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Abstract

Large-scale population variant data is often used to filter and aid interpretation
of variant calls in a single sample. These approaches do not incorporate population
information directly into the process of variant calling, and are often limited to fil-
tering which trades recall for precision. In this study, we develop population-aware
DeepVariant models with a new channel encoding allele frequencies from the 1000
Genomes Project. This model reduces variant calling errors, improving both precision
and recall in single samples, and reduces rare homozygous and pathogenic clinvar
calls cohort-wide. We assess the use of population-specific or diverse reference pan-
els, finding the greatest accuracy with diverse panels, suggesting that large, diverse
panels are preferable to individual populations, even when the population matches
sample ancestry. Finally, we show that this benefit generalizes to samples with differ-
ent ancestry from the training data even when the ancestry is also excluded from the
reference panel.

1 Background

Variant calling [1–4] identifies the positions in an individual genome which differ from a
reference or population, and is used to characterize a single sample or build large research
cohorts [5, 6]. Variant calling is non-trivial, because of sequencing errors, systematic errors
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in mapping to repetitive and variable regions [7], and imbalanced sampling of alleles
needed to identify a heterozygous variant from a homozygous one.

Variant calling can be improved by jointly genotyping multiple samples together [8–
10], but the raw sequence data for a cohort is not always available, and this process is
computationally expensive. Instead, large-scale reference panels from a wide range of
populations can provide similar information [5, 6]. Recent studies use such information
to improve alignment accuracy and reduce biases in alignment [11–13], but there has been
little work to incorporate population data with variant calling.

Because far more variants are transmitted than arise de novo, real variants in a pop-
ulation tend to recur at various frequencies [14], while false positives are often either not
seen elsewhere in a population, or are seen with a consistent signature [15]. Researchers
use this knowledge to filter variant calls, often with rules which lose recall for a gain in
precision [16]. More sophisticated machine-learning methods to filter are used in larger
cohorts, such as gnomAD, but these also trade recall for precision and also only operate
on variant calls and summary information [5].

We reason that including population-level information at an earlier stage in variant
calling, when the full read-level data is available, might allow for more effective use of
population data. To do this, we adapted DeepVariant [2], which represents BAM infor-
mation as a multi-dimensional pileup and uses a Convolutional Neural Network (CNN)
to call variants. Because DeepVariant learns the features important for variant classifica-
tion directly from the data, it allows us to feed in the population allele information as an
additional channel (Figure 1).

We trained population-aware models and compared them with the default DeepVari-
ant v1.1 models which are agnostic of population information. The population-aware
approach reduces the number of errors for all tested datasets, including WGS and WES
reads, when using the allele frequencies from 1000Genomes. It also shows stronger error
reduction efficacy for lower-coverage read sets. While traditional filtering approaches will
increase precision at the expense of recall, we observe improvements to both precision and
recall with this method.

When incorporating population data, it is also important for fairness and equity to
understand how it changes the accuracy of methods for individuals with ancestries out-
side of those used in the development of the population resources. It is known that many
genomic databases have collected more data for the European population than others
[17–19]. We demonstrate that even using frequencies from a genetically distinct popula-
tion, the population-aware model still performs similarly as the baseline. We find that
a reference panel consisting of all ancestries in the 1000 Genomes Project (1000Genomes)
outperforms a reference panel with only one of the 1000Genomes population groups, even
when that population matches the sample being called. This implies that maximizing the
diversity of ancestries in population resources has the potential to improve variant calling
for all populations.

