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Abstract:

Bacteria equipped with genetically-encoded lactate biosensors would support several
applications in biopharmaceutical production, diagnosis, or therapeutics. However, many
applications involve glucose-rich and anaerobic environments, in which current whole-cell
lactate biosensors have low performance. Here we engineered a synthetic lactate biosensor
system by repurposing the natural LIJPRD promoter regulated by the LIdAR transcriptional
regulator. We removed glucose catabolite repression by designing a hybrid promoter containing
LIdR operators and tuned both regulator and reporter gene expression to optimize biosensor
signal-to-noise ratio. The resulting lactate biosensor, termed ALPaGA (A Lactate Promoter
Operating in Glucose and Anaerobia) can operate in glucose rich, aerobic and anaerobic
conditions. Our work provides a versatile lactate biosensing platform suitable for many

environmental conditions.
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MAIN TEXT

Lactate is produced from anaerobic metabolism' and has long been considered as a waste
product. Lactate can negatively influence the production yield and quality of several
bioprocesses and its monitoring is thus important in the food and biopharmaceutical

industry®™.

On the other hand, lactate is a versatile and important raw material for various industrial
processes. Lactate derivatives are used as food additives for their antimicrobials, antioxidants,

&8 such

or flavoring properties®. Lactate is also a basic building block for various biopolymers
as polylactic acid used in the construction of biomedical devices because of its biodegradability
and biocompatibility®. Lactate production is thus an important part of the bioeconomy and is
mostly produced from renewable feedstocks using the natural sugar fermentation capacity of a

wide number of microbes and fungi'.

As a central product of anaerobic metabolism, lactate is also a key biomarker of the human
physiological state'. In medicine, lactic acidosis occurs in several conditions such as sepsis or
diabetes and is an important parameter to be monitored in patients admitted in intensive care
units’. In oncology, lactate produced by cancer cells is a hallmark of solid tumors that leads to

tumor acidification and participates in immune system inhibition'.

For all these reasons, lactate monitoring is important and several detection systems have been
developed™ . Most of them involve enzymatic reactions of lactate oxidase and lactate
dehydrogenase coupled to amperometric detection' or electrochemical biohybrid oxygen
sensor based on natural bacteria metabolism'. Yet, these biosensing methods either have low

sensitivity or are expensive, limiting their use and deployment.

Another approach for lactate detection is to use whole-cell biosensors. These sensors based on
living cells, often bacteria, generally use a specific transcription factor responding to a signal of
interest and its target promoter to regulate the expression of a reporter gene'®'®. This strategy
has produced a wide range of biosensors responding to a variety of metabolites including
heavy-metals, butanol, alkanes, acyl- or malonyl-CoA?*?’.  Whole-cell biosensors are highly

sensitive, specific, and the replicating nature of microorganisms support their cost-effective
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production. In addition, genetically-encoded sensors can also serve as input signals for genetic
circuits controlling cellular behavior such as cell growth in specific environmental conditions®,
conditional control and optimization of metabolic pathways*®, or production of a therapeutic

payload®' 3231,

Genetically encoded lactate biosensors operating in bacteria have been recently engineered for
monitoring lactate levels in biopharmaceutical production or restrain the growth and activity of
bacterial cancer therapeutic to the tumor microenvironment*3*34  All these biosensors are
based on the Escherichia coli LIAPRD promoter controlled by the LIdR regulator in response to
lactate®*° (Figure 1A). LIdR triggers induction of the IIdPRD operon responsible for lactate
metabolism when E.coli cells are grown in lactate as sole carbon source. Despite having
demonstrated functionality and promising results, existing lactate biosensors face several

challenges.

First, current lactate biosensors operate on high-copy number plasmids, which are notoriously
associated with metabolic burden®* and genetic instability®®, limiting their application, both in
vitro*® and in vivo®'. Biosensors operating at low-copy numbers are thus needed. Second, for
many applications, the environment is rich in glucose, the preferred carbon source for
Escherichia coli** which often shuts down operons controlling the utilization of other carbon
sources though carbon catabolite repression (CCR)*“. Indeed, the native lactate utilization
operon is subject to CCR* and at least one of the previously engineered lactate biosensors was
shown to exhibit a lower performance and a ~70% lower induction response in presence of
glucose’. Third, lactate biosensors would be highly useful in anaerobic environments to
monitor lactate production. For example, the best production of lactate is obtained from
anaerobically growing lactic acid bacteria’ and lactate production in solid tumors is linked to
their hypoxic nature'?. Yet, transcription of the IIDRPD operon was shown to be repressed

under anaerobic reducing conditions*’~°.

