Autodesk https://www.tinkerc
ad.com/ 

   
Other 
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Table 2. Plasmids 
Plasmid 
ID Parent Features Method of construction 

pJL29 
pYL-78, pYL-
26 

2x43-8 ZFO-1x97-4 ZFO 
pCyc mCherry tCyc Cut both with ClaI and EagI. Ligate. 

pJL30 C28, pJL15 

pGal1-TetO-3xNLS-43-8ZF-
Cry2-tADH1, URA3 selection 
marker 

PCR pJL15 with JLp161/162. Cut 
PCR and pC28 with SpeI/MluI. 
Ligate. 

pJL38 
C1, pYL-26, 
pYG-8 

2x 43-8 ZFO 1x97-4 ZFO-
pCyc1-mCitrine-tCyc 

Cut C1 with KpnI/NotI. PCR pYL-26 
with JLp251/JYLp4. PCR pJL31 with 
JYLp5/JYLp6. Gibson assembly. 

pJL32 C6, pJL1 
pGal1-LacO-3NLS-CIB1-
VP16-tADH1 

PCR C6 with JLp163/JLp169. PCR 
pJL1 with JLp165/166. PCR pJL1 
with JLp167/JLp168. Gibson 
assembly 

pNL2 pJL32 
pGal1-LacO-3NLS-CIB1-
tADH1 

PCR C6 with JLp163/JLp169. PCR 
pJL1 with JLp165/JLp166. PCR pJL1 
with  JLp167/168. Gibson assembly. 

pJL50-
EE C1, pAG18 

pTEF1-3NLS-97-4ZF-SbfI-
EE-NotI 

PCR pAG18 with JLp342/JL343. Cut 
C1 with KpnI/ApaI. Gibson 
assembly. 

pJL15 
C6, pGal4BD-
CRY2 

pGal1-TetO-3xNLS-43-8ZF-
Cry2-tADH1, HIS3 selection 
marker 

PCR pLi-2 with JLp46/47. Cut PCR 
and C6 with SbfI/NotI. Ligate with T4 
ligase. 
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pJL31 

C1, pYL-26, 
pYG-8 ,+[pYL-
26 JYLp7/8] pCyc1-mCitrine-tCyc1 

Cut C1 with KpnI/NotI. PCR pYL-26 
with JYLp3/JYLp4 and 
JYLp7/JYLp8. PCR pYG-8 with 
JYLp5/JYLp6. Gibson assembly. 

pJL1 
C8, pGal4AD-
CIB1  

pGal1-LacO-3NLS-VP16-
CIB1-tADH1 

PCR pLi-1 with JLp1/2. Cut PCR and 
C8 with XmaI/BamHI. Ligate. 

pYL-78  

2x 43-8 ZFO 1x97-4 ZFO-
pCyc1-yEGFP-tCyc1, LEU2 
selection marker  

pYL-26  

2x 43-8 ZFO 1x97-4 ZFO-
pCyc1-ymCherry-tCyc1, 
URA3 selection marker  

C28  

pGal1-LacO-3xNLS- 97-4ZF- 
VP16-tAdh1, URA3 selection 
marker  

C1  

pGal1-LacO-3xNLS- 97-4AF-
VP15-tADH1, TRP1 selection 
marker  

pYG-8  Yeast mCitrine  

C6  

pGal1-tetO-3NLS- 43-8ZF-
VP16-tADH1, HIS3 selection 
marker  

pAG18  pTef1-spSwi6-tTEF1  

C8  

pGal1-tetO-3NLS- 43-8ZF-
VP15-tADH1, HIS3 selection 
marker  

pGal4BD-CRY2 and pGal4AD-CIB1 were gifts from Chandra Tucker. Addgene plasmid # 28243; 
http://n2t.net/addgene:28243; RRID:Addgene_28243 (Kennedy et al., 2010). 
 