The Genome in a Bottle (GIAB) truth sets used to train DeepVariant are from Euro-
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Figure 1: The population-aware DeepVariant (DeepVariant-AF) model. Dashed blue
lines represent the typical population-agnostic DeepVariant approach, and the green lines
show the data flow of the population-aware method. The green box shows the allele-
matching algorithm to match variant alleles with a reference panel. This algorithm first
queries cohort variants overlapped with the variant candidate and determines the win-
dow where haplotypes are updated. It then compares the haplotypes and updates the
allele frequency of the matched ones

pean, Ashkenazi, and Asian ancestry [20]. To assess whether the addition of the reference
panel information improves variant calling for populations outside of the populations
represented in training, we use high quality PacBio HiFi data from the Human Genome
Structural Variation Consortium for an individual of Puerto Rican ancestry as an evalu-
ation set [21]. We show that an Illumina model using the reference panel has superior
concordance with the highly accurate PacBio HiFi variant calls compared to an Illumina
model without the reference panel.
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2 Results

2.1 Population information improves variant calling performance

DeepVariant converts input from a BAM file into a pileup image with 6 channels, repre-
senting 1) bases, 2) base qualities, 3) mapping quality, 4) strand, 5) supports variant, and
6) base differs from reference. We modified DeepVariant v1.1 to take an additional input
channel, the allele-frequency (AF) of the variant [22] (Figure 1). We trained DeepVariant
models with and without the AF channel with the testing samples held out.

We assessed the variant calling results from the population-aware DeepVariant model
(DeepVariant-AF), DeepVariant, GATK [4], Octopus [23] and Strelka2 [24]. We first com-
pared the whole-genome sequencing (WGS) variant calling accuracy for sample HG003,
sequenced with 35x coverage from the PrecisionFDA v2 Truth Challenge [25], using the
latest GIAB v4.2.1 truth set [26] (Figure 2a and Table S1). HG003 is not used in the train-
ing of these DeepVariant models, and so acts as an independent holdout to evaluate their
quality.

DeepVariant-AF has superior accuracy than all other methods in precision, recall and
F1 score for both SNPs and indels. It has an overall error reduction of 1,499 (4.8%) com-
pared to the second-best method (DeepVariant). Notably, DeepVariant-AF improves SNP
precision from 0.9982 to 0.9985, equivalent to an error reduction of 1,068 (17.7%) variants.
When compared to GATK, Octopus and Strelka2, DeepVariant-AF has error reductions
of 44,009 (59.9%), 29,543 (50.0%) and 25,145 (46.0%) variants (SNPs and indels combined)
respectively.

We then down-sampled the HG003 reads from 35x to 21x to evaluate the performance
of the variant callers with lower-coverage datasets (Figure 2a). DeepVariant-AF demon-
strates a larger improvement in accuracy over other methods. For example, DeepVariant-
AF has an error reduction of 3,788 (7.0%) variants over the second-best method (DeepVari-
ant). Similar to using the 35x read set, DeepVariant-AF shows the strongest improvement
to reduce false-positive SNPs, improving precision from 0.9960 to 0.9967, equivalent to
2,202 (16.7%) errors. When further down-sampling the reads to 10x and 6x, DeepVariant-
AF remains to be the method with the highest overall accuracy (Figure 2b). We then ran
the Minimac4 imputation method [27] for all population-agnostic results and showed that
DeepVariant-AF outperformed all imputation-based approaches (Note S1 and Table S1).
We hypothesize that DeepVariant-AF is able to leverage the population information better
when the sequence-based evidence gets weaker at lower coverages.

We further evaluated the performance of the models using two whole-exome sequenc-
ing (WES) datasets from a recently released set of genome and exome data for HG003 [28]
(Figure 2c, Tables S2 and S3). Both datasets were aligned to GRCh37 and evaluated using
the GIAB v4.2.1 truth set. For both WES datasets, DeepVariant-AF has the fewest overall
errors among all tested callers. Compared to the second-best method (DeepVariant), it has
overall error reduction levels of 8.1% (38 out of 469) for the IDT dataset and 6.4% (31 out
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Figure 2: Variant calling accuracy using DeepVariant-AF and other methods. All datasets
are from HG003. (a) High-coverage WGS datasets, (b) Low-coverage WGS datasets, (c)
WES datasets. WGS results are evaluated using the GIAB v4.2.1 truth set (GRCh38) in
the high-confidence regions. WES results are evaluated using the GIAB v4.2.1 truth set
(GRCh37) in the high-confidence regions that are captured
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of 487) for the Oslo dataset. Compared to other callers, DeepVariant-AF reduces 35.2% to
60.4% of the errors.

