Modified NKG2D as co-stimulation Hernández-López et al.

Enhancing cancer targeting of γ9δ2TCR through modified NKG2D co-stimulation

Patricia Hernández-López¹, Eline van Diest¹, Inez Johanna¹, Sabine Heijhuurs¹, Trudy Straetemans¹, Zsolt Sebestyén¹, Dennis X. Beringer¹, and Jürgen Kuball^{1,2}

¹Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands, ²Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands

Funding sources: This project was supported by KWF UU 2014-6790 & 11393 and Gadeta.

COI: JK is shareholder of Gadeta. JK, ZS, EvD, and DB are inventors on patents with $\gamma\delta$ TCR related topics.

Correspondence should be addressed to J.K. (J.H.E.Kuball@umcutrecht.nl)

Corresponding author's address: Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands

Corresponding author's phone: +31 (0)88 755 7230

Modified NKG2D as co-stimulation Hernández-López et al.

Abstract

Despite the ability of $v\delta T$ cells to mediate tumor killing independently of MHC recognition, all the clinical trials that have been carried out using these cells showed low response rate in patients, in part due to its poor proliferation ability. Recently, a new generation of CAR-T cells called $\alpha\beta$ T cells engineered to express a defined $\gamma\delta$ TCR (TEG) has been developed. TEGs are $\alpha\beta$ T cells engineered to express a defined $\gamma\delta$ TCR. These cells are able to mediate effective antitumor reactivity without showing any reactivity towards healthy tissue, and combine the best gualities of both $\alpha\beta$ T and $\gamma\delta$ T cells. In fact, the high affinity γ9δ2TCR clone 5 has recently been selected within the TEG format as a clinical candidate (TEG001). Here we present a strategy to improve the antitumor activity of TEG001 by co-expressing an activating chimeric co-receptor together with vδTCR-CI5. Therefore, we developed three different co-receptors by fusing the extracellular domain of the activating cell surface receptor NKG2D, that is able to bind stress induced ligands typically expressed on tumor cells, to the cytoplasmic signaling domains of the T cell costimulatory proteins ICOS, CD28 and 4-1BB. We determined that introduction of the chimeric co-receptors NKG2D-CD28_{wt} and NKG2D-4-1BB_{CD28TM} improved the activity of TEG001 against tumors that were recognized by γδTCR-Cl5 and expressed NKG2D ligands, but did not affect tumors that either were not recognized by vot CR-CI5 or did not express NKG2D ligands. This 'chimeric co-receptors' approach open a wide range of opportunities that lead to a next generation of TEGs.

Modified NKG2D as co-stimulation Hernández-López et al.

4

Introduction

It has been demonstrated that TEGs ($\alpha\beta$ T cells engineered to express a defined $\gamma\delta$ TCR) mediate effective antitumor reactivity without showing any reactivity towards healthy tissue and present a novel class of CAR T which has the potential to target many different tumor types [1]. For CAR T, despite its huge success in the clinic further improvements have been suggested such as dual receptor signaling in order to increase safety and or efficacy [2]. In this light we explored whether either changing signaling domains of the yδTCR or providing additional costimulatory signals could improve performance of TEGs. Different signaling capacities of $\alpha\beta$ TCR and $\gamma\delta$ TCR have been reported to impact long term memory formation of γδT cells [3] CD8⁺ TEG activity has been reported to be partially supported through endogenous NKG2D [4]. NKG2D is an activating cell surface receptor that is able to bind to 8 different several stress induced ligands (MICA/B and ULBP1-6) that are overexpressed in many tumor cells but absent or present at low levels in healthy cells [5]. NKG2D-NKG2D ligand interaction has been shown alone to be sufficient to induce killing of tumor cells through $v\delta T$ cells [6] and NK cells [5]. As consequence NKG2D CAR $\alpha\beta$ T cells have been explored in clinical trials but showed no substantial efficacy in patients suffering from acute myeloid leukemia [7]. Reasons of failure might be that NKG2D alone without additional coreceptor support does not exploit its full activity or that the used design which partially depended on DAP10 signaling rapidly exhausts and contributed to education of engineered immune cells. vδT cells and NK cells have been shown to guickly adopt to new environments and get educated over time, thus tolerant [8, 9]. Within this context we explored whether adding NKG2D to CD4+ and CD8+ T cells in its wild-type version or with altered signaling domains can further enhance the promising and broad anti-tumor activity of a y952TCR. As additional signaling domains different costimulatory proteins (ICOS, CD28 and 4-1BB) that are typically expressed on T cells and also used for CAR T engineering [2] have been explored.

5

Modified NKG2D as co-stimulation Hernández-López et al.

Material and Methods

Antibodies

The following antibodies were used: anti-CD8a-PerCP-Cy5.5 (1:100; clone RPA-T8; 301032), CD4-AF700 (1:40; clone RPA-T4; 300526), $\alpha\beta$ TCR-PE-Cy5 (1:80; clone IP26; 11-9986-42) from Biolegend; $\gamma\delta$ TCR-PE-Cy7 (1:20; clone IMMU510; B10247) from Beckman Coulter;NKG2D-PE (1:20; clone 1D11; 320806), NKG2D-BV650 (1:40; clone 1D11; 563408) and $\gamma\delta$ TCR-APC (1:5; clone B1; 555718) from BD Biosciences.

Cell lines and cell culture

Daudi, K562, HL60, Jurkat, RPMI-8226 and Phoenix-Ampho cells were obtained from ATCC. Phoenix-Ampho cells were cultured in DMEM supplemented with 1% Pen/Strep (Invitrogen) and 10% FCS (Bodinco, Alkmaar, The Netherlands). All other cell lines were cultured in RPMI with 1% Pen/Strep and 10% FCS. Primary fresh PBMCs were isolated by Ficoll-Paque (GE Healthcare, Eindhoven, The Netherlands) from buffy coats supplied by Sanquin Blood Bank (Amsterdam, The Netherlands).

Construction of chimeric NKG2D receptors

Six chimeric receptors were constructed (for sequences see Appendix I). cDNAs for coreceptors were synthetized by BaseClear (Leiden, Netherlands). Type II co-receptors were created using overlap extension PCR. For the first reaction DNA coding for cytoplasmic signaling domains of ICOS and CD28, both extended with 18 nucleotides of the NKG2D transmembrane sequence were amplified using the following primers; for ICOS "ICOScyto FW1" and "NKG2D OIEx RV1", and for CD28 "CD28cyto FW1 " and "NKG2D OIEx RV1". For the second reaction the DNA for "4-1BBcyto-NKG2D tm + ec" was used as template for the transmembrane and extracellular domain of NKG2D and was amplified using the following primers "NKG2D FW2" and "NKG2D BamHI RV2". In reaction 3 the products of reaction 1 were fused to the product of reaction 2 using "ICOScyto FW1" "NKG2D BamHI RV2" for ICOScyto-NKG2D, and and "CD28cyto FW1 " and "NKG2D BamHI RV2" for CD28cyto-NKG2D. All type I and II constructs were subcloned into pBullet using Ncol and BamHI as restriction sites.

Modified NKG2D as co-stimulation Hernández-López et al.

In similar fashion as the type II constructs the transmembrane and linker domains of the type I co-receptors NKG2D-ICOS_{wt} and NKG2D-4-1BB_{wt} were replaced by the transmembrane and linker domains of NKG2D-CD28_{wt} chimera using overlap extension PCR. In reaction 1 NKG2D-CD28linker-tm was amplified using primers "P2A_FW2 " and "CD28tm_RV2" and in reaction 2 the signaling domains of ICOS and 4-1BB were amplified using primers "ICOS_FW1" or "41BB_FW1" in combination with "pmp71_RV". In reaction 3 the PCR products of reaction 1 and 2 were fused using primers "P2A_FW2" and "pmp71_RV". They were subcloned into pMP71 already containing $\gamma\delta$ TCR-CI5, using Xhol and HindIII. All restriction enzymes were supplied by NEB (Massachusetts, USA).

Retroviral transduction of αβ T cells and cell lines

Briefly, packaging cells (Phoenix-Ampho) were transfected with helper constructs gagpol (pHIT60), env (pCOLT-GALV) and pMP71 or pBullet retroviral vectors containing genes codifying for the different proteins. In the case of human PBMCs, they were preactivated with anti-CD3 (30 ng/mL; Orthoclone OKT3; Janssen-Cilag) and IL-2 (50 IU/mL; Proleukin, Novartis). Both, PBMCs and cell lines, were transduced twice with viral supernatant within 48 or 3 hours respectively, in presence of 6 mg/mL polybrene (Sigma-Aldrich). For PMBCs 50 IU/mL of IL-2 was added. TCR-transduced T cells were expanded by stimulation with anti-CD3/CD28 Dynabeads (500,000 beads/10⁶ cells; Life Technologies) and IL-2 (50 IU/mL). Thereafter, TCR-transduced T cells were depleted of the non-engineered T cells.

Depletion of non-engineered T cells

 $\alpha\beta$ T cells transduced with $\gamma\delta$ TCR-Cl5 either alone or together with NKG2D wild type or the different NKG2D chimeras were incubated with a biotin-labeled anti- $\alpha\beta$ TCR antibody (clone BW242/412; Miltenyi Biotec, Bergisch Gladbach, Germany) and subsequently incubated with an anti-biotin antibody coupled to magnetic beads (anti-biotin MicroBeads; Miltenyi Biotec). Thereafter, the cell suspension was loaded onto an LD column and $\alpha\beta$ TCR+ T cells were depleted by MACS cell separation per the manufacturer's protocol (Miltenyi Biotec). After depletion, TEGs were expanded using T cell REP.

Modified NKG2D as co-stimulation Hernández-López et al.

Selection of engineered T cells

After αβ-depletion, T cells were selected using human CD4 microbeads and MS columns (Miltenyi Biotec). Procedure was carried out according to manufacturer's protocol. For Jurkats, CD3 selection was performed after being transduced with γδTCR-Cl5 using human CD3 microbeads (Miltenyi Biotec). Moreover, another selection was carried out in these cells after the transduction of the different NKG2D-chimeras. First, cells were incubated at room temperature for 30 min using a 1:20 dilution of anti-NKG2D-PE in MACs buffer (PBS, 2% FCS, 2mM EDTA). Cells were washed once with MACs buffer. After washing, cells expressing NKG2D were selected using anti-PE microbeads (Miltenyi Biotec) following manufacturer's protocol.

NKG2D ligand staining

The expression of NKG2D ligands in tumor cell lines was assessed using Recombinant Human NKG2D Fc Chimera Protein (R&D systems, Abingdon, UK). 10^5 tumor cells were incubated either with 0.5 µg of NKG2D Fc recombinant protein or IgG1-Fc during 30 min. Cells were washed with FACs buffer (1% BSA, 1% Na⁺azide) and secondary antibody IgG-PE (Southern Biotech, Alabama, USA) was added in a 1:200 dilution. Cells were fixed using 1% PFA in PBS. Samples were measured on a BD LSRFortessa and FACSDiva (BD) software was used for data analysis.

Functional T cell assays.

To assess T cell activation by surface recaptor expression like CD69 a FACS-based assay was used. To allow better differentiation on FACs, target cells were labeled using Cell Trace Violet Proliferation Kit (Thermo Fisher Scientific, Massachusetts, USA). T cells were resuspended at 1×10^6 cells/ml in 2 µM Cell Trace Violet in PBS solution. Cells were washed two times with complete RPMI medium and resuspended in culture medium. After labelling, 10^5 transduced Jurkats and 2×10^5 target cells were co-cultured for 18 hours in round-bottom 96-well plates in presence or absence of 100 µM pamidronate. After incubation, cells were harvested and analyzed by flow cytometry to check CD69 expression. For cytokine detection 5×10^4 effector T cells and 5×10^4 target cells were co-cultured for 18 hours in round-bottom 96-well plates in round-bottom 96-well plates of 100 µM pamidronate.

Modified NKG2D as co-stimulation Hernández-López et al.

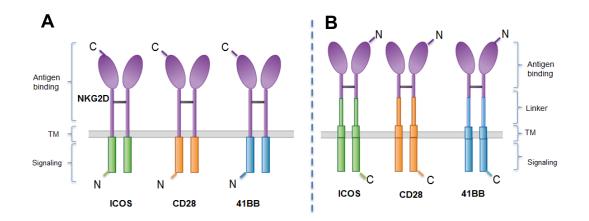
8

pamidronate. After incubation, supernatants were collected and either frozen or used to detect IFNy levels straight away. ELISA was performed using IFN gamma Human Uncoated ELISA Kit (Thermo Fisher Scientific, Massachusetts, USA). For assessing cytotoxicity 5 x 10³ RPMI 8226 cells expressing luciferase-GFP were co-cultured with the different effector T cells at several effector: target ratios (30:1, 10:1, 3:1 or 1:1) for 18 hours in round-bottom 96-well plates. Co-cultures were done in presence or absence of 10 µM pamidronate. RPMI-8226 luciferase-GFP transduced tumor cells were used as targets. After incubation, luciferin was added at 12,5 ug/ml to each well and signal was measured on Softmax pro machine . Specific lysis was calculated using the formula % specific lysis = 100 × [(experimental data - spontaneous cell death)/(maximum cell death – spontaneous cell death)]. When this calculation provided a negative value, 0% was assigned as the result. In order to assess proliferation T cells were resuspended at 1 x 10⁶ cells/ml using a 2 µM solution of CellTrace[™] Violet Cell Proliferation Kit (Thermo Fisher Scientific, Massachusetts, USA) in PBS. The cell suspension was incubated for 20 min at 37°C. Cells were washed two times with complete RPMI medium and resuspended in culture medium. After labelling, 2,5 x 10⁵ effector T cells were co-cultured together with 2,5 x 10⁵ tumor cells in 48-well plates for 6 days. 100 µM pamidronate was added to cultures boost recognition. On day 4, medium was replaced. On day 6, cells were analyzed by flow cytometry.

Modified NKG2D as co-stimulation Hernández-López et al.