Table 3. DNA oligomers 
Oligo ID Sequence 
JLp161 ggatcactagtGGTACCGAAGTACGGATTAGA 
JLp162 gatcacgcgtCCACACAATTATAAGCAAAGGG 
JLp46 ggactcctgcaggAAGATGGACAAAAAGACTATAGTTTG 
JLp47 agcggccgcTCATTTGCAACCATTTTTTCCCA 
JLp251 ggataaaatgtgataactaatcagcggtacAGAGTGAGGACTCGAAAATATTAAT 
JYLp4 accagtgaataattcttcacctttagacatTTTAATATCTAGATTAGTGTGTGTATTTGT 
JYLp5 acacaaacacaaatacacacactaatctagatattaaaATGTCTAAAGGTGAAGAATTATTCAC 
JYLp6 ctagccgcggtaccaagcttactcgagTTACACCTGCCTTGAGGGA 
JLp163 gctcgagctgcagatgaatcgtagatacGGAGGTTCTGGCGGTGGAAGT 
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JLp169 cttcggtaccactagtggatccgaattcgcCAAAGCCGAATCCACCACGG 
JLp342 ggactggtaccATAGCTTCAAAATGTTTCTACTC 
JLp343 agatcgggcccATTAAAACTTAGATTAGATTGCTAT 
JLp46 ggactcctgcaggAAGATGGACAAAAAGACTATAGTTTG 
JLp47 agcggccgcTCATTTGCAACCATTTTTTCCCA 
JYLp3 ggataaaatgtgataactaatcagcACTAGTcagatccgccaggc 
JYLp7 caaaggtagttccctcaaggcaggtgtaaCTCGAGTAAGCTTGGTACCG 
JYLp8 cttagagctccaccgcggtggcggccgcCTTCGAGCGTCCCAAAACCT 
JLp1 gaattcccgggGCGAGCGCCGAAGCTAG 
JLp2 ggatcggatccTCAGTATCTACGATTCATCTGCAGC 
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Figure 1. Optogenetics provides complete access to the dynamic parameter space. (A) 
Schematic of genetic and hardware systems. The optogenetic system was expressed in S. 
cerevisiae (left). ZF-CRY2 targeted operators placed upstream of a minimal CYC1 promoter 
driving the expression of mCherry. In the presence of blue light, CIB1-VP16 binds ZF-CRY2 and 
disassociates without blue light. Parameters of amplitude, frequency, and pulse width (right) were 
varied using a custom Arduino-controlled, individually addressable LED matrix (center). The area 
under the curve is defined as the (amplitude) x (frequency) x (pulse width) x (duration of 
experiment). (B) Fold change in fluorescence for various light intensity amplitudes for a constant, 
14-hour light pulse. Fold changes for control strains, ZF-CRY2 and ZF-CRY2+CIB1, are also 
shown. Dots represent mean, error bars are standard error of the mean (s.e.m.) for three 
biological replicates. 
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Figure 2. 119 dynamic signals provide comprehensive map of a eukaryotic transfer 
function. (A) Schematics illustrating each mode of modulation (PW, F, and A) and AUC are 
shown along the top or left. Slope of fold change vs F increases with PW. Fold change exhibits 
only slight increases with A when PW and F are held constant. Fold change response collapses 
onto a line when plotted vs AUC for 5 and 120 sec PWs but not for higher PWs. (B) All conditions 
are plotted together, further emphasizing the filtering behavior at constant AUCs (right). Fold 
change=(median fluorescence with blue light condition-autofluorescence)/(median fluorescence 
without blue light-autofluorescence). Each dot is the mean of 4-8 replicates. (C) Fitted linear 
regression equation using the z-transformed parameters (zA, zPW, zF). The coefficient for zF is 
significantly higher than the others (p=0.05). 
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Figure 3. Model captures system behavior and filtering. (A) Schematic of the four-state model 
used to fit the experimental data. Blue parameters (k1, d1, K, and n) were adapted from 
Rademacher et al. Red parameters (k5, d4, k4, d5, and k6) were adapted from Hansen and O’Shea. 
Purple parameters (k2, d2, k3, d3, and k4) were varied and fit to experimental data. Punbound, Pbound, 
Pinactive, and Pactive represent the probabilities of each promoter state. (B) The resulting fold 
changes for the model using the best-fitting parameter set (R2=0.835) are shown as lines. 
Experimental data are dots. (C) Fold change generated by the model shows close similarity to 
the filtering observed in the experiment in Figure 2B. (D) Heat maps show total integrated 
occupancy of Punbound, Pactive, and total integrated mCherry with the input light pattern indicated on 
the left, for four different AUCs. Values were log transformed and normalized to the max value 
within all heat maps. (E) Holding A and AUC constant, the integrated occupancy of Pactive is higher 
for higher F conditions. 
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Figure 4. Single cell measurements capture total population noise. (A) The robust coefficient 
of variation (CV) calculated for 119 input light conditions. Schematics illustrating each mode of 
modulation and AUC are shown along the top or left side. Dot color, size, and shade correspond 
to PW, A, and F, respectively. (B) All PWs are plotted together. Each dot is the mean of 4-8 
biological replicates. 
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Figure 5. Quantifying the contribution of signaling dynamics to maximum mutual 
information. (A) Schematic showing potential signal inputs (left) for a promoter that is modelled 
as a noisy channel and two extreme cases of possible outcomes (right). With distinct outputs, the 
maximal mutual information (MI) is greater than 1 bit and the system is error-free and fine-tunable. 
With outputs with a large amount of overlap, the MI is less than or equal to 1, and the system is 
error-prone. (B) Plot of MI for all three modes of modulation as the number of signal inputs 
increases. The total fold change range was held constant for all combinations of inputs. Error bars 
are s.e.m., n=4 biological replicates. (C) MI for the different modes of modulation. Each dot is the 
mean of 4 biological replicates. (D) Fluorescence histograms of single cell distributions for 
different modes of modulation for the parameter set resulting in the highest MI for the specified 
mode, indicated by O, �, or D in (C) and (D). 
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Figure 6. Chromatin regulators tune MI and morph signal filtering transfer functions 
achievable by a single promoter. (A) Eukaryotes utilize a diverse set of protein complexes 
capable of editing the epigenome. 101 subunits of these complexes were each fused to a 97-4 
zinc finger (A, right). This allowed recruitment of the chromatin regulators to the same promoter 
(center) as the optogenetically-controlled VP16 (left). (B) Maximal mutual information for 
frequency modulation using frequencies 0, 6.7x10-4, 3.3x10-2, and 1x10-1 sec-1 for the library of 
ZF97-4-CRs. Error-bars are s.e.m. Gray dots are biological replicates. N=3-4. VP16 only strain is 
48 technical replicates. (C) The strains containing ZF97-4 CRs were grouped into five clusters (C, 
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top). Each exhibited a different type of signal filtering. Example CRs for each cluster (C, bottom). 
*p<0.05 compared to frequency=6.7x10-4 sec-1, **p<0.05 compared to frequency=3.3x10-2 sec-1. 
(D) Noise for the example CRs for all frequencies, including 0 (e.g. dark). (E) Average MIFM for 
example CRs shown in (C). *p<0.05, Tukey-Kramer post-hoc. (F) Average MIFM of all strains within 
each cluster. *p<0.05, Tukey-Kramer post-hoc. Error bars are s.e.m. 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 5, 2021. ; https://doi.org/10.1101/2021.01.05.425451doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.05.425451