To extend the range of application of lactate biosensors, we thus aimed at engineering a sensor
operating in glucose-rich and anaerobic environments. By analyzing the regulatory logic of the
lactate biosensor system based on the native LIdRPD promoter operating at low-copy numbers

in E. coli we observed strong repression by glucose and anaerobic conditions. We then
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engineered and finely tuned a synthetic L-lactate biosensor able to operate in presence of

glucose and under both aerobic and anaerobic conditions.

We first assessed the functionality of the L-lactate whole-cell biosensor by constructing the
biosensor described by Goers and coworkers®. This biosensor is based on the wild-type
promoter of LIAPRD operon and expresses the LIdR regulator from the pHyperspank promoter.
To address the issues associated with high-copy numbers, we placed this system on a
low-copy plasmid with pSC101 origin of replication (5-10 copies)®'. We designed two other
versions of the biosensor in which we used two different strong constitutive promoters to
control expression of the LIdR gene (Figure 1A). To assess the sensitivity of the biosensors to
glucose-mediated carbon catabolite repression, we tested their response in M9 with or without
0.4% glucose (22 mM). All biosensors were able to sense L-lactate in M9 when lactate was
used as a sole carbon source, demonstrating that this system can operate at low-copy numbers
(Figure 1B, Supplementary Figure S1). The versions in which /[dR expression was driven by
strong constitutive promoters (in particular J23104) had a much better response than the one in
which pHyperspank was used, after 4 h of induction. Sensor exhibited a ~7 fold change in
accordance with previously published results®*** with a half maximal effective concentration
(EC50) of ~1.6 mM. However, when glucose or glycerol were added as a carbon source the
biosensor response considerably dropped, confirming strong catabolic repression of the LIdPRD
promoter by these sugars, with no detectable response in the presence of glucose (Figure 1B,
Supplementary Figure S2). Catabolic repression directly affects the LIJPRD promoter, as
repression is observed even when the pHyperspank promoter (also known to be subject to
CCR) was not used to control lldR expression. We then tested the sensor response in anaerobic
conditions. As expected from literature, we observed no response from our L-lactate biosensor
after 16h of induction, confirming strong inhibition of the promoter (Figure 1B, Supplementary
Figure S2). These results demonstrate that while capable of operating at low-copy numbers,
the lactate biosensor based on the wild-type LIDPRD system is not usable in glucose-rich nor in

anaerobic conditions, greatly limiting its range of applications.

To overcome the catabolic repression observed by glucose, we engineered a synthetic L-lactate
promoter. This promoter was constructed by using a sequence from a constitutive promoter to
replace the sequence between the -35 and -10 of the wild type LIAPRD promoter, combined with

the operator sequences recognized by LIdR. The first version of the system using this synthetic
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promoter was highly leaky (Supplementary Figure S3). To optimize the biosensor response
through directed evolution we created a double RBS library to concomitantly variate expression
of GFP and /ldR (Figure 1C, left). The double library was transformed into E. coli DHS5alpha
and FACS sorting was used to screen variants based on GFP fluorescence intensity (Fig. 1C,
right, Supplementary Figure S4). For the first sort, cells producing GFP were selected after
induction with 20 mM of lactate in presence of glucose after overnight growth. A second round
of positive selection was made by using 10 mM of lactate. A third and last round in the absence
of inducer was performed to select variants with lower leakiness. After these sequential rounds,
80 biosensor variants were recovered and tested for their response to 1 mM of lactate and 0.4%
glucose in aerobic and anaerobic conditions (Figure 1D, Supplementary Figure S4). Variants
with the higher fold changes were selected and characterized as a function of L-lactate
concentration. The final L-lactate sensor variant had a ~3.4 fold change in the presence of
glucose under aerobic conditions and a ~3.2 fold change in the presence of glucose under

anaerobic conditions (Figure 1D).

