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20 Abstract

21 In this paper, heterogeneity is formally defined, and its properties are explored. We define and 

22 distinguish observable versus non-observable heterogeneity. It is proposed that heterogeneity among the 

23 vulnerable is a significant factor in the contagion impact of COVID-19, as demonstrated with incidence 

24 rates on a Diamond Princess Cruise ship in February 2020. Given the nature of the disease, its 

25 heterogeneity and human social norms, pre-voyage and post-voyage quick testing procedures may 

26 become the new standard for cruise ship passengers and crew. The technological advances in testing 

27 available today would facilitate more humanistic treatment as compared to more archaic quarantine and 

28 isolation practices for all onboard ship. With quick testing, identification of those infected and thus not 

29 allowed to embark on a cruise or quarantining those disembarking and other mitigation strategies, the 

30 popular cruise adventure could be available safely again. Whatever the procedures implemented, the 

31 methodological purpose of this study should add valuable insight in the modeling of disease and 

32 specifically, the COVID-19 virus.

33

34 Key Words: Observed homogeneity; non-observed homogeneity; over dispersion; under dispersion; 

35 Poisson distribution; binomial distribution; Tango’s test statistic.

36

37 1. INTRODUCTION

38 In the literature, the term heterogeneity echoes differently in various contexts. What is heterogeneity 

39 or its antonym, homogeneity? Its root word lies in Greek “heterogenes” meaning different. In 

40 epidemiology or statistics disciplines, the word heterogeneity is popularly commented to exist when the 

41 variance is large. In insurance applications, for an example, the premium is assessed more if the insurer 

42 is in a heterogeneous group with high hazard proneness (Spreeuw, 1999). Should a large (small) 
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43 variance be indicative of heterogeneity (homogeneity)? Interesting discussions are given for 

44 heterogeneity in Ecochard (2006); in healthcare disciplines, heterogeneity is referred to as different 

45 outcomes among patients. Should the heterogeneity be connected to only a non-observable hidden trait 

46 as done in genetics? Does heterogeneity refer dissimilar attributes across the subgroups of the population 

47 itself even before sampling? Is heterogeneity really pointing to the non-identical nature in a random 

48 sample or population? Should heterogeneity imply a shifting entity? In genetic studies, several authors 

49 refer to genetic heterogeneity as rather too difficult to ascertain. What do they really mean? If alleles in 

50 more than one locus exhibit susceptibility to a disease, there is a need to track the loci to infer their 

51 heterogeneity. So, in a sense, the application of heterogeneity is really a discussion of an opposite of 

52 similarity across loci. The reader is referred to Elston et al. (2003, pages 3404-344) for details. Hope and 

53 Norris (2013) attempted to determine how heterogeneity played a role in judgements in the context of 

54 crime victimization. Hence, what really is heterogeneity? A formal definition of heterogeneity is 

55 constructed later in the article, then, its properties are explored and itemized.

56 However, in the epidemiology literature, using a random sample from a population 

57 whose main parameter is , when the null hypothesis is tested, it is named the 

58 homogeneity test. This suggests that heterogeneity is really all about a shifting population. This creates 

59 more confusion. Is the source of such confusion with respect to heterogeneity its ill communication? It is 

60 evident that there is a lack of a clear definition of heterogeneity given by Hunink et al. (2018, Chapter 

61 12) for details. Neither the Encyclopedia of Statistical Sciences nor the Encyclopedia of Biostatistics has 

62 even an entry, as if it is not pertinent in statistical disciplines.     

63 One comes across different types of data in epidemiologic studies. Drawing data from a binomial 

64 population is one of them, and the data should possess an under dispersion (i.e., variance of the binomial 

65 distribution is smaller than its mean). From a Poisson population, the drawn random sample ought to 

1 2, , ..., ny y y

 1 2: ....o nH     
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66 reflect equality between the mean and variance. When the main (incidence rate) parameter of a Poisson 

67 chance mechanism is stochastically transient, the unconditional observation of the random variable 

68 convolutes to an inverse binomial model (Ross, 2002). The inverse binomial distribution is known to 

69 attest that the variance is larger than its mean (Stuart and Ord, 2015, for details). Consequently, a 

70 comparison between the mean and variance characterizes only which type binomial, Poisson, or inverse 

71 binomial possesses the underlying chance mechanism we are sampling from but does not inform 

72 anything about heterogeneity. 

