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Abstract 1 

Attempts to identify and prioritize functional DNA elements in coding and 2 

noncoding regions, particularly through use of in silico functional annotation data, 3 

continue to increase in popularity. However, specific functional roles may vary 4 

widely from one variant to another, making it challenging to summarize different 5 

aspects of variant function. Here we propose Multi-dimensional Annotation Class 6 

Integrative Estimation (MACIE), an unsupervised multivariate mixed model 7 

framework capable of integrating annotations of diverse origin to assess multi-8 

dimensional functional roles for both coding and noncoding variants. Unlike 9 

existing one-dimensional scoring methods, MACIE views variant functionality as 10 

a composite attribute encompassing multiple different characteristics, and 11 

estimates the joint posterior functional probability vector of each genomic position, 12 

a quantity that offers richer and more interpretable information in the presence of 13 

multiple aspects of functionality. Applied to a variety of independent coding and 14 

non-coding datasets, MACIE demonstrates powerful and robust performance in 15 

discriminating between functional and non-functional variants. We also show an 16 

application of MACIE to fine-mapping using lipids GWAS summary statistics data 17 

from the European Network for Genetic and Genomic Epidemiology Consortium.18 
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Introduction 

Ever since the completion of the human genome sequence, substantial effort has 

been invested into identifying and annotating functional DNA elements. For any 

given genetic variant, a diverse set of functional annotations is now available. For 

example, the computational tool PolyPhen1 predicts damaging effects of 

missense mutations. PhastCons2, PhyloP3, and GERP++4 leverage comparative 

sequence information to identify regions that show evolutionary conservation. 

The Encyclopedia of DNA Elements (ENCODE) has extensively mapped regions 

of transcription factor binding, chromatin structure, and histone modification, 

effectively assigning biochemical functions for ~80% of the genome5. Other 

initiatives such as the Roadmap Epigenomics project6 and FANTOM5 project7,8 

also provide evidence for potential regulatory variants in the human genome. 

 

Although functional annotations vary considerably with respect to the specific 

elements they evaluate and the extent of the human genome they annotate, it is 

well understood that they provide complementary lines of evidence9. Therefore, 

in order to obtain a comprehensive understanding of the biological relevance of 

genomic segments, all of the information provided by different annotations should 

be jointly synthesized. However, it remains unclear how to summarize these 

diverse functional annotations in an insightful and interpretable manner. 

 

Current algorithmic scoring frameworks utilize a variety of statistical and 

machine-learning methods to aggregate information from large, diverse sets of 
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individual annotations into single measures of functional importance. Supervised 

tools such as CADD10, DANN11, GWAVA12, FATHMM-MKL13, and FATHMM-XF14 

build machine learning classifiers on training sets with pre-labeled functional 

statuses, e.g., fine-mapped pathogenic or disease-associated variants labeled 

against benign or neutral variants. Such supervised approaches rely strongly on 

the quality of labels in the training set. Therefore, they may demonstrate 

suboptimal performance when inaccurate or biased labels are used. 

Unsupervised methods such as EIGEN15, GenoCanyon16, PINES17, and FUN-

LDA18 do not rely on any labeled training data. They possess advantages in 

studying non-coding regions, where our current lack of knowledge often 

precludes gold-standard training data labels. A third group of methods including 

fitCons19 and LINSIGHT20 use evolution-based approaches that characterize the 

potential effect of natural selection at each genomic location using polymorphism 

and divergence data. Recent reviews provide a more detailed discussion of 

available functional annotation tools21,22. 

 

Although existing methods attempt to integrate functional annotations through 

various approaches, to the best of our knowledge, these methods all summarize 

the annotation information with a single rating. In doing so, they implicitly assume 

that variant function can be described along a single axis, with variants being 

more functional on one end of the axis and less functional on the other end. This 

assumption may be reasonable if interest lies in predicting a specific aspect of 

variant function (e.g. regulatory behavior) and all annotations used as input are 
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intended to predict that same aspect. However, if multiple aspects of variant 

function are simultaneously of interest, then it is unclear how to interpret the one-

dimensional consolidation of annotations measuring different aspects of function, 

especially when these annotations appear to provide orthogonal information, e.g., 

weak correlation between evolutionary conservation scores and regulatory 

scores (Figure 1). Therefore, it is of interest to construct multi-dimensional 

integrative scores capable of capturing multiple facets of variant function 

simultaneously. 

 

In this paper we propose Multi-dimensional Annotation Class Integrative 

Estimation (MACIE), an unsupervised multivariate mixed model framework 

capable of synthesizing multiple categories of annotations and producing 

interpretable multi-dimensional integrative scores (Supplementary Figure 1). 

Instead of a single rating, MACIE explicitly defines variant function as a vector of 

binary outcomes, each outcome capturing functionality corresponding to a 

specific class of annotations. Correlations within and between the different 

classes of annotations are explicitly modeled, another advancement over existing 

methods. Using the Expectation-Maximization algorithm, MACIE calculates the 

joint posterior probability vector of a genomic position being functional (Methods). 

 

Because of its multivariate formulation, MACIE is able to provide detailed and 

nuanced assessments of variant functionality. Output from MACIE is highly 

interpretable due to the specificity allowed by multiple functional classes. 
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Additionally, the MACIE framework allows for considerable versatility to 

incorporate data in a manner that is most biologically relevant to the scientific 

question of interest. We apply MACIE to multiple independent coding and 

noncoding testing sets and show that, compared to current state-of-the-art 

integrative scores, MACIE consistently provides robust and best or near best 

performance in discriminating between functional and non-functional variants. 

 

Results 

Construction of MACIE training sets  

MACIE scores were computed for (1) nonsynonymous coding and (2) noncoding 

and synonymous coding variants separately because the two types of variants 

are expected to have highly different functional profiles15. All nonsynonymous 

coding annotations and some noncoding and synonymous coding annotations 

were downloaded from EIGEN. The remaining noncoding and synonymous 

coding annotations were downloaded from CADD full database10 v1.3. 