2.2 How does population information affect the model?

Intuitively, population information helps DeepVariant decide whether to make a call based
on the commonness of a variant, especially for cases where the variant calling confidence
levels are low. With a population-aware model, a variant caller should be more likely to
make a positive variant call for a candidate with high allele frequency, and is less likely to
make a call when seeing a rare candidate variant.

To understand the influence of allele frequencies in the model, we assessed the ac-
curacy of DeepVariant-AF and other variant callers for common (allele frequency >0.01)
and rare (allele frequency ≤0.01) variants using the 35x HG003 WGS dataset (Figure 3a
and Section 4.5). The DeepVariant-AF shows substantial improvement over GATK and
Strelka2, reducing 43.3-56.9% errors for common variants and 36.5-83.9% errors for rare
variants. DeepVariant-AF also outperforms DeepVariant for both common and rare vari-
ants, reducing 892 (4.7%) and 931 (13.7%) errors respectively. There is enriched error re-
duction for false-negative common variants and false-positive rare variants by including
population information in DeepVariant (Table S4 and S5).

We also measured the recall for variants that appeared in the GIAB v4.2.1 truth set
but had zero allele frequencies in 1000Genomes. Compared to the default DeepVariant
model, DeepVariant-AF has a slightly lower recall but the difference was marginal (Figure
S1). The recall of zero-frequency variants using all variant callers (71.4%-83.7% for SNPs
and 88.1%-89.8% for indels) is substantially lower than the recall of all variants, but it
can be strongly improved using PacBio Hifi reads (Note S2). This implies many of the
zero-frequency variants are hard to genotype using Illumina reads, and may not be novel
mutations relative to samples in reference panels. In the future, reference panels utilizing
high-quality long reads [29–31] will likely provide better allele frequency estimates and
improve the population-aware model performance.

We further designed an analysis framework to assess errors specific to each variant
calling method (Section 4.6). We compared the DeepVariant and DeepVariant-AF meth-
ods and identified false-positive and false-negative variants specific to each method. Vari-
ants specific to DeepVariant were “rescued” by population information and thus consid-
ered as “population-resolved”; whereas variants specific to DeepVariant-AF were consid-
ered to be induced by the population-aware model, likely due to the network adjustments
when training using allele frequency data. We excluded errors common to both methods,
since they were viewed as ones more difficult to resolve without major changes in the
pipeline, such as the upstream data processing and sequencing methods.

We first examined the relationship between population allele frequency (AF) and vari-
ant allele fraction (VAF), which is the fraction of reads supporting an alternate allele in a
given sample, of each false-positive call. There is an observable distinction between the
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population-induced group and the population-resolved group in the VAF-AF plots (Fig-
ure 3b). Among the population-resolved false-positive errors, more than one half (54.0%,
or 1,125 out of 2,085) are rare among the 1000Genomes samples, whereas there are only
2.5% (49 out of 1,952) rare variants among the population-induced false positives.

We then investigated false-negative errors, as shown in Figure 3c. Variant allele frac-
tion for false negatives are not always available because many false negatives are not
identified as a variant candidate due to reasons including low read coverage, incorrect
mapping or insufficient sensitivity in variant candidate discovery. Thus, we only evalu-
ated the allele frequency distribution for false negatives. The number of erroneous com-
mon variants differs notably between the methods. Among all population-resolved false
negatives, 96.6% (2,207 out of 2,284) are common variants. In contrast, only 30.1% (588
out of 1,952) of the population-induced false negatives are common. With the population
knowledge provided in the AF channel, DeepVariant adjusts its variant calls according to
the commonness of a variant and makes improvements in both precision and recall.