73 With details about the probabilistic patterns among coronavirus confirmed, recovered, or cured 

74 individuals and those that succumb as fatalities/deaths in the thirty-two states/territories of India are 

75 given by Shanmugam (2020). To track the confusion with respect to heterogeneity, let us consider the 

76 data given in Table 1 (Mizumoto and Chowell, 2020), describing the spread of COVID-19 among the 

77 voyagers in a Diamond Princess Cruise ship, during the month of February 2020. The random variables

78 , , and denote, respectively, the number of COVID-19 cases, the number of asymptomatic cases 

79 and the number of symptomatic cases among them in time (date). Under a given COVID-19’s 

80 prevalence rate, , the number perhaps follows a Poisson probability pattern. For a given number 

81 of COVID-19 cases in a date, the number perhaps follows a binomial probability pattern with 

82 parameters , where  denotes the chance for a COVID-19 case to exhibit no symptoms. 

83 Naturally, the number should follow a binomial probability pattern with parameters . There is 

84 an implicitness between and , in the sense that . There are three-time oriented groups of 

85 COVID-19 incidences in Table 1. Is there an observable heterogeneity among the three groups? If so, is 

86 it due to a non-observable (parametric) heterogeneity? How do we define and distinguish observable 

87 versus non-observable heterogeneity? A literature search in epidemiology and/or biostatistics does not 

88 provide an answer to this question. 

1Y 2Y 3Y

0  1Y

2Y

1( , )y p 0 1p 

3Y 1( ,1 )y p

2Y 3Y 2 3 1Y Y Y 
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89 It is evident that the average of COVID-19 cases is an estimate of COVID-19’s prevalence rate (i.e.,

90 in Table 1). Their estimates impress that the prevalence rate is transient, not constant across every pair 

91 of two-day duration dyads. The Poisson population from which the COVID-19 cases are drawn ought to 

92 have been dynamic, implying the existence of a Poisson heterogeneity. How do we define and/or capture 

93 the heterogeneity level? This is the theme and purpose in this research article. 

94 Likewise, given that a fixed number, of COVID-19 cases has occurred, a part of them might be 

95 asymptomatic cases,  and the remaining are symptomatic cases, . That is, and are 

96 complementary but . Is there heterogeneity in each of the two sub-binomial populations, 

97 whether there is a heterogeneity in ? How should each binomial heterogeneity be defined and 

98 computed? In other words, is binomial heterogeneity different from that of Poisson heterogeneity? If so, 

99 what are the differences? A literature search in epidemiology and/or biostatistics offers no help to prove 

100 either the existence or absence of binomial heterogeneity in the data for or in Table 1. Hence, we 

101 continue probing matters with respect to heterogeneity.

102 The concept of heterogeneity seems to have escaped the researchers and epidemiologists’ scrutiny 

103 for a long time. It is time well spent and worthwhile to revive an interest in the construct of 

104 heterogeneity, and that is exactly what this article is trying to accomplish. Hence, we first define and 

105 construct an approach for the idea of heterogeneity. To be specific, we first discuss Poisson 

106 heterogeneity and then take up binomial heterogeneity. Maybe our research direction about 

107 heterogeneity is, perhaps, pioneering. However, we believe that our approach is easily extendable for 

108 many other similar methodological setups. We illustrate our definition and all derived expressions for 

109 heterogeneity using COVID-19’s data pertaining to the Diamond Princess Cruise ship, Yokohama, 2020 

110 as displayed in Table 1. 

111   

̂

1y

2y 3y 2y 3y

2 3 1y y y 

1y

2y 3y
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112 2. POISSON AND BIONOMIAL HETEROGENEITIES

113 Applied epidemiologists emphasize that heterogeneity is of paramount importance in extracting and 

114 interpreting data evidence. Many data analysts are convinced that an unrecognized heterogeneity leads 

115 to a biased inference. To begin with, what is heterogeneity? It is a factor causing non-similarities. If so, 

116 how many sources are there? We contemplate that there are two sources for heterogeneity to exist. One 

117 source ought to be from the drawn random sample of observations: , which we recognize as 

118 observable heterogeneity. Would the sampling variability, for a selected statistic 

119 express the observable heterogeneity? Another source is manifested in non-

120 observable parameter, of the chance mechanism, which we recognize as non-observable 

121 heterogeneity. Would a non-uniform stochastic pattern of be indicative of the non-observable 

122 homogeneity? If the chance mechanism perversely selects a probability density function (pdf) for , 

123 how would it manifest itself to portray the non-observable heterogeneity? Both observable and non-

124 observable heterogeneity together ought to be involved to make any definition of heterogeneity 

125 complete. If so, how do we integrate them? Often, under/over-dispersion is confused with heterogeneity. 