Results

Design and expression of αβ-γδTCR chimera


As signaling of $\alpha\beta$ TCR and $\gamma\delta$ TCR differ and this could impact as reported long term memory formation [3] we explored stability and function of different designs of $\alpha\beta$ - $\gamma\delta$ TCR chimeras. A first version of three different $\alpha\beta$ - $\gamma\delta$ TCR chimeras was generated (Supplementary figure 1A), but only one of them showed stable expression in Jurkat 76 (Supplementary Figure 1B). However, it was not able to induce activation of Jurkats-76 (Supplementary figure 1C). We hypothesized that this lack of activity could be due to the existing differences in the variable-constant interphases of $\gamma\delta$ and $\alpha\beta$ TCRs. Therefore, we generated three new designs modifying those interphases (Supplementary figure 2A). Moreover, interphase between both constant domains was modified to increase pairing and mouse residues were added to the β -constant chain to improve detection. In this case two of them were expressed (Supplementary figure 2B), but again all chimeric TCR variants were not able to induce activation of Jurkat-76 (Supplementary figure 2C) and therefore this option was not further explored.

Design and expression of NKG2D chimeras

In order to assess whether adding NKG2D co-receptor signaling to CD4+ and CD8+ TEGs can further improve activity in addition to the wild-type version of NKG2D further constructs were engineered by fusing the extracellular domain of NKG2D to the cytoplasmic signaling domains of three different costimulatory proteins (ICOS, CD28 and 4-1BB). The natural orientation of NKG2D differs however from the other three costimulatory proteins. ICOS, CD28 and 4-1BB are type I transmembrane proteins (N-terminal is outside of the cell), while NKG2D is a type II membrane protein (N-terminal domain is inside of the cell) that does not contain any known signaling motif within its intracellular domain. Therefore, NKG2D associates in natural $\gamma\delta$ T cells or NK cells with the adaptor protein DAP10 via charged residues in its transmembrane domain [8]. Taking

Modified NKG2D as co-stimulation Hernández-López et al.

all this into account, two different types of chimeras were designed and generated. Firstly, in line with the natural design of NKG2D, a type II membrane protein was designed (Figure 1A, depicted as "type II design") by fusing the transmembrane domain of NKG2D to the cytoplasmic domains of ICOS, CD28 or 4-1BB. In addition, a type I design was created by fusing extracellular domains of NKG2D to the cytoplasmic domains of ICOS, CD28 or 4-1BB (Figure 1B). Consequently, linker and transmembrane domains were different for all constructs for the "type I design", while in the "type II design" only the signaling domain differed.

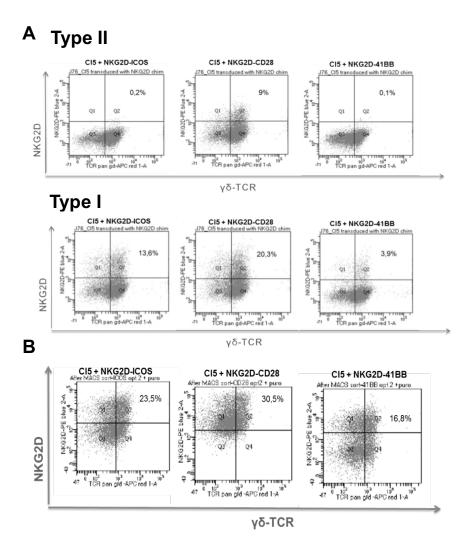


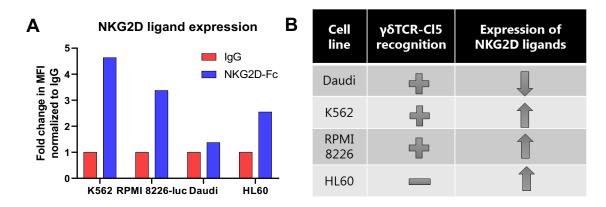
Figure 1. Schematic diagram of type IIand type I chimeric NKG2D co-receptors. NKG2D, ICOS, CD28 and 4-1BB regions are colored in purple, green, orange and blue, respectively. (**A**) "Type II design". The natural NKG2D type II structure is preserved and signaling domains are added. (**B**) "Type I design" Type I transmembrane chimeric co-receptors design is build on the type I structure on the natural co-receptors ICOS, CD28 and 41BB.

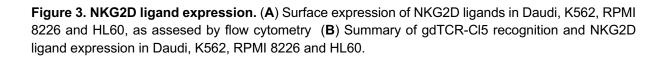
To test if the design of all chimeras allows correct folding and expression, Jurkat 76 cells, that had been previously transduced and selected to express the $\gamma\delta$ TCR-CI5, were used to transduce the different NKG2D chimera constructs. Expression of both, NKG2D-chimeras and $\gamma\delta$ TCR-CI5, was assessed by FACS (Figure 2A). Interestingly, large differences in surface expression of the chimeric co-receptors were observed between type II and type I chimeras. For the type II designs only one of the constructs (NKG2D-4-1BB) was marginally expressed. By contrast, all type I designs were expressed in Jurkat-76. However, expression levels differed between the different type I chimeras, NKG2D-CD28_{wt} was the one that showed best expression. The observed difference in expression

Modified NKG2D as co-stimulation Hernández-López et al.

was also still observed when cells have been purified by MACS sort using a NKG2D antibody (Figure 2B), suggesting a different expression strength presumably mediated through differences in linker and transmembrane domains between all type I design.

Figure 2. Surface expression of NKG2D chimeric co-receptors and γδTCR-CI5 in Jurkat-76. (A) Surface expression of γδTCR-CI5 and type II and type I chimeras (**B**) Surface expression of γδTCR-CI5 and type I NKG2D chimeras after MACS sort selection using anti-NKG2D-PE and PE-microbeads.

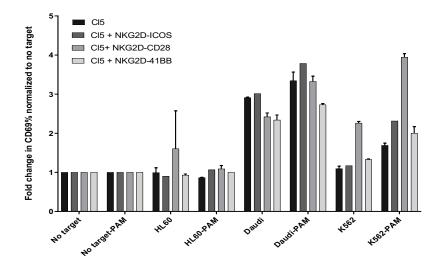

Introduction of NKG2D-CD28 chimera in Jurkat-76 transduced with γδTCR-CI5 increases percentage of CD69 expressing cells


To asses if the chimeras were able to increase the activity of the Jurkats-76 transduced with $\gamma\delta$ TCR-Cl5 and the type I NKG2D chimeras, we performed a CD69 assay. Firstly,

Modified NKG2D as co-stimulation Hernández-López et al.

12

we typed target cells for NKG2D ligand expression. Target cell lines were selected according to their susceptibility to be recognized by $\gamma\delta$ TCR-Cl5 to serve as susceptible (K562, RPMI 8226, Daudi) or resistant (HL60) to TEG therapies [4, 10-13]. NKG2D ligand expression has been reported for most of these cell lines for individual ligands by us [4]. Recognition of K562, RPMI 8226, Daudi and HL60 cell lines by $\gamma\delta$ TCR-Cl5 has been previously reported and assessed in the lab. However as 8 different ligands can be bound NKG2D and we were interested in the additive effect of ligand expression to NKG2D binding, we determined the NKG2D-ligand expression by FACS using a NKG2D-Fc fusion protein. According to its susceptibility to be recognized by $\gamma\delta$ TCR-Cl5 and the expression of NKG2D ligands, we were able then to distinguish three types of cell lines, one that was recognized by $\gamma\delta$ TCR-Cl5 but expressed limited levels of NKG2D ligands (Daudi), a second one that was targeted by $\gamma\delta$ TCR-Cl5 and expressed high levels of NKG2D ligands (HL60) (Figure 3).



To assess activity of engineered Jurkat cells with or without engineered type I NKG2D chimera 10^5 effector cells were co-cultured with 2 x 10^5 target cells overnight, in presence or absence of 100 µM pamidronate. Introduction of the different chimeras in Jurkat-76 cells did not increase the percentage of CD69+ cells compared to cells transduced with $\gamma\delta$ TCR-Cl5 alone when they were co-culture together with HL60 (results comparable to

Modified NKG2D as co-stimulation Hernández-López et al.

no target condition) and Daudi (Fig. 4). However, an increase in CD69 positive cells was observed when cells co-transduced with $\gamma\delta$ TCR-CI5 and NKG2D-CD28_{wt} were cocultured together with K562, suggesting that this additional effect provided by the chimera only occurs in presence of NKG2D ligands in combination with TCR activation, as no increase was observed against other cell lines like Daudi, which expresses low NKG2D ligand levels or HL60 which despite high levels of NKG2D ligands is not recognized by $\gamma\delta$ TCR-CI5. However, we could not exclude at this stage that increased activity is a consequence of increased expression or an altered signaling between different constructs

Figure 4. CD69 expression in transduced Jurkat-76. Percentage of CD69 positive cells was assessed by flow cytometry in Jurkat-76 cells transduced with gdTCR-Cl5 alone or gdTCR-Cl5 and the different type I chimeras after co-culturing with K562, RPMI 8226 and HL60.

Equal expression of the chimeras by introducing CD28 transmembrane and linker domains.

To assess whether differences in expression of type I NKG2D chimera is a general phenomena and to compare expression profile to engineered NKG2D_{wt}, primary PBMC were engineered with γ 9 δ 2TCR, NKG2D_{wt} and type I variants. In order to avoid that unequal expression is a consequence of different transduction efficacy of separate constructs, NKG2D_{wt} or three type I NKG2D chimeras were cloned together with the $\gamma\delta$ TCR-Cl5 into the clinical vector pmp71 (Figure 5A). PBMCs were transduced using these constructs. Expression of the three chimeric receptors and $\gamma\delta$ TCR-Cl5 was

Modified NKG2D as co-stimulation Hernández-López et al.

to the other two chimeras and NKG2D_{wt}.

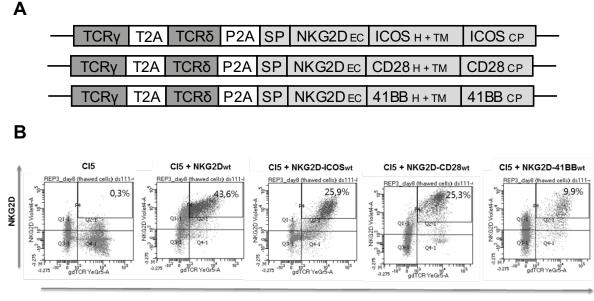


Figure 5. Unequal expression of type I chimeras in PBMCs (A) Schematic overview of three different type I chimeras and gdTCR transgene cassette in the retroviral vector pMP71. TCR δ chain was derived from clone 5 (d) and TCRy from clone G115 (g) and F2A (derived from the foot-and-mouth disease virus) and T2A (derived from the Thosea asigna virus) refer to two different 2A ribosomal skipping sequences. (B) Surface expression of gdTCR-Cl5 and type I NKG2D chimeric correceptors in Jurkat-76 cells assessed by flow cytometry.

Strength of membrane expression of proteins can depend on their transmembrane domain [13]. NKG2D-CD28_{wt} chimera expression was a consequence of its superior transmembrane domain. Therefore we next swapped the transmembrane and linker domains of the NKG2D-ICOS_{wt} and NKG2D-4-1BB_{wt} for the transmembrane and linker domains of the NKG2D-CD28_{wt} chimera (Figure 6A). The new chimeras were cloned together with the $\gamma\delta$ TCR-CI5 or $\gamma\delta$ TCR-LM1(mock) into the clinical vector pmp71 (Figure 6B). Again PBMCs were transduced using these constructs. $\gamma\delta$ TCR-LM1 and $\gamma\delta$ TCR-CI5 with NKG2D_{wt} or NKG2D-CD28_{wt} chimera were also taken along as controls. Expression of the three chimeras and $\gamma\delta$ TCR-CI5 or $\gamma\delta$ TCR-LM1 was assessed by FACs (Figure 6C).

Modified NKG2D as co-stimulation Hernández-López et al.

The expression of the new chimeras (NKG2D-ICOS_{CD28TM} and NKG2D-4-1BB_{CD28TM}) was now improved by replacing the transmembrane and linker domains by those of CD28, and it was equal to the NKG2D-CD28_{wt} chimera. In all cases, the expression of the chimeras was better compared to NKG2D_{wt}.

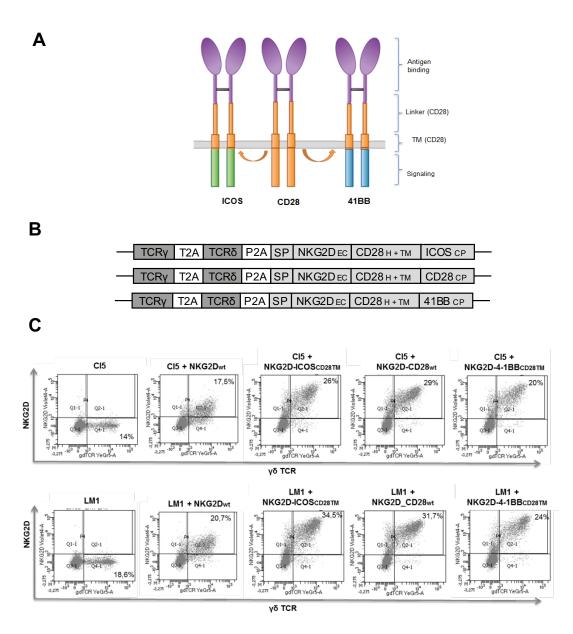
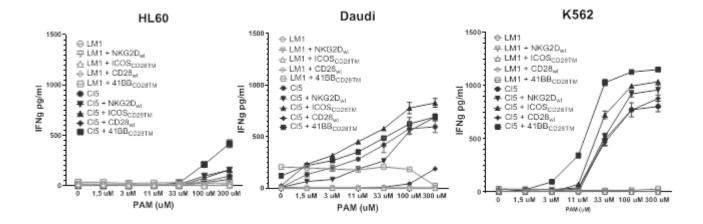


Figure 6. Introduction of CD28 transmembrane and linker domains increases the expression of type I designs of NKG2D-ICOS and NKG2D-4-1BB chimeric co-receptors (A) Schematic diagram of the new type I chimeras containing CD28 transmembrane and linker domains (B) Schematic overview of new type I chimeras generated and gdTCR transgene cassette in the retroviral vector pMP71. (C) Surface expression of gdTCR-CI5 and new NKG2D chimeric co-receptors in Jurkat-76 cells assessed by flow cytometry.