 

Nonsynonymous coding variants 

For the nonsynonymous coding training set, we randomly extracted 10% of the 

variants with a match in the dbNSFP database23. This database excludes 

synonymous variants that fall in coding regions but do not alter protein function. 

Only one unique variant per position was selected, and variants residing in sex 

chromosomes X and Y were removed to mitigate potential sources of bias. The 

final set included approximately 2.2 million variants. For each variant in the 
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training set, four protein substitution damage scores (SIFT24, PolyPhenDiv, 

PolyPhenVar1, Mutation Assessor25) and eight evolutionary conservation scores 

(GERP_NR and GERP_RS4; PhyloP primate (PhyloPri), placental mammal 

(PhyloPla), and vertebrate (PhyloVer)3; PhastCons primate (PhastPri), placental 

mammal (PhastPla), and vertebrate (PhastVer)2) were extracted from the EIGEN 

database15. Thus we defined the two-class MACIE model �� � 2� for 

nonsynonymous coding variants to assess damaging protein coding function and 

evolutionarily conserved function. Full information on the MACIE model for 

nonsynonymous coding variants and the list of individual functional scores are 

given in Methods and Supplementary Table 1. 

 

Noncoding and synonymous coding variants 

For the noncoding and synonymous coding training set, we extracted a random 

sample comprising 10% of the variants in the 1000 Genomes Project dataset that 

were located within 500 bp upstream of a gene start site and did not possess a 

match in dbNSFP. Duplicated variants with multiple alternative alleles and 

variants in sex chromosomes X and Y were again removed to mitigate potential 

bias. The final training set included 36,431 variants. For each variant in the 

training set, the same eight evolutionary conservation scores used for coding 

variants were extracted from the EIGEN full database15. A total of twenty-eight 

transformed epigenetic scores were additionally extracted from the CADD 

database10 v1.3, including a collection of regulatory annotations from the 

ENCODE Project5, three transcription factor binding site scores, GC content, 
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CpG content, five chromatin state probabilities derived from the 15 state 

ChromHMM model26, a background selection score27, and physical distance 

metrics10. We then defined the two-class MACIE model �� � 2� for noncoding 

and synonymous coding variants to assess evolutionarily conserved function and 

epigenetic regulatory function. Full information on the MACIE model for 

noncoding and synonymous coding variants and the list of individual functional 

scores are given in Methods and Supplementary Table 1. Detailed information 

on pre-processing steps for the epigenetic scores are given in Supplementary 

Table 2. 

 

Benchmarking the performance of MACIE with other integrative scoring 

methods 

We compared the predictive performance of MACIE against existing state-of-the-

art variant classifiers including CADD10, FATHMM-XF14, EIGEN15, fitCons19, 

LINSIGHT20, and DANN11 over a range of realistic variant assessment scenarios. 

Specifically, we assessed the ability of each score to identify clinically significant 

variants from ClinVar28,29; loss-of-function variants in the BRCA1 gene uncovered 

through saturation genome editing (SGE)30; promoters and enhancers from the 

FANTOM5 project defined by cap analysis of gene expression (CAGE)7,8; and 

experimentally verified functional variants from massive parallel reporter assays 

(MPRA)31,32. Some alternative scoring methods were excluded due to difficulties 

related to providing a proper comparison of results. For example, LINSIGHT is 
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designed to predict the deleteriousness of noncoding variants, so we did not 

include it in the comparison for nonsynonymous coding variants. 

 

Distribution of posterior probabilities for noncoding and synonymous 

coding variants in the training set 

In Supplementary Table 3 we provide the posterior probabilities of each 

functional class averaged across all the noncoding and synonymous coding 

variants in the training set. The predicted MACIE score for a given variant can be 

interpreted as the posterior probability of that variant belonging to (0,0), neither 

conserved nor regulatory classes; (1,0), the conserved but not the regulatory 

class; (0,1), the regulatory but not the conserved class; and (1,1), both conserved 

and regulatory classes. The four MACIE scores necessarily sum up to 1. A chi-

squared test comparing observed and expected percentages under 

independence of evolutionary and regulatory classes gives a significant P value 

of less than 2.2 � 10���, suggesting that the two classes are correlated. We 

further estimate that 29.23% of the variants belong to either the (1,0), (0,1), or 

(1,1) class, that is, they offer functionality through evolutionary conserved 

processes, regulatory activity, or both. Since the observed percentage of 

functional variants that belong to (1,1) is statistically significantly greater than the 

expected percentage under independence (3.15% > 1.96%), we find strong 

evidence of enrichment of epigenetic activity in conserved regions. Additionally, 

the MACIE model for noncoding and synonymous coding variants estimates that 

8.04% and 24.34% of the variants show evolutionarily conserved and regulatory 
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functionality, respectively. This is consistent with the prediction from LINSIGHT 

and other previous studies that approximately 7% - 9% of noncoding sites are 

under evolutionary constraint20,33, as well as an estimated upper bound of 25% of 

the functional fraction within the human genome34. 

 

ClinVar pathogenic and benign variants 

We first validated our methods on a testing set consisting of all variants recorded 

in the ClinVar database28,29. Variant effect predictor (VEP) information was 

extracted from GENCODE35 and used to separate nonsynonymous coding 

variants from noncoding and synonymous coding variants in ClinVar. The two 

MACIE models described above were then applied to the respective partitions. 

We combined the ClinVar categories “pathogenic” and “likely pathogenic” into a 

single pathogenic class and treated these variants as the putatively functional 

class. Similarly, we combined the ClinVar categories “benign” and “likely benign” 

into a single benign class and treated these variants as the putatively non-

functional class. The remaining variants were categorized as having uncertain 

significance. 