126 It seems that the over/under dispersion is precipitated by heterogeneity but not the other way. It is not 

127 obvious or proven so far in the epidemiology literature on whether the converse is true. We focus only 

128 on Poisson and binomial populations to address heterogeneity, and these arguments can be repeated for 

129 other populations considering similar methods. 

130

131 2.1. POISSON HETEROGENEITY

132 Recall that the random integer, denoting the number of COVID-19 cases in a place (like the 

133 Diamond Princess cruise ship) at a time (like February, 2020) is a Poisson random variable with a 

134 specified prevalence rate, . That is, the conditional probability of observing number of COVID-

1 2, ,....., ny y y

1 2[ ( , , ....., )]nVar f y y y 

1 2( , , ....., )nf y y y 







1Y

0  1y
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135 19 cases under a prevalence rate is  with its 

136 expected number and variability . The reader is referred to Rajan and 

137 Shanmugam (2020) for detailed derivations of the Poisson mean and variance. The prevalence parameter

138 itself is crucial in our discussions. The Poisson variability cannot be heterogeneity, because the 

139 expected value also changes when the variability changes due to their inter-relatedness. Realize that no 

140 two individuals on the ship are assumed to have the same level of susceptibility to the COVID-19 virus. 

141 It is reasonable to imagine that the prevalence levels follow a conjugate, stochastic gamma distribution. 

142 The so-called conjugate prior knowledge in the Bayesian framework smooths the statistical analytic 

143 process. It is known that the conjugate prior for the Poisson distribution is gamma, whose pdf is

144

145 , (1)

146

147 with an average.  and variability , where the parameters and

148  are recognized as hyper-parameters (Rajan and Shanmugam, 2020). Notice that the hyper parameter

149 causes the variability in the COVID-19’s prevalence rate to fluctuate up or down, and, hence, you 

150 would anticipate the heterogeneity to involve the hyperparameter . But the question is how?

151 We assume that the probability of observing a non-negative COVID-19 case, is a Poisson under a 

152 stable sampling population with an expected number and a variability

153 . With replications, the observable heterogeneity should become estimable. That is 

154 to mention, the maximum likelihood estimate (MLE) of the COVID-19 prevalence rate is the average 

155 number, , of the observations. To discuss the non-observable heterogeneity, we need to integrate its 

0  1
1 1 1 1Pr[ ] / !; 0,1, 2, ...; 0yY y e y y     

1[ ]E Y   1 1[ ] [ ]Var Y E Y 



( ) 1( , ) ( ) ( ) / ( ); 0; 0c d e d             

( , )E   


 ( , ) ( , ) /Var E       



0 



1y

1Pr( )Y  1( )E Y  

1 1( ) ( )Var Y E Y 

1y
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156 conjugate prior for the non-observable with the likelihood  and it results in an update 

157 and it is called posterior pdf for . The expressions for non-observable heterogeneity, observable 

158 heterogeneity and other expressions are given in Appendix I. 

159 2.2. BINOMIAL HETEROGENEITY

160 In this section, we explore heterogeneity for two sub-binomial processes emanating from a Poisson 

161 process. The asymptomatic number, and symptomatic number, of COVID-19 cases are two 

162 branching binomial random numbers out of the Poisson random number, of COVID-19 

163 cases. These two split random variables are complementary of each other in the sense that . 

164 Then, what are the underlying model for and for ? Are they correlated random variables? If so, what 

165 is their correlation? These are pursued in this section. 

166 Let I be an indicator random variable defined as: for a COVID-19 case to be asymptomatic 

167 with a probability,  and  for the case to be symptomatic with a probability, . 

168 Then, for a fixed , the random variable, follows a binomial probability distribution with 

169 parameters . Likewise, for a fixed , the random variable, follows a complementary 

170 binomial distribution with parameters .That is, 

171                                      (2)

172 and

173                                  (3)

174 The expressions for non-observable heterogeneity, observable heterogeneity and other expressions 

175 are given in Appendix II. 

( , )c     1Pr( )Y 



2Y 3Y

1 0,1,2,...;Y 

2 3 1Y Y Y 

2Y 3Y

1iI 

0 1p  0iI  0 1 1p  

1y
1

2
1

Y

i
i

Y I


 

1( , )y p 1y 3 1 2Y y Y 
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2
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 
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 
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176  

177 3. TANGO INDEX   

178 Lastly, we develop the Tango index and its significance level over the time period. Tango (1984) 

179 proposed an index to detect disease clusters in grouped data. This index received considerable attention 

180 in the literature. Following the line of thinking in Tango (1984), we could next assess the MLEs of 

181 several entities we estimated and displayed in Tables 1, 2, and 3. There are three groups of duration. 