Modified NKG2D as co-stimulation Hernández-López et al.

16


Introduction of NKG2D-41BB increases cytokine release by TEG001 in presence of NKG2D ligands

In order to assess whether adding exogenous NKG2D_{wt} to TEGs increases activity of TEGs or whether adding type I chimeras would be superior, we performed an IFN γ release assay. As the NKG2D receptor is naturally expressed by many CD8+ $\alpha\beta$ T cells, CD4+ $\alpha\beta$ T cells were used as effector cells. CD4+ transduced cells were co-cultured with K562 (high levels of NKG2D ligands and recognized by $\gamma\delta$ TCR-CI5), Daudi (low levels of NKG2D ligands but recognized by $\gamma\delta$ TCR-CI5) and HL60 (high levels of NKG2D ligands but not recognized by $\gamma\delta$ TCR-CI5). Pamidronate was used at different concentrations to increase the levels of phosphoantigens in the target cells and therefore increase the recognition of these cells by $\gamma\delta$ TCR-CI5.

The most prominent change was observed for cells co-transduced with vδTCR-Cl5 and the NKG2D-4-1BB_{CD28TM} which secreted higher levels of IFNg against NKG2D-ligand high expression tumor cells K562 when compared with the TEGs that only expressed voTCR-CI5 (Figure 7). In addition, in this particular combination of TEGs with NKG2D-4-1BB_{CD28TM}, engineered immune cells were also able to recognize NKG2D high expressing tumor cells K562 at lower pamidronate concentrations when compared to all other conditions. This increase was not observed when T cells were co-transduced with a nonfunctional $\gamma\delta$ TCR (LM1). Furthermore, this increase in IFNg release was not observed against Daudi (low levels of NKG2D ligands) or HL60 (not recognized by γδTCR-Cl5), suggesting that both signals (TCR activation and NKG2D ligands) are needed to induce activation of the chimera, and which is in line with the results obtained using Jurkats. This emphasized also the need to compare engineered with equivalent receptor expression, as this signal was missed in Jurkat cells when using NKG2D domains with 4-1-BB transmembrane and signaling domain. We could also not rule out that enhanced NKG2D_{wt} expression might have similar effects, however in the wt design the expression level was limited and always inferior when compared to chimeras using CD28 transmembrane domains.

Modified NKG2D as co-stimulation Hernández-López et al.

17

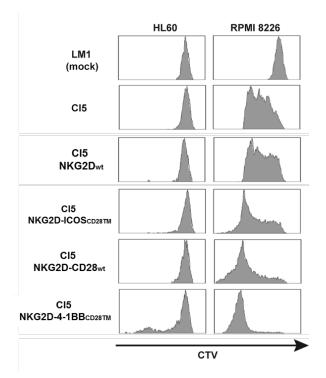
Figure 7. Introduction of NKG2D-4-1BB chimeric co-receptor increases IFNγ release by TEG001. Transduced T cells were incubated with K562, HL60 or Daudi at several pamidronate concentrations. After 18 hours, supernatants were harvested and analyzed for IFNγ secretion by ELISA.

Introduction of NKG2D-41BB and NKG2D-CD28 increases killing and proliferation ability of TEG001

Next, we aimed to asses whether the NKG2D type I chimeras with the CD28 transmembrane domain were able to increase the killing ability of TEGs. Therefore, T cells transduced with $\gamma\delta$ TCR-Cl5 alone, $\gamma\delta$ TCR-Cl5 and NKG2D_{wt} or $\gamma\delta$ TCR-Cl5 and the different type I chimeras with the CD28 transmembrane domain were co-cultured with RPMI-8226 tumor cells expressing luciferase, in presence or absence of pamidronate. Co-culture was made using different effector-target ratios. After incubation, luciferin was added to the wells and signal was measured.

A mixture of CD8⁺ (75%) and CD4⁺ (25%) $\alpha\beta$ T cells co-transduced with $\gamma\delta$ TCR-CI5 and the chimeras NKG2D-CD28_{wt} and NKG2D-4-1BB_{CD28TM} showed increased killing ability compared to $\gamma\delta$ TCR-CI5 alone (Fig. 8). This increase in killing ability was especially remarkable at lower E:T ratios and was not observed in T cells co-transduced with mock $\gamma\delta$ TCR (LM1) and the different NKG2D chimeras. Furthermore, cells co-transduced with $\gamma\delta$ TCR-CI5 alone. However, also an increase in specific lysis was observed when NKG2D wt was co-transduced with $\gamma\delta$ TCR-LM1 (mock).

Modified NKG2D as co-stimulation Hernández-López et al.


Figure 8. Introduction of NKG2D-4-1BB chimeric co-receptor increases killing ability of TEG001. Transduced T cells were incubated with RPMI 8226-luc+ cells in presence of 10 μ M PAM. Specific lysis was calculated using the formula % specific lysis = 100 × [(experimental data – spontaneous cell death)/(maximum cell death – spontaneous cell death)]. When this calculation provided a negative value, 0% was assigned as the result.

Introduction of NKG2D chimeras improves proliferation capacity of TEG001

Different co-stimulatory domains have been reported to mainly affect proliferation capacity. Therefore we examined proliferation capacity of TEGs transduced with NKG2D_{wt} and the different type I NKG2D chimeras with CD28 transmembrane domains by using a dye dilution approach. Again CD4+ $\alpha\beta$ T cells selected cells were used as it allowed also to assess the additional impact of NKG2D_{wt}. They were fluorescently labeled using Cell Trace violet dye and co-cultured either with HL60 (NKG2D ligand negative) or RPMI-8226 (NKG2D ligand positive) tumor cells in presence of 100 µM pamidronate. After 6 days, cells were analyzed by flow cytometry. As expected, cells transduced with $\gamma\delta$ TCR-LM1 (mock) were not able to proliferate when co-cultured together with tumor cells (Figure 9). Moreover, the introduction of NKG2D_{wt} did not change the proliferation rate compared to T cells transduced with $\gamma\delta$ TCR-CI5 alone or when NKG2D_{wt} was expressed. In contrast TEGs coexpressing three different type I chimeras with the CD28 transmembrane domain showed an improved proliferation capacity as indicated by the lower CTV intensity. Furthermore, this increase in proliferation was only observed when

Modified NKG2D as co-stimulation Hernández-López et al.

T cells were co-cultured together with RPMI 8226, but not with HL60. As both, RPMI 8226 and HL60 are expressing high levels of NKG2D ligands, but only RPMI-8226 is recognized by $\gamma\delta$ TCR-Cl5, these data suggest that γ 9 δ 2TCR activation is essential for any additive effect of the chimeras.

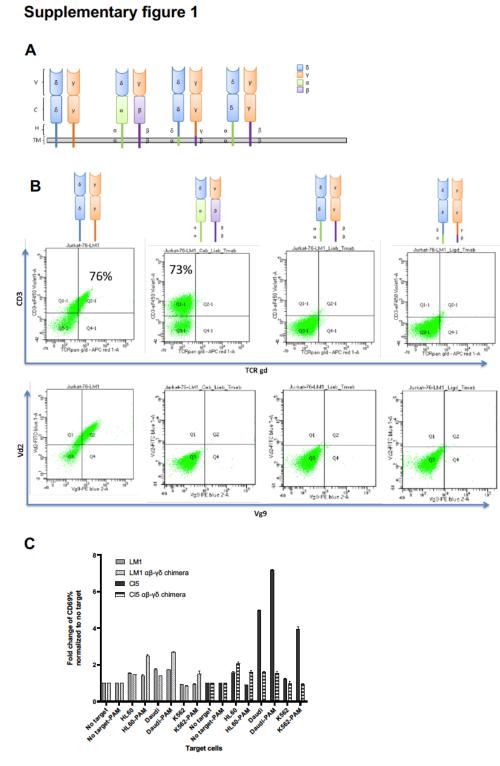
Figure 9. Introduction of NKG2D chimeric co-receptors improves proliferation ability of TEG001. Transduced T cells were incubated either with HL60 or RPMI 8226 cells in presence of 100 μM PAM. On day 6 CTV intensity was assessed by flow cytometry.

Discussion

Different chimeras were designed in this project, by fusing the extracellular domain of NKG2D to the cytoplasmic domain of three different costimulatory proteins (ICOS, CD28, 4-1BB). According to the orientation of the proteins, type II and type I chimeras were designed. Only chimeras with a type I orientation were expressed. However, expression between type I chimeras was unequal when the transmembrane and linker domains of the different costimulatory proteins were used, with NKG2D-CD28_{wt} chimera always be the best expressed when compared to NKG2D-ICOS_{wt} and NKG2D-4-1BB_{wt}. To improve

Modified NKG2D as co-stimulation Hernández-López et al.

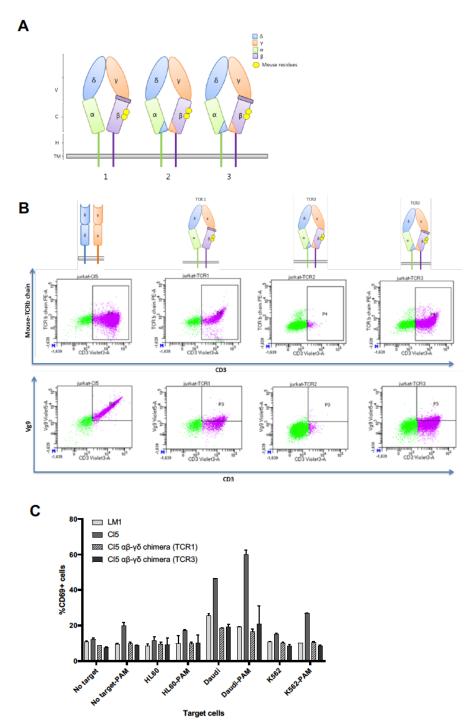
expression of other chimeras, swapping the transmembrane and linker domains of NKG2D-ICOS and NKG2D-4-1BB by NKG2D-CD28's domains was explored (NKG2D-ICOS_{CD28TM} and NKG2D-4-1BB_{CD28TM}). This modification increased the expression of both chimeras and equaled the expression between all of the chimeras.


Cells co-transduced with $\gamma\delta$ TCR-Cl5 and the three chimeras were tested in different functional assays and compared with cells transduced with $\gamma\delta$ TCR-Cl5 alone (TEG001). Altogether, these results suggest that the introduction of NKG2D-CD28_{wt} and NKG2D-4-1BB_{CD28TM} increase the activity of TEG001.

- 1. Sebestyen, Z., et al., *Translating gammadelta (gammadelta) T cells and their receptors into cancer cell therapies.* Nat Rev Drug Discov, 2020. **19**(3): p. 169-184.
- 2. Hartmann, J., et al., *Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts.* EMBO Mol Med, 2017. **9**(9): p. 1183-1197.
- 3. Teixeiro, E., et al., *Different T Cell Receptor Signals Determine CD8+ Memory Versus Effector Development.* Science, 2009. **323**(5913): p. 502-505.
- 4. Marcu-Malina, V., et al., *Redirecting alphabeta T cells against cancer cells by transfer of a broadly tumor-reactive gammadeltaT-cell receptor.* Blood, 2011. **118**(1): p. 50-59.
- 5. Liu, H., et al., *Role of NKG2D and its ligands in cancer immunotherapy*. Am J Cancer Res, 2019. **9**(10): p. 2064-2078.
- 6. Wu, J., V. Groh, and T. Spies, *T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells.* J.Immunol., 2002. **169**(3): p. 1236-1240.

Modified NKG2D as co-stimulation Hernández-López et al.

- 7. Baumeister, S.H., et al., *Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma*. Cancer Immunol Res, 2019. **7**(1): p. 100-112.
- 8. Rincon-Orozco, B., et al., *Activation of V gamma 9V delta 2 T cells by NKG2D*. J.Immunol., 2005. **175**(4): p. 2144-2151.
- 9. Orr, M.T. and L.L. Lanier, *Natural killer cell education and tolerance*. Cell, 2010. **142**(6): p. 847-56.
- 10. Vyborova, A., et al., *gamma9delta2T cell diversity and the receptor interface with tumor cells*. J Clin Invest, 2020.
- 11. Johanna, I., et al., *Evaluating in vivo efficacy toxicity profile of TEG001 in humanized mice xenografts against primary human AML disease and healthy hematopoietic cells.* J Immunother Cancer, 2019. **7**(1): p. 69.
- 12. Straetemans, T., et al., Untouched GMP-Ready Purified Engineered Immune Cells to Treat Cancer. Clin Cancer Res, 2015. **21**(17): p. 3957-68.
- 13. Grunder, C., et al., *gamma9 and delta2CDR3 domains regulate functional avidity of T cells harboring gamma9delta2TCRs*. Blood, 2012. **120**(26): p. 5153-5162.
- 13. Fujiwara, K., et al., *Hinge and Transmembrane Domains of Chimeric Antigen Receptor Regulate Receptor Expression and Signaling Threshold*. Cells, 2020. **9**(5): 1182


Modified NKG2D as co-stimulation Hernández-López et al.

Supplementary figure 1. First version of αβ-γδ TCR chimeras (A) Schematic overview of three different αβ-γδ TCR chimeras. (V) variable, (C) constant, (H) hinge and (TM) transmembrane domains from αβ or γδ TCRs were used (**B**) Surface expression of αβ-γδ TCR chimeras in Jurkat-76 cells assessed by flow cytometry. (**C**) Percentage of CD69 positive cells was assessed by flow cytometry in Jurkat-76 cells transduced with gdTCR-Cl5, gdTCR-LM1 (mock) or dfferent αβ-γδ TCR chimeras after co-culturing alone or with K562, Daudi and HL60.

Modified NKG2D as co-stimulation Hernández-López et al.