 

We first tested MACIE’s ability to distinguish pathogenic variants (
 � 33,714) 

from their benign counterparts (
 � 14,410) among ClinVar nonsynonymous 

variants through two approaches. First, we calculated two marginal MACIE 

scores: (1) MACIE-damaging protein function score (denoted by MACIE-protein) 

as the sum of the posterior probabilities of “damaging protein functional/not 
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conserved” and “damaging protein functional/conserved”; (2) MACIE-conserved 

score as the sum of the posterior probabilities of “damaging protein 

functional/conserved” and “not damaging protein functional/conserved”. We also 

considered the posterior probability of either damaging protein functional or 

conserved (denoted by MACIE-anyclass) by summing the posterior probabilities 

corresponding to at least one functional class. This example illustrates the 

versatility of MACIE’s posterior probability outputs, which can be summed to form 

new probability measures with various informative interpretations depending on 

the specific needs of each analysis. 

 

Figure 2 provides the receiver operating characteristic (ROC) curves and area 

under the curves (AUC) for the three MACIE approaches and seven one-

dimensional scores for ClinVar nonsynonymous variants. Of the methods 

considered, MACIE-damaging protein function score delivered the highest 

discrimination power (AUC = 0.93), followed by CADD (AUC = 0.91), EIGEN 

(AUC = 0.90), and MACIE-anyclass (AUC = 0.89). These four methods 

substantially outperformed the supervised DANN (AUC = 0.78), the supervised 

FATHMM-XF (AUC = 0.74), and the evolution-based fitCons (AUC = 0.54). 

Similar results were observed when distinguishing between pathogenic missense 

(as opposed to all nonsynonymous) variants (
 � 21,409) from their benign 

counterparts (
 � 14,035) in ClinVar (Supplementary Figure 2). 
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Next, we identified 40,109 noncoding variants from ClinVar database in total, 

including 6,551 pathogenic variants, and 33,558 benign variants. For these 

noncoding variants, we chose to calculate a marginal MACIE-conserved score, 

as ClinVar pathogenic noncoding variant labels track closely with evolutionary 

conservation scores (Figure 1). ROC curves and AUCs for discriminating 

between the pathogenic and benign variants are provided in Supplementary 

Figure 3. MACIE-conserved score showed comparable performance (AUC = 

0.95) to FATHMM-XF score, which showed the highest discrimination power 

(AUC = 0.97). The outperformance of FATHMM-XF in this specific example 

should be expected because FATHMM-XF is a supervised machine-learning 

method trained on labels that bear many similarities to the labels defined in 

ClinVar, while MACIE is an unsupervised method. We performed Wilcoxon rank-

sum tests to compare the distribution of integrative scores between ClinVar 

pathogenic and benign noncoding variants for each method. The Wilcoxon test P 

values for both FATHMM-XF and MACIE-conserved scores were less than 

2.2 � 10����, representing high discriminative abilities for each score. MACIE-

conserved score substantially outperformed the unsupervised method EIGEN 

(AUC = 0.84) and the evolution-based method fitCons (AUC = 0.55). 

 

Loss-of-function nonsynonymous coding variants in BRCA1 

We evaluated MACIE’s performance in predicting the deleteriousness of 

nonsynonymous coding variants located within 13 exons that encode functionally 

critical domains of BRCA1. A two-component Gaussian mixture model was fit 
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based on the saturation genome editing  function scores to classify all BRCA1 

variants as loss-of-function (LOF), intermediate (INT), or functional (FUNC), in a 

decreasing order of severity30. Thus, FUNC corresponds to benign variants in 

this experiment. We selected reported LOF nonsynonymous coding variants 

(
 � 674) as the putative functional set and designated FUNC nonsynonymous 

coding variants (
 � 1,443) as the putative non-functional set. Among all the 

methods compared (Figure 3), MACIE-damaging protein function score showed 

the highest predictive power (AUC = 0.91), followed by EIGEN (AUC = 0.88) and 

MACIE-anyclass (AUC = 0.88). The top three scores were much more powerful 

than CADD (AUC = 0.78), FATHMM-XF (AUC = 0.69), DANN (AUC = 0.60) and 

fitCons (AUC = 0.42). The Wilcoxon test P value for MACIE-damaging protein 

function score was the lowest (� � 7.60 � 10����), and was orders of magnitude 

smaller than EIGEN (� � 7.22 � 10���	), CADD (� � 1.81 � 10�	
) and other 

integrative scores. We observed similar results when distinguishing between 

BRCA1 LOF nonsynonymous coding variants (
 � 674) and ClinVar benign 

nonsynonymous coding variants (
 � 14,410) (Supplementary Figure 4). 

 

FANTOM5 CAGE-defined promoters and enhancers among 1000 Genomes 

noncoding variants 

We tested the ability of MACIE to identify promoter regions defined by the cap 

analysis of gene expression conducted during the FANTOM5 project7,8. A total of 

110,895 out of approximately 80 million noncoding variants from the 1000 

Genomes Project Phase 3 data36 were mapped to such regions and therefore 
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labeled as CAGE promoters. For each identified CAGE promoter variant, we 

used the 1000 Genomes Project database to randomly select a matched control 

variant (non-promoter) that possessed the same minor allele frequency (MAF) 

and same minimum distance to any gene transcription start site that was located 

at least 500 kilobase (kb) away from the promoter variant, yielding a total number 

of 97,298 variants in the control set (it was not possible to find a matched control 

for each CAGE variant). Similar to the previous analysis, we calculated a 

marginal MACIE-regulatory score by summing the two probabilities 

corresponding to the regulatory class (denoted by MACIE-regulatory). ROC 

curves and AUCs for discriminating between CAGE promoters and non-

promoters are provided in Figure 4a. MACIE-regulatory and MACIE-anyclass 

scores showed the highest discrimination power (AUC = 0.75), followed by 

EIGEN with AUC = 0.74. The Wilcoxon test P value for MACIE-regulatory score 

was less than 2.2 � 10����, indicating high discrimination ability. FATHMM-XF 

(AUC = 0.54) and fitCons (AUC = 0.56) scores performed poorly due to the 

inability of these one-dimensional scores to capture epigenetic functionality. We 

also performed a similar analysis by contrasting CAGE-identified enhancers 

(
 � 520,987) versus non-enhancers (
 � 448,253) using noncoding variants 

from the 1000 Genomes Project. The results were similar, with MACIE-regulatory 

score displaying the highest predictive power and significantly outperforming all 

other state-of-the-art methods (Figure 4b). 