182 Group 1 consists of the 15th and 16th of February 2020. Group 2 includes data for 17th and 18th of 

183 February 2020. Group 3 contains data of 19th and 20th of February 2020. Two independent contrasts 

184 among the three groups are feasible. In an arbitrary style, we select to compare Group 1 with Group 2 

185 and then Group 2 with Group 3. For this purpose, we formulate a contrast matrix

186

187  ,  (4)

188

189 where the third column of the matrix needs no explanation. The Tango’s statistic follows a chi-

190 square distribution with degrees of freedom (df), where is a row vector of the MLE of a chosen 

191 entity in our analytic results in Table 1 or Table 2 or Table 3. For an example, let  

192 for the MLE of the COVID-19 prevalence rate, in the groups. Then, the Tango’s test statistic is 

193 with  df and . Likewise, the Tango’s test statistic value and 

194 its p-value are calculated and displayed in Table 4 for other entities.  

195

196 4. ILLUSTRATING USING COVID-19 DATA OF THE DIAMOND PRINCESS CRUISE SHIP   

3 3

1 0 1
1 1 0
0 1 0

xA
 

   
 
 

'T r Ar

2v  '
1 3xr

' (68.5,93.5,46)r 



422.25T  2v  2.03975 92p value E  
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197 In this section we illustrate all the concepts and expressions of Section 2. Let us consider the 

198 COVID-19 data in Table 1 for the Diamond Princess Cruise Ship, 2020. The Diamond Princess is 

199 a cruise ship registered in Britain and operated across the globe. During a cruise that began on 20 

200 January 2020, positive cases of COVID-19 linked to the  pandemic were confirmed on the ship in 

201 February 2020. Over 700 people out of 3,711 became infected (567 out of 2,666 passengers and 145 out 

202 of 1,045 crew), and 14 passengers died. To be specific, on the 15th of February 2020, 67 people were 

203 infected, on the 16th of February 2020, 70 people were infected, on the 17th of February 2020, there were 

204 99 COVID-19 cases, on the 18th of February, another 88 cases were confirmed. The U.S. government 

205 initially asked Japan to keep the passengers and crew members on board the ship for 14 days. The U.S. 

206 government, however, later decided to bring them to an Air Force base in California and a base in San 

207 Antonio, Texas. 

208 For each specified day in the first column in Table 1, the estimate of COVID-19’s prevalence rate 

209 and its variance are calculated using expressions and . Both the prevalence and its 

210 variability increased and then decreased over the days. However, their correlation, is calculated 

211 using the observed numbers on and for each day (see in Table 2) and the estimated correlations had 

212 been stable over the days. Substituting  and in the expression

213 , (5)

214 we obtained the non-observable heterogeneity and displayed in Table 2. The non-observable Poisson 

215 heterogeneity for was high on the beginning day, came down later, and then increased. Using and

216 in the expression

1
ˆ y 

1
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1ˆ ( ) yVar Y s 

2 3,ˆY Y

2y 3y
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1

2
1ˆ ( ) yVar Y s 

1

ˆˆ
ˆ ˆ ( )

H
Var Y


 




1y 1
ˆ y 

1
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217 , (6),

218 we obtained the observable heterogeneity and displayed in Table 2. The observable Poisson 

219 heterogeneity was low on the first day, increased and then decreased. Note in Table 2 that the observable 

220 and non-observable Poisson heterogeneities are inversely proportional. In other words, the estimate of 

221 the shape and scale parameter in the Bayesian approach are respectively and  (see their 

222 values in Table 2). The shape parameter value decreased consistently over the days. The scale parameter 

223 was high to begin with, then increased later. The distance,  between the observable and non-

224 observable Poisson mechanism for is calculated using the expression

225  (7)

226 and displayed in Table 2. Notice that the distance was large to begin with, then decreased but increased 

227 later over the days. 

228 Note that we compute  for the day. Then, we calculate the 

229 average: and the variance:      ( in Table 1),

230 and it had been steadily increasing over the days since 15th February 2020. This is something valuable for 

231 medical professionals learning the clinical nature of COVID-19. Using the expression,

232  (8)

233 in Section 2.2, we calculated the odds for a COVID-19 case to become an asymptomatic type and 

234 displayed in Table 2. 