Supplementary figure 2

Supplementary figure 2. Second version of $\alpha\beta$ - $\gamma\delta$ TCR chimeras (A) Schematic overview of the second version of three different $\alpha\beta$ - $\gamma\delta$ TCR chimeras. (V) variable, (C) constant, (H) hinge and (TM) transmembrane domains from $\alpha\beta$ or $\gamma\delta$ TCRs were used (B) Surface expression of the second version of $\alpha\beta$ - $\gamma\delta$ TCR chimeras in Jurkat-76 cells assessed by flow cytometry. (C) Percentage of CD69 positive cells was assessed by flow cytometry in Jurkat-76 cells transduced with gdTCR-Cl5, gdTCR-LM1 (mock) or $\alpha\beta$ - $\gamma\delta$ TCR chimera named as 1 and 3 after co-culturing alone or with K562, Daudi and HL60.

24

Modified NKG2D as co-stimulation Hernández-López et al.

Appendix

Construct name	DNA sequence	Amino acid sequence
Type II: 4-1BBcyto-NKG2D tm + ec	CTGCCATGGGTAAGCGGGGCAGAAAGAAGCTGCTG TACATCTTCAAGCAGCCGTCATGCGGGCCCGTGCAG ACCACACAAGAGGAAGATGGCTGCTCCTGCAGATT CCCCGAGGAAGAAGAAGAGGCGGCTGCGAGCTGCCC TTCTTTTTCTGCTGCTTTATCGCCGTGGCAATGGGCA TCCGCTTCATCATTATGGTGGCTATTTGGAGCGCCG TGTTCCTGAACTCCCTGTTCAATCAAGAGGTGCAGA TCCCTCTGACCGAGAGCTACTGTGGCCCCTGTCCTA AGAACTGGATCTGCTACAAGAAGACAACTGCTACCAG TTCTTCGACGAGAGCAAGAATTGGTACGAGAGCCA GGCCAGCTGCATGAGCCAGAATGCCAGGATCTGCTGA AGGTGTACTCCAAAGAAGAACTGCTACCAG CTGGTCAAGAGCTACCAGGATCGCAGCA CATCCCTACCAATGGCCCTGGCA CATCCCTACCAATGGCCCTGTGCA CATCCCTACCAATGGCCCTGACGACGGCCCTGTCGA AGATGCAGAAGGCCACTGCTGCTGACGACGGCCCTGTGCA AGATGCAGAAGGGCGACTGCGCCCTGTACGCCAGC AGCTTTAAGGGCTACATCGAGAACTGCAGCCCCT AACACCTACATCTGTATGCAGCGGACCGTCTGAGG ATCC	MGKRGRKKLLYIFKQP FMRPVQTTQEEDGCS CRFPEEEEGGCELPFFF CCFIAVAMGIRFIIMVAI WSAVFLNSLFNQEVQI PLTESYCGPCPKNWIC YKNNCYQFFDESKNW YESQASCMSQNASLLK VYSKEDQDLLKLVKSY HWMGLVHIPTNGSW QWEDGSILSPNLLTIIE MQKGDCALYASSFKG YIENCSTPNTYICMQRT V-
Type II: CD28cyto-NKG2D tm (18 nt)	ATTCCATGGGTAGAAGCAAGCGGAGCAGACTGCTG CACAGCGACTACATGAACATGACCCCTAGACGGCC CGGACCTACCAGAAAGCACTACCAGCCTTACGCTC CTCCTAGAGACTTCGCCGCCTACAGAAGCCCCTTCT TTTTCTGCTGC	MGRSKRSRLLHSDYM NMTPRRPGPTRKHYQ PYAPPRDFAAYRSPFFF CC
Type II: ICOScyto-NKG2D tm (18 nt)	TTTCCATGGGTTGCTGGCTGACCAAGAAAAAGTACA GCAGCAGCGTGCACGACCCCAACGGCGAGTACATG TTCATGAGAGCCGTGAACACCGCCAAGAAGTCCAG ACTGACAGACGTGACCCTGCCCTTCTTTTTCTGCTGC	MGCWLTKKKYSSSVH DPNGEYMFMRAVNTA KKSRLTDVTLPFFFCC
Type I: CD33_NKG2D_linker_ ICOStm+cyto	CCATGGCTCTGCTGCTGCTGCTTCTGCCTCTTCTGTGGGC TGGTGCTCTGGCTATGGAGAGCTACTGTGGCCCCTG TCCTAAGAACTGGATCTGCTACAAGAACAACTGCTA CCAGTTCTTCGACGAGAGCAAGAATTGGTACGAGA GCCAGGCCAG	MALLLLLPLLWAGALA MESYCGPCPKNWICYK NNCYQFFDESKNWYE SQASCMSQNASLLKV YSKEDQDLLKLVKSYH WMGLVHIPTNGSWQ WEDGSILSPNLLTIIEM QKGDCALYASSFKGYIE NCSTPNTYICMQRTVS QLCCQLKFWLPIGCAA FVVVCILGCILICWLTKK KYSSSVHDPNGEYMF MRAVNTAKKSRLTDVT L-

Modified NKG2D as co-stimulation Hernández-López et al.

	GCCATGGCCCTGCTGCTGCTTCTGCCTCTTCTTGGG	MALLLLPLLWAGALA
	CTGGCGCTCTGGCTATGGAGAGCTACTGTGGCCCCT	MESYCGPCPKNWICYK
	GTCCTAAGAACTGGATCTGCTACAAGAACAACTGCT	NNCYQFFDESKNWYE
	ACCAGTTCTTCGACGAGAGCAAGAATTGGTACGAG	SQASCMSQNASLLKV
	AGCCAGGCCAGCTGCATGTCCCAGAATGCCAGCCT	YSKEDQDLLKLVKSYH
	GCTGAAGGTGTACAGCAAAGAGGACCAGGATCTGC	WMGLVHIPTNGSWQ
	TGAAGCTGGTCAAGAGCTACCACTGGATGGGCCTC	WEDGSILSPNLLTIIEM
	GTGCACATCCCTACCAATGGCTCTTGGCAGTGGGA	QKGDCALYASSFKGYIE
Type I:	GGACGGCAGCATTCTGAGCCCTAACCTGCTGACCA	NCSTPNTYICMQRTVG
CD33_NKG2D_linker_	TCATCGAGATGCAGAAGGGCGACTGCGCCCTGTAC	KHLCPSPLFPGPSKPF
CD28tm+cyto	GCCAGCAGCTTTAAGGGCTACATCGAGAACTGCAG	WVLVVVGGVLACYSLL
CD28tm+cyto	CACCCCTAACACCTACATCTGTATGCAGCGGACCGT	VTVAFIIFWVRSKRSRL
	GGGCAAGCACCTGTGCCCCAGCCCCCTGTTCCCCG	LHSDYMNMTPRRPGP
	GCCCCAGCAAGCCCTTCTGGGTGCTGGTGGTGGTG	TRKHYQPYAPPRDFAA
	GGCGGCGTGCTGGCCTGCTACAGCCTGCTGGTGAC	YRS-
	CGTGGCCTTCATCATCTTCTGGGTGAGAAGCAAGCG	
	GAGCAGACTGCTGCACAGCGACTACATGAACATGA	
	CCCCTAGACGGCCCGGACCTACCAGAAAGCACTAC	
	CAGCCTTACGCTCCTCCTAGAGACTTCGCCGCCTAC	
	AGAAGCTGAGGATCC	
	CCATGGCTCTGCTGCTGCTTCTGCCTCTTCTGTGGGC	MALLLLPLLWAGALA
	TGGTGCTCTGGCTATGGAGAGCTACTGTGGCCCCTG	MESYCGPCPKNWICYK
	TCCTAAGAACTGGATCTGCTACAAGAACAACTGCTA	NNCYQFFDESKNWYE
	CCAGTTCTTCGACGAGAGCAAGAATTGGTACGAGA	SQASCMSQNASLLKV
	GCCAGGCCAGCTGCATGTCCCAGAATGCCAGCCTG	YSKEDQDLLKLVKSYH
	CTGAAGGTGTACAGCAAAGAGGACCAGGATCTGCT	WMGLVHIPTNGSWQ
	GAAGCTGGTCAAGAGCTACCACTGGATGGGCCTCG	WEDGSILSPNLLTIIEM
	TGCACATCCCTACCAATGGCTCTTGGCAGTGGGAG	QKGDCALYASSFKGYIE
- .	GACGGCAGCATTCTGAGCCCTAACCTGCTGACCATC	NCSTPNTYICMQRTVP
Type I:	ATCGAGATGCAGAAGGGCGACTGCGCCCTGTACGC	SPADLSPGASSVTPPA
CD33_NKG2D_linker_	CAGCAGCTTTAAGGGCTACATCGAGAACTGCAGCA	PAREPGHSPQIISFFLAL
4-1BBtm+cyto	CCCCTAACACCTACATCTGTATGCAGCGGACCGTGC	TSTALLFLLFFLTLRFSV
	CCAGCCCGGCCGACCTGAGCCCCGGCGCCAGCAGC	VKRGRKKLLYIFKQPFM
	GTGACCCCCCCGCCCGCCAGGGAGCCCGGCCA	RPVQTTQEEDGCSCRF
	CAGCCCCCAGATCATCAGCTTCTTCCTGGCCCTGAC	PEEEEGGCEL-
	CAGCACCGCCTGCTGTTCTTCCTGACC	
	CTGAGGTTCAGCGTGGTGAAGCGGGGCAGAA	
	AGAAGCTGCTGTACATCTTCAAGCAGCCCTTCATGC	
	GGCCCGTGCAGACCACACAAGAGGAAGATGGCTG	
	CTCCTGCAGATTCCCCGAGGAAGAAGAAGAAGGCGGCT	
	GCGAGCTGTGAGGATCC	
	CTCGAGGGCAGCGGCGCCACAAATTTCAGCCTGCT	
	GAAACAGGCCGGCGACGTCGAAGAAAATCCTGGA	
	CCAATGGCCCTGCTGCTGCTGCTGCCACTGCTGTGG	
	GCCGGGGCCCTGGCTATGGAGAGCTACTGCGGCCC	SQASCMSQNASLLKV
DOA CDOO NIKCOD linkar	CTGCCCCAAGAACTGGATCTGCTACAAGAACAACT	YSKEDQDLLKLVKSYH
P2A_CD33_NKG2D_linker_	GCTACCAGTTCTTCGATGAGAGCAAGAACTGGTAC	
ICOStm+cyto	GAGAGCCAGGCCAGCTGCATGAGCCAGAACGCAA	WEDGSILSPNLLTIIEM
	GCCTGCTGAAGGTGTACAGCAAGGAGGACCAGGAT	QKGDCALYASSFKGYIE
	CTGCTGAAGCTGGTGAAGAGCTACCACTGGATGGG	
	GCTGGTACATATTCCTACTAACGGCTCATGGCAGTG	
	GGAGGATGGAAGCATTCTGAGCCCTAACTTGTTGAC	FVVVCILGCILICWLTKK
	TATTATCGAGATGCAGAAGGGCGATTGCGCCCTGTA	KYSSSVHDPNGEYMF

Modified NKG2D as co-stimulation Hernández-López et al.

	CGCCAGCAGCTTCAAGGGCTACATCGAGAACTGCA	MRAVNTAKKSRLTDVT
	GCACTCCCAACACATACATCTGCATGCAGCGGACA	L-
	GTGAGTCAGCTGTGCTGCCAGCTGAAGTTTTGGCTG	
	CCAATTGGATGCGCTGCCTTTGTGGTGGTGTGCATT	
	CTGGGATGCATTCTGATTTGTTGGCTTACAAAGAAA	
	AAGTACAGCTCTAGCGTGCATGATCCTAACGGGGA	
	GTACATGTTTATGAGGGCCGTGAACACAGCCAAGA	
	AGAGCAGACTGACAGATGTGACACTGTGAAAGCTT	
	CTCGAGGGCAGCGGCGCCACAAATTTCAGCCTGCT	MALLLLPLLWAGALA
	GAAACAGGCCGGCGACGTCGAAGAAAATCCTGGA	MESYCGPCPKNWICYK
	CCAATGGCCCTGCTGCTGCTGCTGCCCCTGCTGTGG	NNCYQFFDESKNWYE
	GCCGGCGCCCTGGCTATGGAGAGCTACTGCGGCCC	SQASCMSQNASLLKV
	CTGCCCCAAGAACTGGATCTGCTACAAGAACAACT	YSKEDQDLLKLVKSYH
	GCTACCAGTTCTTCGATGAGAGCAAGAACTGGTAC	WMGLVHIPTNGSWQ
	GAGTCCCAGGCCAGCTGCATGTCCCAGAACGCCAG	WEDGSILSPNLLTIIEM
	CCTACTGAAGGTGTACAGCAAGGAGGATCAGGACC	QKGDCALYASSFKGYIE
	TGCTCAAGCTGGTGAAGAGCTACCATTGGATGGGC	NCSTPNTYICMQRTVG
	CTGGTGCACATCCCCACCAACGGCAGCTGGCAGTG	KHLCPSPLFPGPSKPF
P2A_CD33_NKG2D_linker_	GGAGGACGGGAGCATCCTGTCCCCCAACCTGCTGA	WVLVVVGGVLACYSLL
CD28tm+cyto	CCATCATCGAGATGCAGAAGGGGGGATTGCGCCTTG	VTVAFIIFWVRSKRSRL
	TACGCCAGCTCCTTCAAGGGATACATCGAGAACTGC	LHSDYMNMTPRRPGP
	AGCACACCCAACACCTACATCTGCATGCAGCGGAC	TRKHYQPYAPPRDFAA
	CGTGGGGAAGCACCTGTGCCCCAGCCCCCTCTTCC	YRS-
	CCGGCCCCAGCAAGCCCTTCTGGGTGCTGGTGGTG	
	GTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
	CACAGTGGCCTTCATCATCTTCTGGGTCAGAAGCAA	
	GAGGAGCCGGCTGCTCCACAGCGACTACATGAACA	
	TGACACCCAGAAGGCCCGGCCCCACACGGAAGCA	
	CTACCAGCCCTACGCCCCCCACGGGACTTTGCCGC	
	CTACAGGTCCTGAAAGCTT	
	CTCGAGGGCAGCGGCGCCACAAATTTCAGCCTGCT	MALLLLPLLWAGALA
	GAAACAGGCCGGCGACGTCGAAGAAAATCCTGGA	MESYCGPCPKNWICYK
	CCAATGGCCCTGCTGCTGCTGCTGCCCCTGCTGTGG	NNCYQFFDESKNWYE
	GCCGGGGCCCTGGCTATGGAGAGCTACTGCGGCCC	SQASCMSQNASLLKV
	CTGCCCCAAGAACTGGATCTGCTACAAGAACAACT	YSKEDQDLLKLVKSYH
	GCTACCAGTTCTTCGATGAGAGCAAGAACTGGTAC	WMGLVHIPTNGSWQ
	GAGAGCCAGGCCAGCTGCATGAGCCAGAACGCCA	WEDGSILSPNLLTIIEM
	GCCTGCTGAAGGTGTACTCCAAGGAGGATCAGGAC	QKGDCALYASSFKGYIE
	CTGCTGAAGCTGGTGAAGAGCTACCACTGGATGGG	NCSTPNTYICMQRTVP
	GCTGGTGCACATCCCCACAAACGGGAGCTGGCAGT	SPADLSPGASSVTPPA
P2A_CD33_NKG2D_linker_	GGGAGGATGGCAGCATCCTGAGCCCCAACCTGCTG	PAREPGHSPQIISFFLAL
4-1BB tm+cyto	ACCATCATCGAGATGCAGAAGGGCGACTGCGCCCT	TSTALLFLLFFLTLRFSV
	GTACGCCAGCAGCTTCAAGGGGTACATTGAGAACT	VKRGRKKLLYIFKQPFM
	GCAGCACACCCAACACCTACATCTGCATGCAGAGA	RPVQTTQEEDGCSCRF
	ACAGTTCCTAGTCCTGCAGACTTGTCCCCAGGAGCT	PEEEEGGCEL-
	TCTAGCGTGACCCCTCCAGCTCCAGCTAGAGAACCT	
	GGACATAGCCCACAGATAATTAGTTTCTTTTTGGCC	
	CTGACCTCCACAGCCCTGCTTTTCCTGCTGTTTTTCTT	
	GACTTTGAGATTCTCCGTAGTGAAGCGGGGGGAGGA	
	AGAAACTCCTGTACATCTTTAAGCAGCCCTTCATGA	
	GGCCAGTCCAGACCACCCAGGAGGAGGACGGCTG	
	TAGCTGTAGGTTCCCAGAGGAGGAGGAAGGAGGCT	
	GTGAGCTGTGAAAGCTT	1