 

MPRA validated variants and dsQTLs in lymphoblastoid cell lines  
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We examined the performance of MACIE for predicting cell type/tissue-specific 

regulatory variants using test sets from the massively parallel reporter assay. The 

MPRA dataset included validated regulatory variants in lymphoblastoid cell lines 

(LCLs)31. We paired each positive variant (
 � 693) with four control variants 

from MPRA where neither allele showed significant differential expression at a 

Bonferroni corrected P value threshold of 0.1 (
 � 2,772)37. Figure 5a shows that 

MACIE-regulatory score produced the highest discrimination power (AUC = 0.68), 

outperforming the second-best performing method  (LINSIGHT, AUC = 0.64). 

 

Finally, we evaluated the performance of our proposed method on a collection of 

dsQTLs that were identified using DNase I sequencing data from human 

lymphoblastoid cell lines38. Variants possessing association P values less than 

1 � 10�
 and residing within 100 bp of their corresponding DNase I-

hypersensitive sites were chosen as the putatively functional set (
 � 560)39. The 

control set of variants was randomly selected from a larger set of common 

variants (MAF > 5%) falling in the top 5% of DNase I sensitivity sites used to 

identify dsQTLs in the original study (
 � 2,240). We observed that MACIE-

regulatory score exhibited a larger AUC (AUC = 0.76) than all other methods 

(Figure 5b). MACIE-anyclass score also delivered robust performance on MPRA 

validated and dsQTLs datasets. 

 

In summary, MACIE consistently ranked as one of the most powerful, robust and 

interpretable methods across a variety of settings and scientific questions. Our 
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results show that while one-dimensional scores have gaps in coverage, a multi-

dimensional scoring method offers robust and interpretable predictive 

performance. The ability of MACIE to interrogate variant functionality from 

multiple perspectives, at a level that is highly competitive with or better than state 

of the art methods, is unmatched by existing integrative functional scoring 

methods. 

 

MACIE prioritizes functional variants using lipids GWAS data 

To illustrate the utility of MACIE scores in identifying plausible functional causal 

variants in genetic association studies, we applied MACIE to the publicly 

available lipids GWAS data from the European Network for Genetic and Genomic 

Epidemiology (ENGAGE) Consortium40. This dataset consists of lipids GWAS 

summary statistics for 9.6 millon single nucleotide variants (SNVs) across 62,166 

samples. We focused on genome-wide significant (� � 5 � 10��) SNVs 

associated with low-density lipoprotein cholesterol (LDL-C), high-density 

lipoprotein cholesterol (HDL-C), triglycerides (TG), and total cholesterol (TC). In 

total, we found 8, 9, 6, and 11 nonsynonymous coding SNVs that were predicted 

to belong to the protein damaging class with probability greater than 0.9 for LDL-

C, HDL-C, TG, TC, respectively; 640, 377, 322, and 846 synonymous or 

noncoding SNVs that were predicted to belong to the regulatory class with 

probability greater than 0.9; 50, 64, 39, and 61 SNVs that were predicted to 

belong to the evolutionarily conserved class with probability greater than 0.9; and 

9, 8, 10, 12 SNVs that were predicted to belong to both evolutionarily conserved 
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and regulatory class with probability greater than 0.9 (Supplementary Tables 5-

12). Compared to the total number of marginally significant SNVs for each trait 

(Supplementary Table 4), the MACIE scores reduce the number of SNVs 

prioritized for follow-up by an order of magnitude, saving much cost and effort in 

effectively pinpointing SNVs with relevant biological function. 

 

For example, for LDL-C, the single most significant SNV was rs7412 

(chr19:45412079 C/T; � � 1 � 10����). We predicted this known common 

missense SNV to be functional, as both MACIE-protein and MACIE-conserved 

scores provided a prediction greater than 0.95. These predictions highlight the 

multiple functional roles of this SNV. It is also worth noticing that the second most 

significant SNV rs1065853 (chr19:45413233 G/T; � � 1 � 10����) is in extremely 

high linkage disequilibrium (LD) with the leading SNV rs7412 (Figure 6). MACIE 

scores indicate that rs1065853 (upstream variant of APOC1) may possess a 

regulatory role since its MACIE-regulatory score is greater than 0.99, possibly 

suggesting that both the missense and regulatory variants can be putatively 

causal in affecting LDL-C levels. Similar results were observed for TC 

(Supplementary Figure 7). For HDL-C, although the single most significant SNV 

was rs17231506 (chr16:56994528 C/T; � � 6.88 � 10����), the MACIE prediction 

was less than 0.01 for both classes. By scanning across the CETP locus and 

nearby noncoding regions associated with HDL-C, we found that two SNVs, 

rs72786786 (chr16:56985514 G/A; � � 2.52 � 10��
�) and rs12720926 

(chr16:56998918 A/G; � � 1.89 � 10����), both under moderate to high LD with 
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the leading SNV (Supplementary Figure 5), possess a MACIE-regulatory score 

greater than 0.99. These two SNVs may be more functionally important than 

rs17231506 and may provide more information regarding risk-perturbing 

biological mechanisms associated with this locus and can be prioritized for 

functional followup. For TG, there is also a lack of functional evidence for the 

leading SNV rs964184 (chr11:116648917 G/C; � � 1.74 � 10��
�) in the 

APOA1/C3/A4/A5 gene cluster region. However, a SNV rs2075290 

(chr11:116653296 C/T; � � 2.13 � 10����) in moderate LD with rs964184 at this 

locus has a MACIE-regulatory score of 0.88 (Supplementary Figure 6). These 

examples illustrate how MACIE scores can be used to supplement previous 

literature and provide additional information to aid prioritization of putatively 

functional causal variants for functional followup. 