2.3 Assessing biases using different 1000Genomes populations

It is important to understand if the inclusion of population information reduces Deep-
Variant’s performance for populations that are not well represented, especially when
they have a large genomic difference with the reference panel. We first note that Ashke-
nazi Jewish, the ethnicity of the HG003, is not among the 26 ethnicities collected by
1000Genomes. Using a testing sample not in the reference panel reduces the risk of bias.
Second, we ran inference on the population-aware model using reference panels of allele
frequencies. We split the 1000Genomes sample into five groups based on the superpopu-
lation labels (African, AFR; Admixed American, AMR; East Asian, EAS; European, EUR;
South Asian, SAS) and calculated allele frequencies for each super-population.

We evaluated the accuracy using the 35x WGS HG003 dataset (Table 1). As described
above, using the frequencies from the entire 1000Genomes demonstrates superior accu-
racy compared to the population-agnostic DeepVariant model. When inferencing us-
ing ancestry-specific frequencies, all DeepVariant-AF models outperform the baseline for
SNPs, but underperform for indels. When considering the overall number of errors, only
the model inferred with EAS frequencies calls more errors than the baseline, but the deficit
(494, or 1.6% of the baseline) is small.

We also compared the performance of using different superpopulation allele frequen-
cies and observed that using frequencies from a genetically closer population usually re-
sulted in higher variant calling accuracy. Using EUR frequencies reduces 1,700 (5.3%)
more variants than using EAS frequencies, echoing the estimation that Ashkenazi Jew-
ish is genetically closer to the European populations and is farther from East Asian and
African populations [5, 32–34]. We point out that using 1000Genomes frequencies from
all populations results in the lowest number of errors among all population-aware results,
suggesting an advantage to using a diverse population than finding a genetically similar
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Figure 3: HG003 WGS variant calling results, annotated with 1000Genomes allele fre-
quencies. (a) Variants are stratified by commonness. Left: common variants (allele fre-
quency >0.01), right: rare variants (allele frequency ≤ 0.01). (b,c) Caller-specific errors by
DeepVariant and DeepVariant-AF using 35x HG003 WGS data. Errors specific to Deep-
Variant are considered to be population-resolved, and the others are considered to be
population-induced. (b) false positives (DeepVariant: 2,085, DeepVariant-AF: 1,070), (c)
false negatives (DeepVariant: 2,284, DeepVariant-AF: 1,952)

group. This finding echoes our previous statement that we anticipate the population-
aware variant calling model to improve further with larger-scaled and more diverse pop-
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Table 1: Variant calling accuracy when inferring using 35x WGS data from HG003 and 30x
WGS data from HG00733. Methods: default DeepVariant (Agnostic), population-aware
DeepVariant using allele frequencies from the entire 1000Genomes (1000genomes) and five
1000Genomes superpopulations (AFR, AMR, EAS, EUR and SAS). Higher values corre-
spond to better accuracy

Dataset Variant type Population Precision Recall F1

HG003

INDEL

Agnostic 0.997351 0.993922 0.995634
1000genomes 0.997462 0.993977 0.995716
AFR 0.997337 0.993623 0.995476
AMR 0.997355 0.993787 0.995568
EAS 0.997021 0.993062 0.995038
EUR 0.997364 0.993801 0.995579
SAS 0.997333 0.993692 0.995509

SNP

Agnostic 0.998131 0.993769 0.995945
1000genomes 0.998461 0.993868 0.996159
AFR 0.998475 0.993671 0.996067
AMR 0.998472 0.993816 0.996138
EAS 0.998444 0.993489 0.995961
EUR 0.998471 0.993808 0.996134
SAS 0.998464 0.993782 0.996117

HG00733 SNP

Agnostic 0.997700 0.993789 0.995740
1000genomes 0.997783 0.994116 0.995946
AFR 0.997783 0.993956 0.995866
AMR 0.997802 0.99395 0.995873
EAS 0.997813 0.993409 0.995606
EUR 0.997813 0.993932 0.995868
SAS 0.997810 0.993862 0.995832

ulation callsets.