Modified NKG2D as co-stimulation Hernández-López et al.

	CTCGAGGGCAGCGGCGCCACAAATTTCAGCCTGCT	MALLLLLPLLWAGALA
	GAAACAGGCCGGCGACGTCGAAGAAAATCCTGGA	MESYCGPCPKNWICYK
	CCAATGGCCCTGCTGCTGCTGCTGCCCCTGCTGTGG	NNCYQFFDESKNWYE
	GCCGGCGCCCTGGCTATGGAGAGCTACTGCGGCCC	SQASCMSQNASLLKV
	CTGCCCCAAGAACTGGATCTGCTACAAGAACAACT	YSKEDQDLLKLVKSYH
	GCTACCAGTTCTTCGATGAGAGCAAGAACTGGTAC	WMGLVHIPTNGSWQ
	GAGTCCCAGGCCAGCTGCATGTCCCAGAACGCCAG	WEDGSILSPNLLTIIEM
	CCTACTGAAGGTGTACAGCAAGGAGGATCAGGACC	QKGDCALYASSFKGYIE
	TGCTCAAGCTGGTGAAGAGCTACCATTGGATGGGC	NCSTPNTYICMQRTVG
	CTGGTGCACATCCCCACCAACGGCAGCTGGCAGTG	KHLCPSPLFPGPSKPF
P2A_NKG2D_CD28tm+linker_	GGAGGACGGGAGCATCCTGTCCCCCAACCTGCTGA	WVLVVVGGVLACYSLL
ICOScyto	CCATCATCGAGATGCAGAAGGGGGATTGCGCCTTG	VTVAFIIFWVCWLTKKK
	TACGCCAGCTCCTTCAAGGGATACATCGAGAACTGC	YSSSVHDPNGEYMFM
	AGCACACCCAACACCTACATCTGCATGCAGCGGAC	RAVNTAKKSRLTDVTL-
	CGTGGGGAAGCACCTGTGCCCCAGCCCCCTCTTCC	
	CCGGCCCCAGCAAGCCCTTCTGGGTGCTGGTGGTG	
	GTGGGGGGGGGGGGCTGCTGCCTGCTGCTGGT	
	CACAGTGGCCTTCATCATCTTCTGGGTCTGTTGGCTT	
	ACAAAGAAAAAGTACAGCTCTAGCGTGCATGATCC	
	TAACGGGGAGTACATGTTTATGAGGGCCGTGAACA	
	CAGCCAAGAAGAGCAGACTGACAGATGTGACACTG	
	TGAAAGCTT	
	CTCGAGGGCAGCGGCGCCACAAATTTCAGCCTGCT	MALLLLPLLWAGALA
	GAAACAGGCCGGCGACGTCGAAGAAAATCCTGGA	MESYCGPCPKNWICYK
	CCAATGGCCCTGCTGCTGCTGCTGCCCCTGCTGTGG	NNCYQFFDESKNWYE
	GCCGGCGCCCTGGCTATGGAGAGCTACTGCGGCCC	SQASCMSQNASLLKV
	CTGCCCCAAGAACTGGATCTGCTACAAGAACAACT	YSKEDQDLLKLVKSYH
	GCTACCAGTTCTTCGATGAGAGCAAGAACTGGTAC	WMGLVHIPTNGSWQ
	GAGTCCCAGGCCAGCTGCATGTCCCAGAACGCCAG	WEDGSILSPNLLTIIEM
	CCTACTGAAGGTGTACAGCAAGGAGGATCAGGACC	QKGDCALYASSFKGYIE
	TGCTCAAGCTGGTGAAGAGCTACCATTGGATGGGC	NCSTPNTYICMQRTVG
	CTGGTGCACATCCCCACCAACGGCAGCTGGCAGTG	KHLCPSPLFPGPSKPF
P2A_NKG2D_CD28tm+linker_	GGAGGACGGGAGCATCCTGTCCCCCAACCTGCTGA	WVLVVVGGVLACYSLL
4-1BBcyto	CCATCATCGAGATGCAGAAGGGGGATTGCGCCTTG	VTVAFIIFWVKRGRKKL
	TACGCCAGCTCCTTCAAGGGATACATCGAGAACTGC	LYIFKQPFMRPVQTTQ
	AGCACACCCAACACCTACATCTGCATGCAGCGGAC	EEDGCSCRFPEEEEGG
	CGTGGGGAAGCACCTGTGCCCCAGCCCCTCTTCC	CEL-
	CCGGCCCCAGCAAGCCCTTCTGGGTGCTGGTGGTG	
	GTGGGGGGGGGTGCTGGCCTGCTACAGCCTGCTGGT	
	CACAGTGGCCTTCATCATCTTCTGGGTCAAGCGGGG	
	GAGGAAGAAACTCCTGTACATCTTTAAGCAGCCCTT	
	CATGAGGCCAGTCCAGACCACCCAGGAGGAGGAC	
	GGCTGTAGCTGTAGGTTCCCAGAGGAGGAGGAAGG	
	AGGCTGTGAGCTGTGAAAGCTT	
	ATGGAGCGGATCAGCAGCCTGATCCACCTGAGCCT	MERISSLIHLSLFWAGV
	GTTCTGGGCCGGAGTGATGAGCGCCATCGAGCTGG	MSAIELVPEHQTVPVSI
	TGCCCGAGCACCAGACCGTGCCCGTGAGCATCGGC	GVPATLRCSMKGEAIG
	GTGCCCGCCACCCTGCGGTGCAGCATGAAGGGCGA	NYYINWYRKTQGNTM
Cl5_V _δ _C _α _cys	GGCCATCGGCAACTACTACATCAACTGGTACAGAA	TFIYREKDIYGPGFKDN
	AGACCCAGGGCAACACCATGACCTTCATCTACCGG	FQGDIDIAKNLAVLKIL
	GAGAAGGACATCTACGGCCCTGGCTTCAAGGACAA	APSERDEGSYYCACDA
	CTTCCAGGGCGACATCGACATCGCCAAGAACCTGG	LKRTDTDKLIFGKGTRV
	CCGTGCTGAAGATCCTGGCCCCCAGCGAGAGGGAC	TVEPNIQNPDPAVYQL

Modified NKG2D as co-stimulation Hernández-López et al.

I		
	GAGGGCAGCTACTACTGCGCCTGCGACGCCCTGAA	RDSKSSDKSVCLFTDF
	GAGAACCGACACCGACAAGCTGATCTTCGGCAAGG	DSQTNVSQSKDSDVYI
	GCACCCGGGTGACCGTGGAGCCCAACATCCAGAAC	TDKCVLDMRSMDFKS
	CCCGACCCCGCGGTGTACCAGCTGCGGGACAGCAA	NSAVAWSNKSDFACA
	GAGCAGCGACAAGAGCGTGTGCCTGTTCACCGACT	NAFNNSIIPEDTFFPSP
	TCGACAGCCAGACCAACGTGAGCCAGAGCAAGGA	ESSCDVKLVEKSFETDT
	CTCCGACGTGTACATCACCGACAAGTGCGTGCTGG	NLNFQNLSVIGFRILLL
	ACATGCGGAGCATGGACTTCAAGAGCAACTCCGCC	KVAGFNLLMTLRLWSS
	GTGGCCTGGTCCAACAAGAGCGACTTCGCCTGCGC	-
	CAACGCCTTCAACAACAGCATCATCCCCGAGGACA	
	CCTTTTTCCCCAGCCCCGAGAGCAGCTGCGACGTGA	
	AACTGGTGGAGAAGAGCTTCGAGACCGACACCAAC	
	CTGAACTTCCAGAACCTGAGCGTGATCGGCTTCAGA	
	ATCCTGCTGCTGAAGGTGGCCGGCTTCAACCTGCTG	
	ATGACCCTGCGGCTGTGGAGCAGCTGAG	
	ATGGAGCGGATCAGCAGCCTGATCCACCTGAGCCT	MERISSLIHLSLFWAGV
	GTTCTGGGCCGGAGTGATGAGCGCCATCGAGCTGG	MSAIELVPEHQTVPVSI
-	TGCCCGAGCACCAGACCGTGCCCGTGAGCATCGGC	GVPATLRCSMKGEAIG
	GTGCCCGCCACCCTGCGGTGCAGCATGAAGGGCGA	NYYINWYRKTQGNTM
	GGCCATCGGCAACTACTACATCAACTGGTACAGAA	TFIYREKDIYGPGFKDN
ر ا	AGACCCAGGGCAACACCATGACCTTCATCTACCGG	FQGDIDIAKNLAVLKIL
	GAGAAGGACATCTACGGCCCTGGCTTCAAGGACAA	APSERDEGSYYCACDA
	CTTCCAGGGCGACATCGACATCGCCAAGAACCTGG	LKRTDTDKLIFGKGTRV
	CCGTGCTGAAGATCCTGGCCCCCAGCGAGAGGGAC	TVEPRSQPHTKPSVFV
	GAGGGCAGCTACTACTGCGCCTGCGACGCCCTGAA	MKNGTNVACLVKEFY
	GAGAACCGACACCGACAAGCTGATCTTCGGCAAGG	PKDIRINLVSSKKITEFD
	GCACCCGGGTGACCGTGGAGCCCAGAAGCCAGCC	PAIVISPSGKYNAVKLG
Cl5_V₅C₅_LiαTmα	CCACACCAAGCCCAGCGTGTTCGTGATGAAGAACG	KYEDSNSVTCSVQHD
	GCACCAACGTGGCCTGCCTGGTGAAAGAGTTCTAC	NKTVHSTDFEVKTDST
	CCCAAGGACATCCGGATCAACCTGGTGTCCAGCAA	DHVKPKETENTKQPSK
	GAAGATCACCGAGTTCGACCCCGCCATCGTGATCA	SCDVKLVEKSFETDTNL
	GCCCCAGCGGCAAGTACAACGCCGTGAAGCTGGGC	NFQNLSVIGFRILLLKV
	AAGTACGAGGACAGCAACAGCGTGACCTGCAGCGT	AGFNLLMTLRLWSS-
	GCAGCACGACAACAAGACCGTGCACAGCACCGACT	
-	TCGAGGTGAAAACCGACTCCACCGACCACGTGAAG	
	CCCAAAGAGACCGAGAACACCAAGCAGCCCAGCA	
	AGAGCTGCGACGTGAAACTGGTGGAGAAGAGCTTC	
	GAGACCGACACCAACCTGAACTTCCAGAACCTGAG	
	CGTGATCGGCTTCAGAATCCTGCTGCTGAAGGTGGC	
	CGGCTTCAACCTGCTGATGACCCTGCGGCTGTGGA	
	GCAGCTGAG	
	ATGGAGCGGATCAGCAGCCTGATCCACCTGAGCCT	MERISSLIHLSLFWAGV
	GTTCTGGGCCGGAGTGATGAGCGCCATCGAGCTGG	MSAIELVPEHQTVPVSI
	TGCCCGAGCACCAGACCGTGCCCGTGAGCATCGGC	GVPATLRCSMKGEAIG
	GTGCCCGCCACCCTGCGGTGCAGCATGAAGGGCGA	NYYINWYRKTQGNTM
	GGCCATCGGCAACTACTACATCAACTGGTACAGAA	TFIYREKDIYGPGFKDN
CI5 VeCel is Tm.	AGACCCAGGGCAACACCATGACCTTCATCTACCGG	FQGDIDIAKNLAVLKIL
	GAGAAGGACATCTACGGCCCTGGCTTCAAGGACAA	APSERDEGSYYCACDA
	CTTCCAGGGCGACATCGACATCGCCAAGAACCTGG	LKRTDTDKLIFGKGTRV
	CCGTGCTGAAGATCCTGGCCCCCAGCGAGAGGGAC	TVEPRSQPHTKPSVFV
	GAGGGCAGCTACTACTGCGCCTGCGACGCCCTGAA	MKNGTNVACLVKEFY
	GAGAACCGACACCGACAAGCTGATCTTCGGCAAGG	PKDIRINLVSSKKITEFD
	GCACCCGGGTGACCGTGGAGCCCAGAAGCCAGCC	PAIVISPSGKYNAVKLG

Modified NKG2D as co-stimulation Hernández-López et al.