235
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236 Likewise, using the expression

237 , (9),

238 we estimated the odds for a COVID-19 case to become a symptomatic case as shown in Table 2. Notice 

239 that both odds ( and ) are low but their odds ratio,

240  (10)

241 is not negligible but reveals that the situation is favorable to symptomatic rather than asymptomatic. 

242 This discovery is feasible because of the approach, and it is an eye-opening reality for the medical 

243 professionals in their desire to control the spread of the COVID-19 virus. Both the observable, and 

244 non-observable,  binomial heterogeneity (see their values in Table 3) were decreasing for the 

245 number, of asymptomatic COVID-19 cases. The distance, between the observable and non-

246 observable for asymptomatic cases was moderate in the beginning, then increased, and then decreased 

247 over the next days (see their values in Table 3). However, the distance,  between the observable,

248 of the asymptomatic cases and the observable, of the symptomatic cases was narrow, then wider, 

249 and then moderate over the days (their values in Table 3). 

250 For a COVID-19 case to become a symptomatic type, the chance is moderate to less and then more 

251 over the days (   in Table 3). The estimate of the shape and scale parameter happened to be and 

252 respectively (see their values in Table 3). Both the shape parameter and the scale parameter values 

253 decreased drastically over the days. From the p-values in Table 4, we infer that the prevalence rate, , 

254 the distances, , and  do differ significantly over the three groups of dyad days. 

255 The chance for COVID-19 to become an asymptomatic type does not differ significantly across the three 

256 groups. On the contrary, the non-observable heterogeneities of the Poisson random number, and

3
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257 of the binomial random number, are not significant. Likewise, the observable heterogeneities

258 of the Poisson random number, and of the binomial random number, for a given are not 

259 significant. 

260

261 Table 1. COVID-19 in Cruise Ship, 2020, Mizumoto et al. (2020) 

Date      

Feb 15-16, 2020 29, 32 38, 38 67, 70 68.5 4.5 0.5001 1.7E-30

Feb 17-18, 2020 29, 23 70, 65 99, 88 93.5 60.5 0.5000 2.4E-41

Feb 19-20, 2020 11, 7 68, 6 79, 13 46 21.78 0.5002 1.0E-20

262

263 Table 2. Results for Mizumoto et al.’s COVID-19 Data in Diamond Princess

Date

15, 16 Feb 2020 943.88 0.27 15.22 1042.72 857.81 0.93

17, 18 Feb 2020 7.36E+17 0.70 1.54 144.50 18.79 0.61

19, 20 Feb 2020 9.69E+11 0.65 2.11 97.15 23.56 0.67

264

265 Table 3. Results for Asymptomatic COVID-19 Cases in Mizumoto et al. (2020)

Date

15, 16 Feb 2020 0.45 0.0002 0.99 0.95 37.125 6.85
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17, 18 Feb 2020 0.28 0.0004 0.98 0.89 66.6 41.14

19, 20 Feb 2020 0.34 0.0796 0.10 0.74 29.7 14.72

266 Table 4. Tango’s Test Statistic and Its P-Value for Several Entities

Tango 

statistic

T with 2 df 0.25 0.36 0.41 0.77 0.51 699420 260.66 751.20

p-value 0.87 0.83 0.81 0.67 0.77 0.0E100 2.4E-57 7.5E-164

267

268 5. DISCUSSION AND CONCLUSION

269 The risk of contracting the COVID-19 virus during a cruise is more than in a community setting, as 

270 confined spaces discourage non-pharmaceutical mitigation strategies such as social distancing to be 

271 weakly implemented and breathing air is tightly internalized. More nations are afraid to let the voyagers 

272 come ashore at the seaports. Ships are not even permitted to dock at the port, as to not complicate virus 

273 mitigation efforts by the local surrounding communities. The scenario seems to be anti-humanistic. The 

274 medical doctors and/or pharmaceutical service were strained due to the infected and COVID-19-free 

275 voyagers. Lack of clear symptoms among those that were infected added to difficulties in managing the 

276 COVID-19 crisis onboard the ship, and for any ship for that matter. Most importantly, how do we 

277 dispose of the COVID-19 fatalities (bodies), in a safe manner? 