 

Discussion 

As the amount of publicly available annotation data increases and our 

understanding of variant functional effects continues to grow, describing variant 

functionality with a flexible yet practically interpretable and intuitive vocabulary 

will only become more important. Existing one-dimensional integrative scores 

cannot capture the multi-faceted functional profile of a variant because such 

ratings necessarily combine diverse, and possibly unrelated, sets of annotations 

into a single outcome. Oftentimes, they also ignore or do not fully take into 

account the correlation between individual annotations. In some cases, ignoring 

correlations between functional annotations can result in a score that is biased 
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towards larger classes of correlated annotations (Methods). Current supervised 

methods further demonstrate performance profiles that are linked strongly to the 

quality of training set labels. These supervised scores may lack robustness in the 

absence of gold-standard training sets. 

 

In this paper we have proposed MACIE, an unsupervised multivariate mixed 

model framework that allows for multiple, possibly correlated, binary functional 

statuses. This framework offers several fundamental advancements over existing 

methods. First, MACIE provides multi-dimensional scores that measure 

functionality across multiple different functional classes. As posterior predictive 

probabilities, these scores are interpretable and scientifically relevant. They can 

be further summarized into marginal measures such as “probability of function 

according to at least one class of annotations” or “probability of function 

according to all classes of annotations”. Classes of annotation can be defined 

separately for different types of variants, for example, coding and noncoding 

variants. 

 

Second, the MACIE model accommodates correlations both within- and 

between- classes. It has been reported that, while some of the available 

annotations measure similar notions of functionality, others provide distinct and 

complementary information9,22. By flexibly modeling potential, complex 

correlations across all the annotations, MACIE reflects this underlying biology. In 
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doing so, it is better able to assign each annotation and group of annotations the 

appropriate amount of influence. 

 

In multiple independent testing datasets, we showed that MACIE delivers 

powerful and robust performance in discriminating between functional and non-

functional variants. Using lipids GWAS summary statistics data from the 

ENGAGE consortium, we also illustrated that MACIE offers an effective tool for 

fine-mapping studies to prioritize top hit in silico functional variants for 

experimental follow-up. MACIE scores have already been used, for example, to 

identify and characterize inflammation and immune-related risk variants in 

squamous cell lung cancer41. Finally, the proposed MACIE scores can be used 

as a weighting scheme to further empower variant-set analyses of rare variants42. 

 

Our proposed MACIE framework provides a multi-dimensional functional class 

extension of several existing unsupervised single scoring frameworks, such as 

EIGEN.15 MACIE fits a mixed model to the set of annotations for several latent 

functional classes and outputs the corresponding posterior component 

probabilities, which are highly interpretable. If we assume that there exists a 

single latent dichotomous variable summarizing functional status and that all 

annotations are independent conditional on the univariate functional status, then 

MACIE reduces to the GenoCanyon framework (Supplementary Figure 1b)16. 
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The versatility of the MACIE approach does introduce additional decisions that 

investigators need to make. For example, one needs to decide which set of 

annotations to include and how to group the annotations. The exponential family 

assumption in the model may also require a proper transformation for each 

individual annotation score before fitting the model. Operationally, users need to 

consider the trade-off between a more complex model (e.g., by increasing the 

number of classes or the number of functional scores in each class) and 

computation time. Such issues will become more relevant when extending the 

MACIE framework to integrate cell type-specific, tissue-specific, species-specific, 

or phenotype-related annotations17,18,37. Nevertheless, these choices again 

highlight the flexibility of the MACIE approach. Unlike other one-dimensional 

algorithms that rely on assumptions more likely to be satisfied when the number 

of annotations is small, the MACIE statistical model scales well with increasing 

annotation data. Thus, MACIE can be expected to provide more meaningful 

predictions as the availability of annotation scores continues to expand and the 

quality of these data improves. 

 

A final important consideration in practical analysis concerns the differences 

between supervised and unsupervised methods. The performance of 

unsupervised scores may lag behind supervised methods when training datasets 

with relevant, high-quality labels are available. We observed this behavior when 

comparing MACIE to FATHMM-XF in ClinVar noncoding variants. Future 
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extensions of interest include development of tools capable of integrating both 

supervised and unsupervised methods to further improve prediction accuracy37. 

 

The MACIE scores used in all benchmarking examples are available for 

download at https://github.com/xihaoli/MACIE. Precomputed MACIE scores for 

all nonsynonymous coding, synonymous coding and noncoding variants in the 

human genome will be available. All genomic coordinates are given in NCBI 

Build 37/UCSC hg19. 

 

URLs 

1000 Genomes: http://www.1000genomes.org. BRCA1 SGE: 

https://sge.gs.washington.edu/BRCA1. CADD: http://cadd.gs.washington.edu. 

ChromHMM: http://compbio.mit.edu/ChromHMM. ClinVar: 

https://www.ncbi.nlm.nih.gov/clinvar. DANN: https://omictools.com/deleterious-

annotation-of-genetic-variants-using-neural-networks-tool. EIGEN: 

http://www.columbia.edu/~ii2135/eigen.html. ENGAGE Consortium: 

http://diagram-consortium.org/2015_ENGAGE_1KG. FANTOM5 CAGE: 

https://fantom.gsc.riken.jp/5/data. FATHMM-XF: 

http://fathmm.biocompute.org.uk/fathmm-xf. fitCons: 

http://compgen.cshl.edu/fitCons. GENCODE: https://www.gencodegenes.org. 

LINSIGHT: http://compgen.cshl.edu/~yihuang/LINSIGHT. LocusZoom: 

http://locuszoom.org. MACIE: https://github.com/xihaoli/MACIE. 
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Methods 

The MACIE generalized linear mixed model (GLMM) 

Suppose we are interested in � � 1, … , � latent annotation classes, each 

containing � � 1, … , �� annotation scores. For example, the first class may 

consist of �� � 4 protein functional scores and the second class may consist of 

�� � 8 evolutionary conservation scores. For genetic variant � and annotation 

class �, we denote the set of �� annotations as ��� � �����, … , ������
, such that 

each variant is described by � � ∑ ��
�
���  annotations in total. We want to estimate 

for each variant � the vector of binary functional statuses  � � �!��, … !���, where 

!�� is the unobserved latent functional status for class �. Continuing our example, 