[
	CCACACCAAGCCCAGCGTGTTCGTGATGAAGAACG	KYEDSNSVTCSVQHD
	GCACCAACGTGGCCTGCCTGGTGAAAGAGTTCTAC	NKTVHSTDFEVKTDST
	CCCAAGGACATCCGGATCAACCTGGTGTCCAGCAA	DHVKPKETENTKQPSK
	GAAGATCACCGAGTTCGACCCCGCCATCGTGATCA	SCHKPKAIVHTEKLNF
	GCCCCAGCGGCAAGTACAACGCCGTGAAGCTGGGC	QNLSVIGFRILLLKVAG
	AAGTACGAGGACAGCAACAGCGTGACCTGCAGCGT	FNLLMTLRLWSS-
	GCAGCACGACAACAAGACCGTGCACAGCACCGACT	
	TCGAGGTGAAAACCGACTCCACCGACCACGTGAAG	
	CCCAAAGAGACCGAGAACACCAAGCAGCCCAGCA	
	AGAGCTGCCACAAGCCCAAGGCCATCGTGCACACC	
	GAGAAGCTGAACTTCCAGAACCTGAGCGTGATCGG	
	CTTCAGAATCCTGCTGCTGAAGGTGGCCGGCTTCAA	
	CCTGCTGATGACCCTGCGGCTGTGGAGCAGCTGAG	
	ATGGTGTCCCTGCTGCACGCCAGCACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGCGCCCTGTGCGTGTATGGCGCCGGACACC	CVYGAGHLEQPQISST
	TGGAACAGCCCCAGATCAGCAGCACCAAGACCCTG	KTLSKTARLECVVSGITI
	AGCAAGACCGCCAGGCTGGAATGCGTGGTGTCCGG CATCACCATCAGCGCCACCTCCGTGTACTGGTACAG	SATSVYWYRERPGEVI
	AGAGAGACCCGGCGACGTCCGTGTACTGGTACAG	
	GGCATCCCCAGCGGCACCGTGCGGAAAGAGAGC	LTIHNVEKQDIATYYCA LWEIQELGKKIKVFGPG
	CCCCGAGACCAGCACCTCCACCCTGACCATCCACA	TKLIITEDLKNVFPPEVA
	ACGTGGAGAAGCAGGACATCGCCACCTACTACTGC	VFEPSEAEISHTQKATL
	GCCCTGTGGGAGATCCAGGAACTGGGCAAGAAAAT	VCLATGFYPDHVELSW
	CAAGGTGTTCGGCCCTGGCACCAAGCTGATCATCA	WVNGKEVHSGVCTDP
	CCGAAGATCTGAAGAACGTGTTCCCCCCCGAGGTG	QPLKEQPALNDSRYCL
	GCCGTGTTCGAGCCCAGCGAGGCCGAGATCAGCCA	SSRLRVSATFWQNPR
CI5_V γ_ C β	CACCCAGAAAGCCACCCTGGTCTGCCTGGCCACCG	NHFRCQVQFYGLSEN
	GCTTCTACCCCGACCACGTGGAGCTGTCTTGGTGGG	DEWTQDRAKPVTQIVS
	TGAACGGCAAAGAGGTGCACAGCGGCGTCTGCACC	AEAWGRADCGFTSESY
	GACCCCCAGCCCTGAAAGAGCAGCCCGCCCTGAA	QQGVLSATILYEILLGK
	CGACAGCCGGTACTGCCTGAGCAGCCGGCTGAGAG	ATLYAVLVSALVLMAM
	TGAGCGCCACCTTCTGGCAGAACCCCCGGAACCAC	VKRKDSRG-
	TTCCGGTGCCAGGTGCAGTTCTACGGCCTGAGCGA	
	GAACGACGAGTGGACCCAGGACAGAGCCAAGCCC	
	GTGACCCAGATCGTGAGCGCCGAGGCCTGGGGCA	
	GAGCCGACTGCGGCTTCACCAGCGAGAGCTACCAG	
	CAGGGCGTGCTGTCCGCCACCATCCTGTACGAGAT	
	CCTGCTGGGCAAGGCCACACTGTACGCCGTGCTGG	
	TGTCCGCCCTGGTGCTGATGGCTATGGTGAAGCGG	
	AAGGACAGCCGGGGCTGAG	
	ATGGTGTCCCTGCTGCACGCCAGCACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGCGCCCTGTGCGTGTATGGCGCCGGACACC	CVYGAGHLEQPQISST
	TGGAACAGCCCCAGATCAGCAGCACCAAGACCCTG	KTLSKTARLECVVSGITI
	AGCAAGACCGCCAGGCTGGAATGCGTGGTGTCCGG	SATSVYWYRERPGEVI
	CATCACCATCAGCGCCACCTCCGTGTACTGGTACAG	QFLVSISYDGTVRKESG
Cl5_VγCγ_LiβTmβ	AGAGAGACCCGGCGAGGTCATCCAGTTCCTGGTGT	IPSGKFEVDRIPETSTST
	CCATCAGCTACGACGGCACCGTGCGGAAAGAGAGC	LTIHNVEKQDIATYYCA
	GGCATCCCCAGCGGCAAGTTCGAGGTGGACAGAAT	LWEIQELGKKIKVFGPG
	CCCCGAGACCAGCACCTCCACCCTGACCATCCACA	TKLIITDKQLDADVSPK
	ACGTGGAGAAGCAGGACATCGCCACCTACTACTGC	PTIFLPSIAETKLQKAGT
	GCCCTGTGGGAGATCCAGGAACTGGGCAAGAAAAT	YLCLLEKFFPDVIKIHWE
	CAAGGTGTTCGGCCCTGGCACCAAGCTGATCATCA	EKKSNTILGSQEGNTM

Modified NKG2D as co-stimulation Hernández-López et al.

	CCGACAAGCAGCTGGACGCCGACGTGAGCCCCAA GCCTACCATCTTCCTGCCCAGCATCGCCGAGACCAA	KTNDTYMKFSWLTVPE KSLDKEHRCIVRHENN
	GCTGCAGAAGGCCGGCACCTACCTGTGCCTGC AAAAGTTCTTCCCCGACGTGATCAAGATCCACTGGG	KNGVDQEIIFPPIKTDVI TMDPKDNCGFTSESY
	AGGAAAAGAAGAAGAACAACACCATCCTGGGCAGCCA	QQGVLSATILYEILLGK
	GGAAGGCAATACCATCATCCTGGGCAGCCA	ATLYAVLVSALVLMAM
	TGAAGGCAATACCATGAAAACCAACGACACCTACA	VKRKDSRG-
	CTGGACAAAGAGCACAGATGCATCGTCCGGCACGA	VKKD3KG-
	GAACAACAAGAACGGCGTGGACCAGGAAATCATCT	
	TCCCCCCCATCAAGACCGATGTGATCACAATGGACC	
	CCAAGGACAACTGCGGCTTCACCAGCGAGAGCTAC	
	CAGCAGGGCGTGCTGTCCGCCACCATCCTGTACGA	
	GATCCTGCTGGGCAAGGCCACACTGTACGCCGTGC	
	TGGTGTCCGCCCTGGTGCTGATGGCTATGGTGAAGC	
	GGAAGGACAGCCGGGGCTGAG	
	ATGGTGTCCCTGCTGCACGCCAGCACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGCGCCCTGTGCGTGTATGGCGCCGGACACC	CVYGAGHLEQPQISST
	TGGAACAGCCCCAGATCAGCAGCACCAAGACCCTG	KTLSKTARLECVVSGITI
	AGCAAGACCGCCAGGCTGGAATGCGTGGTGTCCGG	SATSVYWYRERPGEVI
	CATCACCATCAGCGCCACCTCCGTGTACTGGTACAG	QFLVSISYDGTVRKESG
	AGAGAGACCCGGCGAGGTCATCCAGTTCCTGGTGT	IPSGKFEVDRIPETSTST
	CCATCAGCTACGACGGCACCGTGCGGAAAGAGAGC	LTIHNVEKQDIATYYCA
	GGCATCCCCAGCGGCAAGTTCGAGGTGGACAGAAT	LWEIQELGKKIKVFGPG
	CCCCGAGACCAGCACCTCCACCCTGACCATCCACA	TKLIITDKQLDADVSPK
	ACGTGGAGAAGCAGGACATCGCCACCTACTACTGC	PTIFLPSIAETKLQKAGT
	GCCCTGTGGGAGATCCAGGAACTGGGCAAGAAAAT	YLCLLEKFFPDVIKIHWE
	CAAGGTGTTCGGCCCTGGCACCAAGCTGATCATCA	EKKSNTILGSQEGNTM
	CCGACAAGCAGCTGGACGCCGACGTGAGCCCCAA	KTNDTYMKFSWLTVPE
CI5_VγCγLiγ_Tmβ	GCCTACCATCTTCCTGCCCAGCATCGCCGAGACCAA	KSLDKEHRCIVRHENN
ΟΙΟ_ΨγΟγΕΙγ_ΤΤΙβ	GCTGCAGAAGGCCGGCACCTACCTGTGCCTGCTGG	KNGVDQEIIFPPIKTDVI
	AAAAGTTCTTCCCCGACGTGATCAAGATCCACTGGG	TMDPKDNCSKDANDT
	AGGAAAAGAAGAGCAACACCATCCTGGGCAGCCA	LLLQLTNLSATILYEILLG
	GGAAGGCAATACCATGAAAACCAACGACACCTACA	KATLYAVLVSALVLMA
	TGAAGTTCAGCTGGCTGACCGTGCCCGAGAAGAGC	MVKRKDSRG-
	CTGGACAAAGAGCACAGATGCATCGTCCGGCACGA	
	GAACAACAAGAACGGCGTGGACCAGGAAATCATCT	
	TCCCCCCATCAAGACCGATGTGATCACAATGGACC	
	CCAAGGACAACTGCAGCAAGGACGCCAACGATACC	
	CTGCTGCTGCAGCTGACCAACCTGTCCGCCACCATC	
	CTGTACGAGATCCTGCTGGGCAAGGCCACACTGTA	
	CGCCGTGCTGGTGTCCGCCCTG	
	GTGCTGATGGCTATGGTGAAGCGGAAGGACAGCCG	
	GGGCTGAG	
	ATGGAGCGGATCAGCAGCCTGATCCACCTGAGCCT	MERISSLIHLSLFWAGV
	GTTCTGGGCCGGAGTGATGAGCGCCATCGAGCTGG	MSAIELVPEHQTVPVSI
	TGCCCGAGCACCAGACCGTGCCCGTGAGCATCGGC	GVPATLRCSMKGEAIG
	GTGCCCGCCACCTGCGGTGCAGCATGAAGGGCGA	NYYINWYRKTQGNTM
LM1_V _δ C _δ _Li _α Tm _α	GGCCATCGGCAACTACTACATCAACTGGTACAGAA	
	AGACCCAGGGCAACACCATGACCTTCATCTACCGG	
	GAGAAGGACATCTACGGCCCTGGCTTCAAGGACAA	APSERDEGSYYCACDT
	CTTCCAGGGCGACATCGACATCGCCAAGAACCTGG	
	CCGTGCTGAAGATCCTGGCCCCCAGCGAGAGGGAC	
	GAGGGCAGCTACTACTGCGCCTGCGACACCCTGGC	NGTNVACLVKEFYPKD

Modified NKG2D as co-stimulation Hernández-López et al.