278 In the midst of uncertainties about the root cause and/or the appearance of any symptoms, the best 

279 modelers can do (as it is done in this article) is to devise a methodology to address the observable as 

280 well as non-observable heterogeneity, estimate the proportion of COVID-19 cases to be asymptomatic, 

281 estimate the odds of becoming symptomatic, and also the odds ratio for asymptomatic in comparison to 

282 those symptomatic among COVID-19 cases. Some of these are non-trivial to the professional experts 

1
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283 dealing with the intention of reducing the spread of COVID-19 if not its total control. Still much of 

284 COVID-19 is a mysterious pandemic. It is clear that non-pharmaceutical mitigation strategies such as 

285 social distancing, utilization of face coverings, frequent hand sanitization, infected people quarantining 

286 on board, and severely controlled ship cleanliness and sanitation standards are required; this may only be 

287 successful with limited numbers of passenger and crew members. Given the nature of the disease, its 

288 heterogeneity and human social norms, pre-voyage and post-voyage quick testing procedures may 

289 become the new standard for cruise ship passengers and crew. The technological advances in testing 

290 provided today would facilitate more humanistic treatment as compared to more archaic quarantine and 

291 isolation practices for all onboard ship. With quick testing, identification of those infected and thus not 

292 allowed to embark on a cruise or quarantine those disembarking, and other mitigation strategies, the 

293 popular cruise adventure could be available safely again. Whatever the procedures implemented, the 

294 methodological purpose of this study should add valuable insight in the modeling of disease and 

295 specifically, the COVID-19 virus.
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351 APPENDIX I

352 Poisson Heterogeneity: Derivations 

353 It is known that the conjugate prior for the Poisson distribution is gamma, whose pdf is

354

355 , (1)

356

357 with an average.  and variability , where the parameters

358 and  are recognized as hyper-parameters (Rajan and Shanmugam, 2020). Notice that the hyper 

359 parameter causes the variability in the COVID-19’s prevalence rate to fluctuate up or down and 

360 hence, you would anticipate the heterogeneity to involve the hyperparameter .

361  (2)

362 is the posterior pdf of the non-observable . Also, the denominator 

363 ,

364 in a Bayesian framework, is called the marginal distribution. With , it is clear that

365 , note that the prior variance is

366 . 

367 Because the prior is conjugate, its counterpart’s variability

368  
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369 is minimal when the Bayes estimate of the non-observable is the posterior mean, , 

370 where

371 . 

372 Differentiating the log-likelihood function

373  

374 with respect to the non-observable parameter, , setting it equal to zero and solving it, we obtain the 

375 MLE and it is . Because of the invariance property of the MLE, it is involved. The invariance 

376 property refers to that the MLE of a function of the parameter is the function of the MLE of the 

377 parameter. Also, it is known (Blumenfeld, 2010) that

378  

379  and 

380 . (3)

381

382 Hence, we are ready now to define the non-observable heterogeneity below in the Definition 1. 

383

384 Definition 1. The non-observable heterogeneity of the Poisson parameter, is defined as 

385

386 .             (4)

387

388 Following the Definition 1, we obtain the non-observable heterogeneity of the COVID-19 cases is 
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389  (5)

390 When the value of is closer to zero, the data are believed to have non-observable Poisson 

391 homogeneity. Its MLE is

392 . (6)

393

394 The reader is referred to Figure 1 for the configuration of the non-observable Poisson heterogeneity in 

395 general. 

396

397 Figure 1. Non-observable Heterogeneity

398

399 Likewise, the observable-heterogeneity is defined below in Definition 2. 

400

401 Definition2. The observable heterogeneity of the randomly sampled Poisson counts,  is 

402 defined as
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405 Before we apply the Definition 2, let us recollect that the marginal pdf of the complete sufficient 

406 statistic,  is uniform distribution and the posterior distribution is 

407  

408 with

409  (8)

410 and

411 . (9)

412 Imposing the Definition 2 and simplifying, we obtain that whose MLE is

413 . (10)

414 The reader is referred to Figure 2 for the configuration of the observable Poisson heterogeneity, in 

415 general. When the value of is closer to zero, the data are interpreted to have observable homogeneity. 

416

417

418 Figure 2. Observable Heterogeneity

419
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420 Furthermore, the distance,  between the observable of the number of COVID-19 cases and the 

421 prevalence rate could be assessed using the formula

422

423 . (11)

424 Realizing that their absolute difference is really , we obtain after 

425 simplifications that

426 . (12)

427 The configuration of the distance,  between the observable and non-observable in Poisson 

428 mechanism. We now turn to discuss stochastic properties of the Poisson distribution are given in Figure 

429 3. 