!�� would denote membership in the evolutionarily conserved function class while 

!�� would denote membership in the regulatory function class. Conditional on !�� 

and a random effect variable "���, we assume that the elements of ��� are 

independent observations, each generated from a one-parameter exponential 

family with canonical parameterization. That is,  

#��$����|!�� , "���& � exp *+����,��� - .��$,���&/0��
1 2��$���� , 0��&3 , 
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(1) 

with  

4��� � 5$����& � .��
� $,���&, 

6��� � Var$����& � .��
�� $,���&0�� , 

where ,��� � :��$4���& is a linear function of the functional status !�� and random 

effect variable "��� such that 

,��� � ;��� 1 !��;��� 1 "��� � <��
� =�� 1 "��� 

for <�� � $1, !��&�
 and =�� � $;���, ;���&�

. Additional correlations between 

elements of ��� are allowed by assuming that 

>�� � ? "���@"���

A ~����6C �D, E��F��. 
The marginal distribution of �� � � ���

�, … , ���
��� can be obtained by integrating 

over the distribution of  � and >� � � >��
�, … , >��

���, 

#���� � G ?H I #$���|!�� , >��&#$>�� , F&d>��

�

���

A K�!��, … , !���.�,…,�

�����,…,����� 

 

(2)  

Our primary focus concerns calculation of K� �|���, the posterior probability of  � 

conditional on the observed data ��. Because of the conditional independence of 

�� given  � and >�, an Expectation-Maximization (EM) algorithm provides a 

natural approach43. However, the integration in Equation (2) cannot be evaluated 

in closed form whenever ��� conditional on !�� and >�� is not normally distributed 

(e.g. ��� has dichotomous components). Thus, challenges arise in computing 
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K� �|��� � #���| ��K� ��/#����. Approximations are used when applying the EM 

algorithm to obtain =�� and 0�� for non-normally distributed annotations. 

 

Given the fitted model parameters and the full set of annotation scores for a new 

variant ��, the MACIE score of variant �� is defined as the posterior probability 

vector K� �� � M|����, M N O0,1P�. It can be calculated by performing one additional 

iteration of the EM algorithm. 

 

Derivation of the EM algorithm used in MACIE GLMM 

In the following, we let Q� be the vector of length R where each element takes 

the value 1, and let S� be the R � R matrix of ones, i.e. S� � Q� � Q�
� . Let T� be 

the R � R identity matrix. Subscripts are dropped whenever the dimensions of 

the vector or matrix are clear. Our derivations follow those of Sammel et al.44, 

who considered a general class of latent variable models that allow for linear 

effects of covariates on multiple outcomes. 

 

Maximization step 

If  � and >�� were directly observable, one can maximize the complete data log-

likelihood, 

log #��,  , >� � G ?G G log #��$����|!�� , "���; =�� , 0��&�

���

�

���

1 G log #$>��; F&�

���

�

���

1 log K� �; Y�A 
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(3) 

to estimate the unknown parameters Z � �=, [, \, F�, where \ corresponds to the 

vector of length 2� that holds the probability of each possible realization of 

 � . However, since  � and >�� are unobservable, the EM algorithm can be applied 

by instead solving the expected score functions, where the expectation is taken 

with respect to 

#� � , >�|��� � #�>�| � , ���K� �|��� � H #$>��|��� , !��&�

���

· K� �|���, 
which is the posterior distribution of the missing data conditional on the observed 

data45. If we let �̂�_� denote the complete data score function ` log #��� ,  �  , >�� /
`_ of Equation (3), then each variant’s contribution to the expected score function 

for \ is given by 

5�,� �̂$Y��,…,��& � K�!�� � a�, … , !�� � a�|���Y��,…,��
 

(4) 

for all �a�, … a�� N O0,1P�. Therefore, based on Equation (4), the M-step update 

for \ in moving from iteration b to b 1 1 is 

Yc��,…,��
����� � ∑ K̂����!�� � a�, … , !�� � a�|����

��� C . 
(5) 

For Z��, the subset of parameters corresponding to only the ��th outcome, the 

contribution to the expected score equation for variant � is 

5�,� �̂$Z��& � G eI �̂$Z��&#�>�|�� ,  ��d>�f K� �|���.
 �!"�,�#�

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.06.425527doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425527
http://creativecommons.org/licenses/by-nd/4.0/


 

(6)  

Depending on the form of the score function associated with the complete data 

log-likelihood ^$Z��& � ∑ �̂$Z��&�
��� , the solution to 5�,�^$Z��& � D may or may not 

be available in closed form. In the absence of a closed form solution, we update 

the estimates Z�� through a one-step Fisher scoring algorithm. The usual method 

of estimation for this model is iteratively reweighed least squares,46 where the 

weight function is updated at every iteration. 

 

Expectation step 

Given the current estimates of the parameters, Z � �=, [, \, F�, the E-step is 

complicated by the need to compute expectations with respect to the posterior 

distributions #�>�|�� ,  �� and K� �|��� of the missing data, conditional on the 

observed data. Only for normal outcomes will the posterior distributions have 

closed form solutions. In our setting, there are generally no closed form 

expressions for #�>�|�� ,  �� and K� �|���. As an alternative to analytical solutions, 

we first write the expectation of functions of the data :� � , >�� � :��� ,  � , >�� by, 

5�,�:� � , >�� � G eI :��� ,  � , >��#�>�|�� ,  ��d>�f K� �|���
 �!"�,�#�

, 
(7) 

and further rewrite the posterior distributions as 

#�>�|�� ,  �� � H #$���|!�� , >��&#$>��&g #$���|!�� , >��&#$>��&d>��

�

���

, 
K� �|��� � ∏ ig #$���|!�� , >��&#$>��&d>��j�

��� · K�!��∑ ∏ ig #$���|!�� , >��&#$>��&d>��j�
��� · K� � !"�,�#�

. 
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By substituting into Equation (7), we obtain 

5�,�:� � , >�� � ∑ ig :��� ,  � , >�� ∏ #$���|!�� , >��&#$>��&�
��� d>�j · K�!�� �!"�,�#�∑ ∏ ig #$���|!�� , >��&#$>��&d>��j�

��� · K� �� �!"�,�#�
. 