Г		
	CACCGACAAGCTGATCTTCGGCAAGGGCACCCGGG	
	TGACCGTGGAGCCCAGAAGCCAGCCCCACACCAAG	ISPSGKYNAVKLGKYED
	CCCAGCGTGTTCGTGATGAAGAACGGCACCAACGT	SNSVTCSVQHDNKTV
	GGCCTGCCTGGTGAAAGAGTTCTACCCCAAGGACA	HSTDFEVKTDSTDHVK
	TCCGGATCAACCTGGTGTCCAGCAAGAAGATCACC	PKETENTKQPSKSCDV
	GAGTTCGACCCCGCCATCGTGATCAGCCCCAGCGG	KLVEKSFETDTNLNFQ
	CAAGTACAACGCCGTGAAGCTGGGCAAGTACGAGG	NLSVIGFRILLLKVAGF
	ACAGCAACAGCGTGACCTGCAGCGTGCAGCACGAC	NLLMTLRLWSS-
	AACAAGACCGTGCACAGCACCGACTTCGAGGTGAA	
	AACCGACTCCACCGACCACGTGAAGCCCAAAGAGA	
	CCGAGAACACCAAGCAGCCCAGCAAGAGCTGCGA	
	CGTGAAACTGGTGGAGAAGAGCTTCGAGACCGACA	
	CCAACCTGAACTTCCAGAACCTGAGCGTGATCGGCT	
	TCAGAATCCTGCTGCTGAAGGTGGCCGGCTTCAACC	
	TGCTGATGACCCTGCGGCTGTGGAGCAGCTGAG	
	ATGGAGCGGATCAGCAGCCTGATCCACCTGAGCCT	MERISSLIHLSLFWAGV
	GTTCTGGGCCGGAGTGATGAGCGCCATCGAGCTGG	MSAIELVPEHQTVPVSI
	TGCCCGAGCACCAGACCGTGCCCGTGAGCATCGGC	GVPATLRCSMKGEAIG
	GTGCCCGCCACCCTGCGGTGCAGCATGAAGGGCGA	NYYINWYRKTQGNTM
	GGCCATCGGCAACTACTACATCAACTGGTACAGAA	TFIYREKDIYGPGFKDN
	AGACCCAGGGCAACACCATGACCTTCATCTACCGG	FQGDIDIAKNLAVLKIL
	GAGAAGGACATCTACGGCCCTGGCTTCAAGGACAA	APSERDEGSYYCACDT
	CTTCCAGGGCGACATCGACATCGCCAAGAACCTGG	LATDKLIFGKGTRVTVE
	CCGTGCTGAAGATCCTGGCCCCCAGCGAGAGGGAC	PNIQNPDPAVYQLRDS
	GAGGGCAGCTACTACTGCGCCTGCGACACCCTGGC	KSSDKSVCLFTDFDSQ
	CACCGACAAGCTGATCTTCGGCAAGGGCACCCGGG	TNVSQSKDSDVYITDK
LM1_V _δ _CαLiαTmα	TGACCGTGGAGCCCAACATCCAGAACCCCGACCCC	CVLDMRSMDFKSNSA
	GCGGTGTACCAGCTGCGGGACAGCAAGAGCAGCG	VAWSNKSDFACANAF
	ACAAGAGCGTGTGCCTGTTCACCGACTTCGACAGC	NNSIIPEDTFFPSPESSC
	CAGACCAACGTGAGCCAGAGCAAGGACTCCGACGT	DVKLVEKSFETDTNLNF
	GTACATCACCGACAAGTGCGTGCTGGACATGCGGA	QNLSVIGFRILLLKVAG
	GCATGGACTTCAAGAGCAACTCCGCCGTGGCCTGG	FNLLMTLRLWSS-
	TCCAACAAGAGCGACTTCGCCTGCGCCAACGCCTTC	
	AACAACAGCATCATCCCCGAGGACACCTTTTTCCCC	
	AGCCCCGAGAGCAGCTGCGACGTGAAACTGGTGGA	
	GAAGAGCTTCGAGACCGACACCAACCTGAACTTCC	
	AGAACCTGAGCGTGATCGGCTTCAGAATCCTGCTGC	
	TGAAGGTGGCCGGCTTCAACCTGCTGATGACCCTGC	
	GGCTGTGGAGCAGCTGAG	
	ATGGAGCGGATCAGCAGCCTGATCCACCTGAGCCT	MERISSLIHLSLFWAGV
	GTTCTGGGCCGGAGTGATGAGCGCCATCGAGCTGG	MSAIELVPEHQTVPVSI
	TGCCCGAGCACCAGACCGTGCCCGTGAGCATCGGC	GVPATLRCSMKGEAIG
	GTGCCCGCCACCCTGCGGTGCAGCATGAAGGGCGA	NYYINWYRKTQGNTM
	GGCCATCGGCAACTACTACATCAACTGGTACAGAA	
	AGACCCAGGGCAACACCATGACCTTCATCTACCGG	FQGDIDIAKNLAVLKIL
LM1_V _δ C _δ Li _δ _Tm _α	GAGAAGGACATCTACGGCCCTGGCTTCAAGGACAA	APSERDEGSYYCACDT
	CTTCCAGGGCGACATCGACATCGCCAAGAACCTGG	
	CCGTGCTGAAGATCCTGGCCCCCAGCGAGAGGGAC	PRSQPHTKPSVFVMK
	GAGGGCAGCTACTACTGCGCCTGCGACACCCTGGC	
	CACCGACAAGCTGATCTTCGGCAAGGGCACCCGGG	IRINLVSSKKITEFDPAIV
	TGACCGTGGAGCCCAGAAGCCAGCCCCACACCAAG	
	CCCAGCGTGTTCGTGATGAAGAACGGCACCAACGT	SNSVTCSVQHDNKTV
	GGCCTGCCTGGTGAAAGAGTTCTACCCCAAGGACA	HSTDFEVKTDSTDHVK

Modified NKG2D as co-stimulation Hernández-López et al.

	TECCENTENACETECTECACENACAACATCACE	
	TCCGGATCAACCTGGTGTCCAGCAAGAAGATCACC GAGTTCGACCCCGCCATCGTGATCAGCCCCAGCGG	PKETENTKQPSKSCHK
		PKAIVHTEKLNFQNLSV
	CAAGTACAACGCCGTGAAGCTGGGCAAGTACGAGG	IGFRILLLKVAGFNLLM
	ACAGCAACAGCGTGACCTGCAGCGTGCAGCACGAC	TLRLWSS-
	AACAAGACCGTGCACAGCACCGACTTCGAGGTGAA	
	AACCGACTCCACCGACCACGTGAAGCCCAAAGAGA	
	CCGAGAACACCAAGCAGCCCAGCAAGAGCTGCCAC	
	AAGCCCAAGGCCATCGTGCACACCGAGAAGCTGAA	
	CTTCCAGAACCTGAGCGTGATCGGCTTCAGAATCCT	
	GCTGCTGAAGGTGGCCGGCTTCAACCTGCTGATGA	
	CCCTGCGGCTGTGGAGCAGCTGAG	
	ATGGTGTCCCTGCTGCACGCCAGCACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGCGCCCTGTGCGTGTATGGCGCCGGACACC	CVYGAGHLEQPQISST
	TGGAACAGCCCCAGATCAGCAGCACCAAGACCCTG	KTLSKTARLECVVSGITI
	AGCAAGACCGCCAGGCTGGAATGCGTGGTGTCCGG	SATSVYWYRERPGEVI
	CATCACCATCAGCGCCACCTCCGTGTACTGGTACAG	QFLVSISYDGTVRKESG
	AGAGAGACCCGGCGAGGTCATCCAGTTCCTGGTGT	IPSGKFEVDRIPETSTST
	CCATCAGCTACGACGGCACCGTGCGGAAAGAGAGC	LTIHNVEKQDIATYYCA
	GGCATCCCCAGCGGCAAGTTCGAGGTGGACAGAAT	LWEAQQELGKKIKVFG
	CCCCGAGACCAGCACCTCCACCCTGACCATCCACA	PGTKLIITDKQLDADVS
	ACGTGGAGAAGCAGGACATCGCCACCTACTACTGC	PKPTIFLPSIAETKLQKA
	GCCCTGTGGGAGGCCCAGCAGGAACTGGGCAAGA	GTYLCLLEKFFPDVIKIH
	AAATCAAGGTGTTCGGCCCTGGCACCAAGCTGATC	WEEKKSNTILGSQEGN
	ATCACCGACAAGCAGCTGGACGCCGACGTGAGCCC	TMKTNDTYMKFSWLT
G115 _γ _V _γ _C _β _Li _β _Tm _β	CAAGCCTACCATCTTCCTGCCCAGCATCGCCGAGAC	VPEKSLDKEHRCIVRHE
	CAAGCTGCAGAAGGCCGGCACCTACCTGTGCCTGC	NNKNGVDQEIIFPPIKT
	TGGAAAAGTTCTTCCCCGACGTGATCAAGATCCACT	DVITMDPKDNCSKDA
	GGGAGGAAAAGAAGAGCAACACCATCCTGGGCAG	NDTLLLQLTNLSATILY
	CCAGGAAGGCAATACCATGAAAACCAACGACACCT	EILLGKATLYAVLVSALV
	ACATGAAGTTCAGCTGGCTGACCGTGCCCGAGAAG	LMAMVKRKDSRG-
	AGCCTGGACAAAGAGCACAGATGCATCGTCCGGCA	
	CGAGAACAACAAGAACGGCGTGGACCAGGAAATC	
	ATCTTCCCCCCATCAAGACCGATGTGATCACAATG	
	GACCCCAAGGACAACTGCAGCAAGGACGCCAACG	
	ATACCCTGCTGCTGCAGCTGACCAACCTGTCCGCCA	
	CCATCCTGTACGAGATCCTGCTGGGCAAGGCCACA	
	CTGTACGCCGTGCTGGTGTCCGCCCTGGTGCTGATG	
	GCTATGGTGAAGCGGAAGGACAGCCGGGGCTGAG	
	ATGGTGTCCCTGCTGCACGCCAGCACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGCGCCCTGTGCGTGTATGGCGCCGGACACC	CVYGAGHLEQPQISST
	TGGAACAGCCCCAGATCAGCAGCACCAAGACCCTG	KTLSKTARLECVVSGITI
	AGCAAGACCGCCAGGCTGGAATGCGTGGTGTCCGG	SATSVYWYRERPGEVI
	CATCACCATCAGCGCCACCTCCGTGTACTGGTACAG	QFLVSISYDGTVRKESG
	AGAGAGACCCGGCGAGGTCATCCAGTTCCTGGTGT	IPSGKFEVDRIPETSTST
	CCATCAGCTACGACGGCACCGTGCGGAAAGAGAGG	LTIHNVEKQDIATYYCA
G115γ_VγCγ_LiβTmβ	GGCATCCCCAGCGGCAAGTTCGAGGTGGACAGAAT	LWEAQQELGKKIKVFG
γ_γ~γ~γ_μpp	CCCCGAGACCAGCACCTCCACCCTGACCATCCACA	PGTKLIITDKQLDADVS
	ACGTGGAGAAGCAGGACATCGCCACCTACTACTGC	PKPTIFLPSIAETKLQKA
	GCCCTGTGGGAGGCCCAGCAGGAACTGGGCAAGA	GTYLCLLEKFFPDVIKIH
	AAATCAAGGTGTTCGGCCCTGGCACCAAGCTGATC	WEEKKSNTILGSQEGN
	ATCACCGACAAGCAGCTGGACGCCGACGTGAGCCC	TMKTNDTYMKFSWLT
	CAAGCCTACCATCTTCCTGCCCAGCATCGCCGAGAC	VPEKSLDKEHRCIVRHE
	CAAGCTGCAGAAGGCCGGCACCTACCTGCCGAGAC	NNKNGVDQEIIFPPIKT

Modified NKG2D as co-stimulation Hernández-López et al.

	TGGAAAAGTTCTTCCCCGACGTGATCAAGATCCACT	DVITMDPKDNCGFTSE
	GGGAGGAAAAGAAGAGCAACACCATCCTGGGCAG	SYQQGVLSATILYEILLG
	CCAGGAAGGCAATACCATGAAAACCAACGACACCT	KATLYAVLVSALVLMA
	ACATGAAGTTCAGCTGGCTGACCGTGCCCGAGAAG	MVKRKDSRG-
	AGCCTGGACAAAGAGCACAGATGCATCGTCCGGCA	IN NICKEDSING
	CGAGAACAACAAGAACGGCGTGGACCAGGAAATC	
	ATCTTCCCCCCCATCAAGACCGATGTGATCACAATG	
	GACCCCAAGGACAACTGCGGCTTCACCAGCGAGAG	
	CTACCAGCAGGGCGTGCTGTCCGCCACCAGCGAGAG	
	CGAGATCCTGCTGGGCAAGGCCACACTGTACGCCG	
	TGCTGGTGTCCGCCCTGGTGCTGATGGCTATGGTGA	
	AGCGGAAGGACAGCCGGGGCTGA	
	ATGGTGTCCCTGCTGCACGCCAGCACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGCGCCCTGTGCGCGTGTATGGCGCCGGACACC	CVYGAGHLEQPQISST
		KTLSKTARLECVVSGITI
	TGGAACAGCCCCAGATCAGCAGCACCAAGACCCTG	
	AGCAAGACCGCCAGGCTGGAATGCGTGGTGTCCGG	SATSVYWYRERPGEVI
	CATCACCATCAGCGCCACCTCCGTGTACTGGTACAG	QFLVSISYDGTVRKESG
	AGAGAGACCCGGCGAGGTCATCCAGTTCCTGGTGT	IPSGKFEVDRIPETSTST
	CCATCAGCTACGACGGCACCGTGCGGAAAGAGAGC	LTIHNVEKQDIATYYCA
	GGCATCCCCAGCGGCAAGTTCGAGGTGGACAGAAT	LWEAQQELGKKIKVFG
	CCCCGAGACCAGCACCTCCACCCTGACCATCCACA	PGTKLIITDKQLDADVS
	ACGTGGAGAAGCAGGACATCGCCACCTACTACTGC	PKPTIFLPSIAETKLQKA
	GCCCTGTGGGAGGCCCAGCAGGAACTGGGCAAGA	GTYLCLLEKFFPDVIKIH
	AAATCAAGGTGTTCGGCCCTGGCACCAAGCTGATC	WEEKKSNTILGSQEGN
G115 _γ _V _γ C _γ Li _γ _Tm _β	ATCACCGACAAGCAGCTGGACGCCGACGTGAGCCC	TMKTNDTYMKFSWLT
	CAAGCCTACCATCTTCCTGCCCAGCATCGCCGAGAC	VPEKSLDKEHRCIVRHE
	CAAGCTGCAGAAGGCCGGCACCTACCTGTGCCTGC	NNKNGVDQEIIFPPIKT
	TGGAAAAGTTCTTCCCCGACGTGATCAAGATCCACT	DVITMDPKDNCSKDA
	GGGAGGAAAAGAAGAGCAACACCATCCTGGGCAG	NDTLLLQLTNLSATILY
	CCAGGAAGGCAATACCATGAAAACCAACGACACCT	EILLGKATLYAVLVSALV
	ACATGAAGTTCAGCTGGCTGACCGTGCCCGAGAAG	LMAMVKRKDSRG-
	AGCCTGGACAAAGAGCACAGATGCATCGTCCGGCA	
	CGAGAACAACAAGAACGGCGTGGACCAGGAAATC	
	ATCTTCCCCCCATCAAGACCGATGTGATCACAATG	
	GACCCCAAGGACAACTGCAGCAAGGACGCCAACG	
	ATACCCTGCTGCTGCAGCTGACCAACCTGTCCGCCA	
	CCATCCTGTACGAGATCCTGCTGGGCAAGGCCACA	
	CTGTACGCCGTGCTGGTGTCCGCCCTGGTGCTGATG	
	GCTATGGTGAAGCGGAAGGACAGCCGGGGCTGA	
	ATGGTGAGCCTGCTGCACGCCAGCACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGCGCCCTGTGCGTGTACGGGGCCCGGGCACC	CVYGAGHLEQNPRHKI
	TGGAGCAGAACCCCCGGCATAAGATCACCAAGCTG	TKLSKTARLECVVSGITI
	AGCAAGACCGCCCGGCTGGAGTGCGTGGTGTCCGG	SATSVYWYRERPGEVI
	CATCACAATTAGCGCCACCAGCGTGTACTGGTACCG	QFLVSISYDGTVRKESG
	GGAGCGGCCTGGCGAGGTCATCCAGTTCCTGGTCA	IPSGKFEVDRIPETSTST
CI5_V _{γβ} _C _β Li _β Tm _β	GCATCTCCTACGATGGGACCGTGAGGAAGGAGAGC	LTIHNVEKQDIATYYCA
	GGCATTCCCAGCGGCAAGTTCGAGGTGGATAGGAT	LWEIQELGKKIKVFGPG
	TCCCGAGACAAGCACAAGCACCCTGACAATCCACA	TRLTVLEDLKNVFPPEV
	ACGTGGAGAAGCAGGACATCGCCACATACTACTGC	AVFEPSEAEISHTQKAT
	GCCCTGTGGGAGATCCAGGAGCTGGGGAAGAAAAT	LVCLATGFYPDHVELS
	TAAGGTGTTTGGACCCGGAACAAGACTCACTGTGCT	WWVNGKEVHSGVCT
	TGAAGACCTGAAGAACGTCTTCCCCCCGAGGTGG	DPQPLKEQPALNDSRY
	CTGTCTTTGAACCTTCCGAGGCCGAAATCAGTCACA	CLSSRLRVSATFWHNP

Modified NKG2D as co-stimulation Hernández-López et al.