430

431 Figure 3. Distance,  in Poisson.
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435 The hazard rate is a force of mortality. The hazard rate,  for the COVID-19 occurrence is

436

437 . (14)

438

439 Does the Poisson chance mechanism keep any a finite memory? For example, the geometric distribution 

440 is known to have no memory. What is memory? The memory is really a conditional probability. That is, 

441

442 , (15)

443

444 confirming that there is a finite memory in the Poisson mechanism of COVID-19 incidences. To be 

445 specific, with in the above result, the memory between COVID-19 free situation and just one 

446 COVID-19 occurrence is revealed in the chance-oriented Poisson mechanism. Such a memory is

447 . (16)

448 Likewise, the memory between at least one COVID-19 case situation and at least two COVID-19 cases 

449 situation is revealed with a substitution of  in the above result and it is 

450 . (17)

451 The odds ratio from the initial to the next is

452

453  (18)
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454

455 (their values in Table 1). However, the odds for COVID-19 free healthy situation to prevail is

456

457  (19)

458

459 (their values in Table 1). For details on how the chance for an incidence of a disease to occur from a 

460 disease-free scenario changes, the reader is referred to Shanmugam and Radhakrishnan (2011). 
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462 APPENDIX II

463 Binomial Heterogeneity: Derivations

464 Let an indicator random variable, for a COVID-19 case to be asymptomatic with a probability,

465 and  for the case to be symptomatic with a probability, . Then, for a fixed , 

466 the random variable, follows a binomial probability distribution with parameters . 

467 Likewise, for a fixed , the random variable, follows a complementary binomial distribution 

468 with parameters .That is, 

469                                      (20)

470 and

471                                  (21)

472 with their conditional expected numbers

473  (22)

474 and the conditional variabilities

475 , (23)

476 and

477 . (24)

478

479 The conditional variability of is a percent of its expected number , implying 

480 that it exhibits under dispersion. Likewise, the conditional variability of is a percent of its 
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481 expected number implying that it also exhibits under dispersion. Together, the 

482 above statements suggest a conditional balance

483  (25)

484 (Stuart and Ord, 2015 for details of the odds concepts). Consequently, we note that

485 .    (26)

486 Furthermore, we wonder whether the random variables and are correlated? The answer is 

487 affirmative. To identify their correlation, notice that

488 , 

489
490

491

492  

493 where

494 , ,

495 .

496

497 Hence, their correlation is 

498 . (27)
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499 Their expected distance,  portrays the drift between the symptomatic 

500 observable, and the asymptomatic observable,  and it is simplified to this function  

501  (see Table 3 for their values), due to applying

502 .

503 Let us assume that every COVID-19 case has the same chance of being asymptomatic in a time 

504 period. Then, the random number, for a specified number, of COVID-19 cases follows a binomial 

505 distribution with parameters . We select a conjugate beta prior distribution

506

507           (28)

508

509 for our discussion for asymptomatic COVID-19 cases. The prior average is

510

511 and the prior variability is

512 ,

513 where the parameters and are hyper-parameters (Rajan and Shanmugam, 2020, for details). We 

514 guess that the binomial heterogeneity would involve both hyper parameters. The task for us is how do 

515 we construct such heterogeneity? An answer is the following. The posterior distribution 

516

517  (29)

518
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519 would play a key role to construct both the observable and non-observable binomial heterogeneity. With

520 , it is clear that . 

521 The prior variance is

522 . 

523 Its posterior counterpart

524  

525 is minimal when the Bayes estimate of non-observable is the posterior mean

526 , 

527 where

528 . (30)

529 The posterior variance is

530 . (31)

531 Differentiating the log-likelihood function as

532  

533 with respect to the non-observable parameter, , setting it equal to zero and solving it, we obtain the 

534 MLE and it is It is known that 

535  (32)
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536 and

537 . (33)

538

539 Hence, we define the non-observable binomial heterogeneity below in Definition 3. 

540

541 Definition 3. The non-observable binomial heterogeneity is defined as

542

543 .   (34)

544

545 Following the Definition 3, we obtain the non-observable heterogeneity of the COVID-19’s asymptotic 

546 cases (remembering that are the non-observable parameters) as 

547 . (35)

548 When the value of is closer to zero, the data are interpreted to have non-observable binomial 

549 homogeneity. Substituting the MLEs

550  and , (36)

551 we obtain its MLE

552 . (37)

553 Likewise, the observable-heterogeneity of the binomial distribution of is defined below in Definition 

554 4. 
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555 Definition 4. The observable heterogeneity of the binomial counts, (in terms of the 

556 complete sufficient statistic ) is defined as

557 . (38)

558 Before we apply Definition 4, remember that the marginal pdf of the complete sufficient statistic, is 

559 the beta-binomial distribution, 

560  (39)