2.4 Silver-standard truth set for HG00733

Genome-in-a-bottle (GIAB) truth variant sets provide gold standards to benchmark vari-
ant callers, but until now there are only three samples (HG002-HG003-HG004, the Ashke-
nazi trio) with curated calls in difficult-to-map regions added in the v4.2.1 release [26].
Further, the samples are from the same ancestry, making it challenging to perform a
generalized benchmarking considering the genetic diversity of the human population.
To deal with this difficulty, it is desirable to have other high-quality variant sets from
non-GIAB samples, preferably from ancestries not covered by GIAB. Thus, we called
variants using the DeepVariant PacBio model with 32x high-coverage PacBio HiFi reads
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[35] for HG00733, a Puerto Rican (labelled as PUR under the AMR superpopulation in
1000Genomes) sample. The DeepVariant PacBio model has a SNP F1 score higher than
99.9% and is one of the most accurate models using PacBio HiFi data [26]. We used the
DeepVariant HG00733 PacBio SNP calls as a “silver-standard” truth set and benchmarked
the performance for models using Illumina reads. We used 30x Illumina WGS reads se-
quenced by the New York Genome Center [36] to test all HG00733 models. Because the
1000Genomes has a collection of PUR samples, we excluded all PUR samples and re-
calculated allele frequencies for both 1000Genomes and the AMR superpopulation.

DeepVariant-AF has a higher SNP F1 (0.9950) than DeepVariant (0.9948) and other
variant callers (GATK: 0.9912, Octopus: 0.9918, Strelka2: 0.9923) (Figure 4), reducing 1,527
to 26,045 variants (4.4% to 43.8%). Similar to the finding using HG003, DeepVariant-AF
performs strongly with a down-sampled (18x) read set by reducing 4,423 to 44,537 (9.5%
to 52.3%) erroneously called SNPs. The lead is observed for even lower coverage datasets
(10x and 6x). Though the accuracy difference between DeepVariant-AF and Octopus is
small at 6x, DeepVariant-AF still outperforms by an error reduction of 18,368 (3.5%) vari-
ants.

We also tested the model using different superpopulation frequencies (Table 1). All
but the EAS population-aware model has higher SNP F1 scores than the baseline. Using
DeepVariant-AF and inferring using the EAS allele frequencies results in 878 (3.1%) more
errors. All population-aware models, including EAS, outperform the baseline in precision
and only EAS has a lower recall than the baseline (0.993409 vs. 0.993789). We note that all
the tested DeepVariant-AF models outperform other non-DeepVariant methods in SNP
F1 accuracy.

2.5 Population-aware models have a larger effect on the cohort level for rare
variant calls

Variant calling is often applied to large scale cohorts to generate a population-level callset
across many samples [37]. In large cohorts, rare variants present a unique opportunity
to discover variant associations with large effect sizes, such as loss-of-function variants
[38, 39]. These analyses aggregate the signal from several variants in the same gene or
pathway [40]. However, this analysis must also contend with the impact of false positive
calls.

Because the population-aware model has a higher precision for rare variants, and be-
cause rare false positive calls aggregate across many samples at the cohort level, we rea-
soned that the improved accuracy of the population-aware model could be larger for rare
variants.

To test this, we generated cohort-wide calls of the recent whole genome sequencing
of the 1000Genomes using both the DeepVariant v1.1 out-of-the-box WGS model, and the
allele frequency-aware model. To investigate the effect on rare variants, we looked at
variant metrics for calls present in only 1 sample (singleton), as well as those in a small
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Figure 4: SNP calling accuracy using DeepVariant-AF and other methods using HG00733
WGS data. The results are compared to the PacBio-DeepVariant silver-standard truth set

number of samples.
We observed a large reduction in rare homozygous variants (Figure 5a), which can

have a large effect on analysis of recessive loss-of-function variants. Similarly, we saw
a reduction in the number of rare variants which are known to be pathogenic or likely
pathogenic in Clinvar [41] (Figure 5b). The increased precision for rare variants in a single
sample suggests that this reduction may be achieved by reducing the number of false
positive calls, which is supported by an increase in the transition:transversion (Ti:Tv)
ratio, an indirect measure of call quality, for homozygous rare variants (Figure 5c) and
heterozygous rare variants (Figure 5d), with a more pronounced improvement for rare
homozygous variants.