We then established the dose-response curve of the biosensor to L-lactate in the presence of
glucose under aerobic and anaerobic conditions (Figure 1E) and calculated an EC50 of
~110uM under aerobic conditions and ~90uM under anaerobic conditions. Quite surprisingly,
when we tried various concentrations of glucose, we observed an increase in basal GFP
fluorescence at higher glucose concentration (Supplementary Figure S5). We attribute this
effect on the positive effect of higher glucose concentration on bacterial growth and metabolism
(Supplementary Figure S6). Nevertheless this effect was small compared with the increment
due to the lactate induction. We termed our promoter ALPaGA for “A Lactate Promoter

Operating in Glucose and Anaerobia”.
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Figure 1. Engineering a L-lactate whole-cell biosensor operating in glucose-rich and anaerobic
environment. (A) Architecture and regulation of the low-copy lactate responsive biosensor based on the
wt LIAPRD system. (B) Biosensor response to lactate, in presence or not of 0.4% glucose and oxygen.
(left) response of wt LIJPRD promoter to 0.4% glucose, 10 mM of lactate and both under aerobic (+O,)
or anaerobic (-O,) conditions. (right) Regulatory logic diagram of the wild type P, 4prp Promoter response
to lactate, glucose and oxygen. Truth table is represented below. (C) Design and optimization of A
Lactate Promoter Operating in Glucose and Anaerobia, P, .. (left) Design of the synthetic promoter,

J23101 was used as a constitutive core promoter and the two operators were included conserving the
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original distance from the LIDPRD promoter. The RBS library for IldR and GFP is detailed. (right)
schematic representation of library screening by FACS enrichment in M9 plus glucose in presence and
absence of lactate. (D) Engineered sensor response to combinations of lactate, glucose and oxygen.
(left) response of synthetic promoter system to 0.4% glucose, 10 mM of lactate and its combination
under aerobic (+0,) or anaerobic (-O,) conditions. (right) Regulatory logic diagram and truth table of the
ALPaGA promoter system. (E) Dose response of the engineered lactate biosensor to lactate and
glucose. The fluorescence (a.u.) is shown under aerobic (+O,) or anaerobic (-O,) conditions. For all
experiments, the data represent the average of three biological replicates performed on different days in

triplicates. Errors bars: +/- SD

In conclusion, we engineered a synthetic lactate biosensor driven by the engineered ALPaGA
promoter reliably operating in glucose-rich and anaerobic conditions in which previous systems
using the wild-type LIDPRD promoter had poor performance. In addition, we show that the
biosensor can operate at a low-copy humber, reducing potential metabolic burden effects, and
making it compatible with future clinical applications. Our system still exhibits some background
expression due to leakiness of the engineered promoter, negatively affecting its signal-to-noise
ratio. While we were able to reduce leakiness via directed evolution of ribosome binding sites
controlling regulator and reporter expressions, further improvement in biosensor signal-to-noise
ratio could be done using other circuit engineering methods which have already been applied to
the wt LIdR system®*2,

The ALPaGA lactate biosensor presented here will be useful for many applications in which the
environment is glucose rich and/or anaerobic, such as monitoring bioproduction processes or

restricting the activity of bacterial cancer therapeutics within the tumor microenvironment.
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METHODS

Strains and plasmids

The implementation of the biosensor was done in E. coli strain DH5alphaZ1 (laci?, PN25-tetR,
SpR, deoR, supE44, Delta(lacZYA-argFV169), Phi80 lacZDeltaM15, hsdR17(rK- mK+), recA1,
endA1, gyrA96, thi-1, relA1). DH5alphaZ1 was grown on LB media with kanamycin 25ug/mL to
do the cloning of plasmids. For experimental measurements the cells were grown in M9 minimal
medium supplemented with 0.4% of glycerol and kanamycin 25ug/mL. L-lactic acid
(Sigma-Aldrich, L1750) was used to induce the cells at different concentrations. Carbon sources

concentration as glycerol and glucose, are given as % mass (W/v %).

Library design, and plasmids construction

The RBS library design refers to iGEM parts: BBa K1725301 - K1725332 (Group:
iIGEM15_Glasgow). All variants are derived from Anderson-family RBS BBa_ B0032 with the
following sequences: TCACACANRARRG. One-step isothermal Gibson assembly was used to

build all plasmids described.