561 and the posterior distribution is beta. With the notation  , we note that the probability 

562 mass function of the beta-binomial distribution is

563 . (40)

564 That is, the posterior probability density function is 

565  (41)

566 with

567  (42)

568 and

569 . (43)

570 Now applying Definition 4, we obtain an expression for the observable binomial heterogeneity 

2, 1, 1, 2,...,iy i y

2y

2

arg 1 1

arg 1

( )
[1 ] [0,1]

( )
m inal posterior

y
m inal posterior

Var E p y
H

E Var p y
  

2y

1 2 1 2
2

2 1

( ) ( )Pr( ) ;
([ ] )}

y y y yY
y y

 
 

      
      

( ) ( )( , )
( )
a bB a b
a b

 


 

1
2 2 1 2 2 1

2

Pr( ) ( , ) / ( , ); 0,1, 2..., ; , 0
y

y B y y y B y y
y

     
 

      
 

2 1 21 11
1 2

2 1 2

( )}( , , , ) (1 )
( ) ( )

y y yyc p y y p p
y y y

   
 

      
 

    

2
1 2

1

( )( , , , )
([ ] ))

yE p y y
y

 
 




 

2 1 2
1 2

1 1

( )( )( , , , )
([ ] )(1 [ ] )

y y yVar p y y
y y

  
   

  


    

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.425543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425543
http://creativecommons.org/licenses/by/4.0/


Page 31 of 36

571 , 

572 (44)

573 whose estimate is

574 ,  (45)

575 Because

576 and . (46)

577 When the value of is closer to zero, the data are considered to have observable binomial 

578 homogeneity. Also, the distance,  between the observable of the number of asymptomatic 

579 COVID-19 cases and its proportion, could be assessed using the formula

580 . (47)

581 Realizing that the absolute difference, , we obtain after simplifications that

582 . (48)

583 Likewise, to obtain the non-observable heterogeneity of the COVID-19’s symptomatic cases, all we 

584 have to do is change to , change to , along with changing to and go through the process 

585 above. Hence, the non-observable heterogeneity in the symptomatic cases is the same. That is,

586 . (49)

587 The observable binomial heterogeneity for the symptomatic cases is
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588 , (50)

589 whose MLE is

590 , (51)

591 which is interestingly not the same as . Also, the distance,  between the observable of 

592 the number of asymptomatic COVID-19’s symptomatic cases and the proportion,  could be assessed 

593 using the formula

594  

595 (52)

596 and it is after simplifications that

597 .  (53)

598 Now we explore statistical properties of the asymptomatic cases, . The survival function of the 

599 random number,  with asymptotic symptoms is 

600

601 (54)

602 The hazard rate, of the binomial distribution for the asymptomatic cases is

603                    (55)

604 The binomial distribution has a finite memory  
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605 .  (56)

606 confirming that the usual binomial distribution does possess a finite memory. The conditional odds, for a 

607 fixed , for safe asymptomatic symptom are 

608 . (57)

609 The unconditional odds for safe asymptotic symptom are

610

611 (58)

612 The reader is referred to Figure 4 for the configuration of the odds in asymptotic COVID-19 occurrences 

613 in general. 

614

615 Figure 4. Odds for Asymptotic

616
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619

620 , (59)

621 where . A popular statistical concept in the business world (Khokhlov, 2016 for details), Tail 

622 Value at Risk (Tar) is  

623 . (60)

624 Similarly, all the Bayesian results for the binomial random variable, are easily derivable by 

625 interchanging and in all above expressions. The survival function of the random number,  with 

626 symptomatic symptoms is  

627  

628                                                                                                                                                 (61)

629 The hazard rate, for the symptomatic sign is

630   

631 (62)

632 The binomial distribution of those with symptomatic signs has a finite memory  
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634 (63)

635 confirming that the usual binomial probability trend of those with symptomatic signs does possess a 

636 finite memory. The conditional odds, for a fixed , for safe symptomatic symptom are 

637 . (64)

638 The unconditional odds for safe symptomatic symptom are

639 . (65)

640 A comparison of and suggests the odds ratio,

641 . (66)

642 See Figure 5 for the configuration of the isomorphic factor, . 

643

644 Figure 5. The configuration isomorphic factor 

645

646 Recall that is the chance for the existence of symptomatic symptom of 

647 COVID-19. The hazard in that situation (that is, with ) is 
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648 , (67)

649 where . The Tail Value at Risk (TVaR) is  

650 . (68)
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