(8) 

If :��� ,  � , >�� � :$���� ,  ��� , >���& for some �� N O1, … , �P, then the integral in the 

numerator of Equation (8) is equivalent to 

H kI :$���� ,  ��� , >���&�$����%#$���|!�� , >��&#$>��&d>��l�

���

 

(9) 

where 1�� � ��� is equal to 1 if � � �� and 0 otherwise. In this case, a practical 

approach for approximation is to use multivariate Gauss-Hermite quadrature. To 

approximate Equation (9), we select m fixed abscissae Oa&P&��
�  and corresponding 

weights On&P&��
�  for a quadrature whose integration kernel is given by the density 

of a standard normal distribution47. Given the spectral decomposition of E� �
o�p�o�

�, let q�& � +q�&�1�, … , q�&$��&/ be an ordered set of �� integers obtained by 

sampling with replacement from O1, … , mP, M�& � �a'�����, … , a'��$�%��
 the 

corresponding set of abscissae, and >�& � o�p�
�/�M�&. Then each term in the 

product of Equation (9) 

I :$���� ,  ��� , >���&�$����%#$���|!�� , >��&#$>��&d>�� 

can be approximated as 

G ?H n'�����

�

���

A :$���� ,  ��� , >��&&�$����%#$���|!�� , >�&&,
'��
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where the sum is over all the possible ordered sets q�&. For some ordered sets q�& 

the weights ∏ n'�����
�
���  are very small and thus contribute little to the sum. We 

may choose to remove these quantities by pruning a specified fraction of the 

smallest weights. 

 

MACIE: EM algorithm for mixed binary and normal annotations 

The general formulation of Equation (1) allows different link functions :���r� for 

different annotations, as well as different covariance structures E��F� to 

accommodate for correlations between the annotations (Supplementary Figure 

1c). In this section, we derive specific theoretical results for the EM algorithm 

when annotations are either conditionally bernoulli or normal random variables, 

i.e. all link functions :���r� are either the identity or logistic link. We also introduce 

restrictions on the covariance matrices E��F� that allow for accurate 

approximations while greatly reducing the algorithm's computational speed. We 

call this algorithm MACIE for Multi-dimensional Annotation Class Integrative 

Estimation. 

 

Suppose that conditionally on !�� and >��, the first ��
��� of the �� outcomes ��� 

follow a bernoulli distribution and the remaining ��
��� � �� - ��

��� outcomes follow a 

normal distribution. That is, for � � 1,2, … , ��
���, ����  has distribution 

#��$����|!�� , "���& � expi����,��� - log+1 1 exp$,���&/j 
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where 4��� � exp$,���& /+1 1 exp$,���&/ and 6��� � 4���$1 - 4���&. Then for 

� � ��
��� 1 1, ��

��� 1 2, … , ��, ����  has the distribution 

#��$����|!�� , "���& � exp
st
tt
uv����4��� - 4���

�2 w
0��

- 12 v����
�

0��
1 log$2x0��&w

yz
zz
{ , 

where 4��� � ,��� and 6��� � 0��. 

 

If E��F� is left unstructured, then the EM algorithm will need to estimate ��$�� 1
1�/2 parameters for the covariance matrix of class �. An even greater 

computational challenge is that the multivariate Gauss-Hermite quadrature will 

require m� fixed abscissas. Thus, to reduce the number of model parameters 

and to make the algorithm computationally feasible, we assume that >�� � p�|�� 

where |�� is an unobserved vector of length �� � �� that follows �6C�D, T�. Then 

for the E-step, 

I :$���� ,  ��� , >���&�$����%#$���|!�� , >��&#$>��&d>��

� I :$��� ,  �� , >��&�$����%#$���|!�� , >��&#$|��&d|�� , 
so that integration is over a ��-dimensional space as opposed to an ��-

dimensional space. The assumption >�� � p�|�� forms the basis of factor analysis 

models48 and is appropriate when the relationship between �� manifest variables 

is thought to be primarily a result of the relationship between �� underlying 

variables. For functional annotations, the underlying variables are likely to 

correspond to different approaches measuring the same element. As in factor 
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analysis, the larger the factor loading }��), the more the ��th annotation is said to 

“load” on the Kth factor. 

 

For the ��� binary outcomes, substituting the appropriate quantities into Equation 

(6) leads to the following expected score functions for variant � on outcome ��: 

5�,� �̂$=��& � G eI <��$���� - 4���& r #$>��|��� , !��&d>��f K$!��|��&�

�����

, 
(10) 

5�,� �̂$p��& � G eI |��$���� - 4���& r #$>��|��� , !��&d>��f K$!��|��&.�

�����

 

To update estimates for =�� using a one-step Fisher scoring algorithm, we 

consider a Taylor series expansion of the expected score function (Equation (10)) 

about the true parameter =��, 

5�,� �̂$=~��& � 5�,� �̂$=��& 1 v ``=��
� 5�,� �̂$=��&w $=~�� - =��&. 

Since 5�,�^$=~��& � ∑ 5�,� �̂$=~��&�
��� � D, and assuming regularity conditions that 

allow the interchange of differentiation and integration, we have 

5�,�^$=��& � �G ��$=��&�

���

� $=~�� - =��&, 
where �� is the �th variant’s contribution to the observed complete data Fisher 

information associated with the ��th outcome: 

��$=��& � - ``=��
� 5�,� �̂$=��& � - G *I ``=��

� �̂$=��&#�>�|�� ,  ��d>�3 · K� �|���
 �!"�,�#�

. 
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The expected information is obtained by taking an additional expectation with 

respect to the observed outcomes ��: 

��$=��& � -5*�

``=��
� 5�,� �̂$=��&. 