	CCCAGAAGGCCACTCTGGTCTGTCTCGCCACCGGCT	RNHFRCQVQFHGLSE
	TCTACCCCGATCACGTGGAGTTGAGCTGGTGGGTCA	NDKWPEGSAKPVTQN
	ACGGGAAAGAGGTCCACTCAGGGGTCTGTACCGAC	ISAEAWGRADCGFTSE
	CCCCAGCCATTGAAAGAGCAGCCAGCCCTCAACGA	SYQQGVLSATILYEILLG
	CAGCCGGTACTGCCTGAGCTCCAGACTCCGGGTGA	KATLYAVLVSALVLMA
	GCGCCACATTCTGGCATAACCCTAGGAATCACTTCA	MVKRKDSRG-
	GGTGCCAGGTGCAG	
	TTTCATGGCCTGTCAGAGAACGATAAGTGGCCTGAA	
	GGCTCCGCCAAGCCTGTGACTCAGAACATCAGCGC	
	AGAGGCCTGGGGGCGGGCCGACTGCGGGTTTACCT	
	CTGAGTCCTACCAGCAGGGAGTGCTGAGCGCGACC	
	ATCCTGTACGAGATCCTGCTGGGCAAGGCCACACT	
	GTACGCCGTGCTGGTGAGCGCCCTGGTGCTGATGG	
	CTATGGTGAAGAGGAAGGACTCCAGGGGCTGA	
	ATGGTGAGCCTGCTGCACGCCAGCACACTGGCCGT	MVSLLHASTLAVLGAL
	GTTGGGCGCTCTGTGCGTGTACGGAGCCGGCCATTT	CVYGAGHLEQPQISST
	GGAGCAGCCACAGATTAGCAGCACCAAGACCCTGT	KTLSKTARLECVVSGITI
	CCAAGACCGCCAGGCTGGAGTGCGTGGTGTCCGGG	SATSVYWYRERPGEVI
	ATTACCATTAGCGCCACATCCGTGTACTGGTACCGG	QFLVSISYDGTVRKESG
	GAGCGGCCCGGAGAGGTCATCCAGTTCCTGGTGAG	IPSGKFEVDRIPETSTST
	CATCAGCTACGATGGCACAGTGAGGAAGGAGTCAG	LTIHNVEKQDIATYYCA
	GCATTCCCTCCGGCAAGTTCGAGGTGGATCGGATTC	LWEIQELGKKIKVFGPG
	CCGAGACCTCCACATCCACACTGACAATTCACAACG	TKLIITEDLNKVFPPEVA
	TGGAGAAGCAGGATATTGCCACATACTACTGCGCC	VFEPSEAEISHTQKATL
	CTGTGGGAGATCCAGGAGCTGGGCAAGAAGATCAA	VCLATGFFPDHVELSW
	GGTGTTCGGCCCAGGGACAAAGCTGATCATCACAG	WVNGKEVHSGVCTDP
	AGGACCTGAACAAGGTGTTTCCCCCCGAGGTGGCC	QMLKEQPALNDSRYC
	GTGTTTGAGCCCTCCGAGGCCGAGATCTCCCACACC	LFSWLRVSATFWQNP
Cl5_V _γ _C _{γβ} Li _β Tm _β	CAGAAGGCCACCCTGGTGTGCCTGGCCACCGGGTT	RNHFRCQVQFHGLSE
	CTTCCCTGACCACGTGGAGCTGAGCTGGTGGGTGA	NDKWPEGSAKPVTQN
	ACGGCAAGGAGGTCCACAGCGGCGTGTGCACCGA	ISAEAWGRADCGFTSE
	CCCCCAGATGCTGAAGGAGCAGCCCGCCCTCAACG	SYQQGVLSATILYEILLG
	ATTCCCGGTACTGCCTGTTTAGCTGGCTGAGGGTGA	KATLYAVLVSALVLMA
	GCGCCACATTTTGGCAGAACCCTAGGAACCACTTCA	MVKRKDSRG-
	GGTGCCAGGTGCAGTTCCACGGCTTGAGCGAGAAC	
	GATAAGTGGCCTGAAGGCAGCGCCAAACCCGTGAC	
	CCAGAACATCAGCGCTGAGGCCTGGGGGGGGGGG	
	GATTGCGGATTCACTAGTGAGTCCTACCAGCAGGG	
	GGTGCTGAGCGCCACAATCCTGTACGAAATCCTGCT	
	GGGTAAGGCCACCCTGTACGCCGTGCTGGTGAGCG	
	CCCTGGTGCTGATGGCTATGGTGAAGAGGAAGGAC	
	AGCCGGGGTGA	
	ATGGAAAGGATTAGCTCCCTGATCCACCTGAGCCTG	MERISSLIHLSLFWAGV
	TTCTGGGCCGGCGTGATGAGCGCCATTGAGCTGGT	MSAIELVPEHQTVPVSI
	CCCCGAGCACCAGACAGTGCCTGTGAGCATCGGCG	GVPATLRCSMKGEAIG
	TGCCTGCCACCCTGAGGTGCAGCATGAAGGGAGAG	NYYINWYRKTQGNTM
	GCCATCGGAAACTACTACATTAACTGGTACAGAAA	TFIYREKDIYGPGFKDN
Cl5_V _{αδ} _C _{αδ} LiαTmα	GACACAGGGGAACACTATGACATTCATCTACAGGG	FQGDIDIAKNLAVLKIL
	AGAAGGATATCTACGGCCCTGGGTTTAAGGATAACT	APSERDEGSYYCACDA
	TTCAGGGAGATATCGATATCGCTAAGAACTTGGCCG	LKRTDTDKLIFGKGTRV
	TGCTGAAGATTCTGGCCCCAAGCGAGAGAGATGAA	TVEPNIQNPDPAVFQ
	GGATCTTACTACTGCGCCTGCGATGCCCTGAAGCGG	MRNSKSSDKSVCLFTD
	ACAGAT	FDSQTNVSQSKDSDVF

Modified NKG2D as co-stimulation Hernández-López et al.

Г		
	ACAGACAAGTTGATCTTTGGCAAGGGGACAAGAGT	ITDKCVLDMRSMDFKS
	GACAGTCGAGCCTAACATTCAGAACCCCGATCCCG	NSAVAWSNKSDFACA
	CCGTGTTCCAGATGCGGAACAGCAAGTCCAGCGAT	NAFNNSIIPEDTFFPSP
	AAGAGCGTGTGCCTGTTCACAGATTTCGATAGCCAG	ESSCDVKLVEKSFETDT
	ACAAACGTGAGCCAGAGCAAGGACAGCGACGTGTT	NLNFQNLSVIGFRILLL
	CATTACAGATAAGTGCGTGCTGGACATGCGGAGCA	KVAGFNLLMTLRLWSS
	TGGATTTCAAGAGCAACAGCGCCGTGGCCTGGAGC	-
	AACAAGAGCGATTTCGCCTGCGCCAACGCCTTCAA	
	CAACAGCATCATCCCCGAGGATACCTTCTTCCCCAG	
	CCCAGAGAGCAGCTGCGACGTGAAGCTGGTGGAG	
	AAGAGCTTCGAGACAGATACAAACCTGAACTTCCA	
	GAACCTGAGCGTGATCGGGTTCAGAATCCTGCTGCT	
	GAAGGTGGCCGGCTTCAACCTGCTGATGACACTGA	
	GGCTGTGGAGCAGCTGA	
	ATGGTGAGCCTGCTGCACGCCAGTACCCTGGCCGT	MVSLLHASTLAVLGAL
	GCTGGGAGCATTGTGCGTGTACGGGGCCGGGCATT	CVYGAGHLEQNPRHKI
	TGGAACAGAACCCTAGACACAAGATTACTAAATTGT	TKLSKTARLECVVSGITI
	CTAAAACAGCTAGACTTGAATGTGTCGTGAGCGGA	SATSVYWYRERPGEVI
	ATTACGATTAGTGCCACAAGCGTCTACTGGTACAGA	QFLVSISYDGTVRKESG
	GAGAGACCTGGCGAAGTGATCCAGTTCCTGGTGAG	IPSGKFEVDRIPETSTST
	CATTAGCTACGATGGGACAGTCCGGAAGGAGAGCG	LTIHNVEKQDIATYYCA
	GCATCCCCTCCGGGAAGTTCGAGGTGGATAGAATT	LWEIQELGKKIKVFGPG
	CCTGAGACAAGCACAAGCACCCTGACCATCCACAA	TRLTVLEDLNKVFPPEV
	CGTGGAGAAGCAGGACATCGCCACCTACTACTGCG	AVFEPSEAEISHTQKAT
	CCCTCTGGGAGATCCAGGAGCTGGGGAAGAAGATT	LVCLATGFFPDHVELS
	AAGGTGTTTGGCCCCGGCACTAGGCTGACCGTGCT	WWVNGKEVHSGVCT
	GGAGGACCTGAACAAGGTGTTCCCCCCCGAGGTCG	DPQMLKEQPALNDSR
	CCGTGTTCGAGCCTAGCGAGGCCGAGATTAGCCAC	YCLFSWLRVSATFWQ
CI5_V _{γβ} _C _{γβ} Li _β Tm _β	ACCCAGAAGGCCACCCTGGTGTGCCTGGCCACCGG	NPRNHFRCQVQFHGL
	GTTCTTTCCCGACCACGTGGAGCTGTCCTGGTGGGT	SENDKWPEGSAKPVT
	GAACGGCAAGGAGGTCCACAGCGGCGTGTGCACA	QNISAEAWGRADCGF
	GATCCCCAGATGCTCAAGGAGCAGCCCGCCCTGAA	TSESYQQGVLSATILYEI
	CGATAGCAGGTACTGCCTGTTCAGCTGGCTGCGGG	LLGKATLYAVLVSALVL
	TGAGCGCCACATTCTGGCAGAACCCCCGGAACCAC	MAMVKRKDSRG-
	TTCCGGTGCCAGGTGCAGTTCCACGGGCTGAGCGA	
	GAACGATAAGTGGCCCGAGGGCAGCGCCAAGCCC	
	GTGACACAGAACATCTCCGCCGAGGCCTGGGGGGCG	
	GGCCGACTGCGGGTTTACATCCGAGAGCTACCAGC	
	AGGGCGTGCTGTCCGCCACAATCCTGTACGAGATC	
	CTGCTGGGGAAGGCCACACTGTACGCCGTCCTGGT	
	GAGCGCCCTGGTGCTGATGGCTATGGTGAAGAGGA	
	AGGACAGCAGGGGGGGA	

Modified NKG2D as co-stimulation Hernández-López et al.

	Primer name	Sequence (5´-3')	Remarks
To create type II NKG2D chimera	CD28cyto_FW1	ATT CCA TGG GTA GAA GCA AG	Used to make NKG2D- CD28 type II construct.
	ICOScyto_FW1	TTT CCA TGG GTT GCT GG	Used to make NKG2D- ICOS type II construct.
	NKG2D_OIEx_RV1	GCAGCAGAAAAAGA AGGG	Used together with primers CD28cyto_FW1 or ICOScyto_ FW1 to make NKG2D-CD28 type II and NKG2D-ICOS type II constructs. DNA template used: CD28cyto-NKG2D tm (18 nt) or ICOScyto-NKG2D tm (18 nt)
	NKG2D_BamHI_RV2	ATT GGA TCC TCA GAC GGT C	Used to make NKG2D- CD28 and NKG2D-ICOS type II constructs.
	NKG2D_FW2	CCCTTCTTTTTCTGCT GC	Used together with primer NKG2D_BamHI_RV2 to make NKG2D-CD28 type II and NKG2D-ICOS type II constructs. DNA template used: type II 4-1BBcyto-NKG2D tm + ec

Modified NKG2D as co-stimulation Hernández-López et al.

To create P2A_NKG2D_CD28tm+linker_ 4-1BBcyto and P2A_NKG2D_CD28tm+linker_CD28cyto	P2A_ FW2	CGC CAA GCT GTT CTT CCT GC	To amplify: NKG2D_CD28linker_CD28T M
	CD28tm_RV2	GAC CCA GAA GAT GAT GAA GGC CAC	To amplify: NKG2D_CD28linker_CD28T M
	41BBcyto_FW1	TTCATCATCTTCTGG GTCAAGCG GGG GAG GAA GAA ACT C	To amplify: 41BB cyto
	pmp71_RV	GGC TCG TGT TAA GCT TTC ACA	To amplify: 41BB cyto and ICOS
	ICOS_FW1	TTCATCATCTTCTGG GTCTGT TGG CTT ACA AAG AAA AAG TAC AGC T	To amplify: ICOS cyto