All the biosensor parts were built on the backbone pSB4K5%', containing a pSC101 origin of
replication and kanamycin resistance. Enzymes for the one-step isothermal assembly were
purchased from New England BioLabs (NEB, Ipswich, MA, USA). PCR were performed using
Q5 PCR master mix and One-Taq quick load master mix for colony PCR (NEB), primers were
purchased from IDT (Louvain, Belgium), and DNA fragments from Twist Bioscience. All
plasmids were purified using QlAprep spin Miniprep kit (Qiagen) and sequence verified by

Sanger sequencing in Eurofins Genomics, EU.

DNA encoding the LIdR transcription factor (IldR) and the wild type promoter sequence pLIdPRD
were amplified from E. coli based on * design. All primers were designed to support cloning by
Gibson assembly at an identical location in pSB4K5 template vector. Consequently, all primers
were composed of the 40 bp spacer 0 at 5’ end, and 40 bp spacer N at 3' end. The DNA
sequence for the Alpaga promoter was synthesized as linear fragments by Twist Bioscience.
Each DNA fragment was PCR amplified and assembled between spacer 0 and N in pSB4K5

template vector. All DNA sequences are listed in Table for Supplementary Information.

Sensor characterization
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The different biosensor circuits were transformed in E. coli strain DH5alphaZ1 and plated on LB
agar medium containing kanamycin. Three different colonies for each circuit were picked and
inoculated, separately, into 500uL of M9 supplemented with 0.4% of glycerol and kanamycin in
96 DeepWell polystyrene plates (Thermo Fisher Scientific, 278606) sealed with AeraSeal film
(Sigma-Aldrich, A9224-50EA) and incubated at 37°C for 16h with shaking (300 rpm) and 80% of
humidity in a Kuhner LT-X (Lab-Therm) incubator shaker. After overnight growth the cells were
adjusted at OD 0.1 in a fresh medium with antibiotics and L-lactate at different concentrations,
with or without glucose 0.4%. Cells were induced at 37°C for 16h with or without shaking for
aerobic and anaerobic conditions, respectively. The induction in anaerobic conditions was done
by growing the cells in a BD GasPak EZ Anaerobe Container System (BD; 260003) with a BD
GasPak EZ pouch system (BD; 260678) for 16h at 37°C, and analyzed by flow cytometry. All

experiments were performed at least 3 times in triplicate.

The goodness of fit and the sensitivity were calculated by applying non-linear regression using
sigmoidal curve function and EC50 using GraphPad Prism. The fold change was calculated as
follows: for lactate only conditions, because cells needed lactate as a carbon source, we did not
have a data point without lactate. Because the promoters are leaky, we could not either use
negative control cells without biosensor as our non-induced condition. Thus, fold change was
calculated as the fluorescence intensity at maximal lactate concentration divided by the
fluorescence intensity at the lowest lactate concentration, which is well below the threshold
lactate concentration at which an inflexion is observed in dose-response curves. For cells
growing in glucose, fold change was calculated as fluorescence intensity at maximal lactate

concentration divided by the fluorescence intensity when no lactate was added.

Flow cytometry

Flow cytometry was performed on Attune NxT flow cytometer (Thermo Fisher) equipped with an
autosampler and Attune NxT Version 2.7 Software. Experiments on Attune NxT were performed
in 96-well plates with setting; FSC: 200 V, SSC: 380 V, green intensity BL1: 460 V (488 nm
laser and a 510/10 nm filter). All events were collected with a cutoff of 20,000 events. Every
experiment included a negative control harboring the plasmid but without reporter gene, to
generate the gates. The cells were gated based on forward and side scatter graphs and events
on single-cell gates were selected and analyzed, to remove debris from the analysis (Fig. S21),

by Flow-Jo (Treestar, Inc) software. The geometrical median of the fluorescence histogram of
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each gated population was calculated and is reported here as the fluorescence value of a

sample in arbitrary units (a.u.).

Cell sorting.

Cell sorting was performed using a Bio-Rad S3 cell sorter (Bio-rad). 100,000 cells were gated
under three different induction conditions (Fig. S5). They were collected in SOC medium during
the sorting and recovered for 1 hour before being inoculated in 10 mL of LB/chloramphenicol

medium for 18 hours at 37°C with shaking.
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