Interchanging derivatives and expectations yields 

��$=��& � - G *I 5*� v ``=��
� �̂$=��&w #�>�|�� ,  ��d>�3 · K� �|���

 �!"�,�#�

. 
For binary outcomes with logistic link, the expected information is 

��$=��& � G kI <��4���$1 - 4���&<��
� #�>�|�� ,  ��d>�l · K� �|���

 �!"�,�#�

 

(11) 

Equations (10) and (11) yield the following scoring algorithm at iteration b 1 1: 

=~��
����� � =~��

��� 1 �G 5�,� �<��4̂���
����1 - 4̂���

����<��
� ��

���

��� G 5�,� �<������� - 4̂���
������

���

. 
(12) 

Similarly, 

p~��
����� � p~��

��� 1 �G 5�,� �|��4̂���
����1 - 4̂���

����|��
� ��

���

��� G 5�,� �|������� - 4̂���
����� .�

���

 

For the ��
��� normal outcomes, contributions to the complete data score 

functions for each variant � are 

�̂$=��& � 10��
<������ 

�̂$p��& � 10��
|������  
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�̂$0��& � - 120��
1 120��

� ����
� , 

where ���� � ���� - <��
� =�� - |��

� p��. It follows that 

=~��
����� � �G 5�,�i<��<��

� j�

���

��� G 5�,� �<������� - |��
� p~��

������

���

 

(13) 

p~��
����� � �G 5�,�i|��|��

� j�

���

��� G 5�,� �|������� - |��
� =~��

������

���

 

(14) 

0��� � 1C G 5�,�i�̂���
� j.�

���

 

(15) 

Beginning with reasonable initial estimates of the parameters, MACIE proceeds 

by first using the E-step to obtain the desired expectations relative to the 

posterior distribution. Given those estimates, MACIE then solves the expected 

score equations to obtain new parameter estimates or one-step updates 

according to Equations (5), (13)-(15). The algorithm proceeds until the relative 

change in the estimated parameters is sufficiently small (� 10�+) with a 

maximum of 200 iterations. 

 

Data analysis using the MACIE GLMM 

We used the proposed framework to fit the MACIE GLMM models for (1) 

nonsynonymous coding variants and (2) noncoding and synonymous coding 

variants separately. For nonsynonymous coding variants, we considered fitting a 
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two-class MACIE model �� � 2� where the damaging protein function class 

included four protein substitution scores: SIFT, PolyPhenDiv, PolyPhenVar 

(dichotomous) and Mutation Assessor (continuous), with two latent factors of E�; 

and the evolutionary conserved class included eight conservation scores: 

GERP_NR, GERP_RS, PhyloPri, PhyloPla, PhyloVer (continuous), and PhastPri, 

PhastPla, PhastVer (dichotomous), with two latent factors of E� (Supplementary 

Table 1). As such, the MACIE score predicted for each nonsynonymous coding 

variant is a vector of length 4, representing the estimated joint posterior 

probabilities of belonging to (0,1) - “not damaging protein functional and 

conserved”; (1,0) - “damaging protein functional and not conserved”; (0,0) - “not 

damaging protein functional and not conserved”; (1,1) - “both damaging protein 

functional and conserved”. The MACIE GLMM regression parameter estimates 

from the training set of nonsynonymous coding variants are presented in 

Supplementary Table 13. 

 

For noncoding and synonymous coding variants, we considered fitting a two-

class MACIE model �� � 2�, where the evolutionary conserved class included 

the same eight conservation scorers as the nonsynonymous coding model, with 

two latent factors of E�, and the regulatory class included a total of twenty-eight 

transformed (continuous) epigenetic scores scores, consisting of three histone 

marks and 12 open chromatin marks from the ENCODE Project, three 

transcription factor binding site scores, GC content, CpG content, five chromatin 

state probabilities derived from the 15 state ChromHMM model, a background 
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selection score, and physical distance metrics, with three latent factors of E� 

(Supplementary Table 1). As such, the MACIE score predicted for each 

noncoding or synonymous coding variant is also a vector of length 4, 

representing the estimated joint posterior probabilities of belonging to (0,1) - “not 

conserved and regulartory functional”; (1,0) - “conserved and not regulatory 

functional”; (0,0) - “not conserved and not regulatory functional”; (1,1) - “both 

conserved and regulatory functional”. The MACIE GLMM regression parameter 

estimates from the training set of noncoding and synonymous coding variants are 

presented in Supplementary Table 14. 
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Figures 

Figure 1. Heatmap demonstrating the correlation between individual and 

integrative functional scores for ClinVar pathogenic and benign noncoding 

variants. 
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Figure 2. ROC curves comparing the performances of MACIE and other 

functional scores in discriminating between ClinVar pathogenic and benign 

nonsynonymous coding variants. 
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Figure 3. ROC curves comparing the performances of MACIE and other 

functional scores in discriminating between loss-of-function (LOF) and functional 

(FUNC) nonsynonymous coding variants within 13 exons that encode functionally 

critical domains of BRCA1 based on saturation genome editing (SGE) data. Here 

the LOF class is our putative functional class and the FUNC class is our putative 

non-functional class. 
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Figure 4. ROC curves comparing the performances of MACIE and other 

functional scores in discriminating between (a) CAGE identified promoters and 

non-promoters and (b) CAGE identified enhancers and non-enhancers among 

noncoding variants from 1000 Genomes Project Phase 3 data. For CAGE 

Enhancer predictions, LINSIGHT was excluded as it uses the FANTOM5 

enhancer label as one of the genomic features in building the LINSIGHT score. 
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Figure 5. ROC curves comparing the performances of MACIE and other 

functional scores for prediction of (a) validated regulatory variants in 

lymphoblastoid cell lines (LCLs) from massively parallel reporter assays (MPRAs) 

and (b) dsQTLs identified using DNase I sequencing data in LCLs against control 

variants. 
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Figure 6. LocusZoom plot49 for GWAS associations of LDL-C at the APOE locus. 

The lipids GWAS summary statistics were from the European Network for 

Genetic and Genomic Epidemiology (ENGAGE) Consortium (N = 58,381)40. The 

MACIE-protein and MACIE-conserved scores for rs7412 are 0.96 and 0.97, 

respectively. The MACIE-conserved and MACIE-regulatory scores for rs1065853 

are < 0.01 and > 0.99, respectively. 
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