3 Discussion

We designed a new population-aware DeepVariant model which can incorporate both
base- and read-level information with the population information. We find that population-
aware models reduce error rates compared to other state-of-the-art variant calling meth-
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Figure 5: Cohort-level rare variant metrics in the 1000genomes using DeepVariant-AF
and DeepVariant v1.1. Calls in each plot are stratified by the frequency of calls in a sample,
ranging from a call present in only one sample (singleton) to a call in 10 different samples.
(a) The number of homozygous variant calls per sample (each dot is one 1000g sample).
(b) The number of Clinvar pathogenic or likely pathogenic variants per sample (each dot is
one 1000g sample). (c) The Ti:Tv ratio for calls by frequency for homozygous variant calls,
averaged across all samples. (d) The Ti:Tv ratio for calls by frequency for heterozygous
variant calls, averaged across all samples

ods. The relative advantage of the population-aware models increase at lower cover-
age, suggesting that population information is most valuable in difficult examples, where
read-level information alone may not be sufficient for confident calling. In population
sequencing projects, this finding could be relevant to the question of whether to sequence
more individuals at lower coverage, or fewer at a high coverage. When sequencing for a
species without a reference panel, it is possible that sequencing more, diverse individuals
at lower coverage could still retain comparable accuracy to traditional methods which do
not incorporate population information in calling.

We evaluate potential biases introduced by population information in variant call-
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ing by comparing population-aware models that use allele frequencies from different
1000Genomes superpopulation. This experiment simulates a scenario where the tested
sample is genetically distinct from the reference panel. Only one population-aware method
(inferred with EAS frequencies) underperforms the baseline in total number of errors,
but with a small deficit. Furthermore, using allele frequencies calculated from the entire
1000Genomes outperforms population-specific methods. This finding implies that a di-
verse population can provide more benefits than using a homogeneous one, even when
the homogeneous population is more genetically similar with the tested sample. This
finding may inform efforts to build population or country-specific resources. Increasing
the number of samples for a given population will improve accuracy for that population,
but the inclusion of samples from diverse populations will also improve the resource. We
believe that the accuracy of the population-aware model can further improve with a larger
and more diverse population callset in the future, reinforcing the benefit of collaboration
between nation-scale efforts.

We provide an additional “silver-standard” SNP set for a Purto Rican sample, HG00733,
a population not present in the labeled training data. We used high-coverage PacBio HiFi
reads and an accurate DeepVariant PacBio model to generate this high-quality call set.
This method can provide high-confidence SNP calls for non-GIAB samples and increase
population diversity when assessing variant calling results. Similar to the results using
HG003 data, we show that the proposed model has strong performance compared to the
baseline, and only suffers slight loss of accuracy when inferred using a distinct popula-
tion. When more high-coverage PacBio HiFi data become available in the future [29–31],
the high-quality calls generated by DeepVariant can provide a more diversified dataset
for variant calling benchmarking and downstream analysis.

The largest differences that we observe with the population-aware models occur at
the cohort level, with potentially larger implication for the analysis of rare variants within
these cohorts. We see substantial reductions in the number of both rare homozygous
variants and variants that are annotated as pathogenic or likely pathogenic in Clinvar.
This may occur by reducing false positives, and by making heterozygous calls more likely
when a rare variant could plausibly be heterozygous or homozygous. Increasing the pre-
cision for these rare variants across the cohort could increase the statistical signal of rare
variant binning approaches, and improve the discovery of rare impact associations rele-
vant to phenotypic traits.

We also notice that all tested Illumina models performed poorly on the zero-frequency
variants, regardless of using population information or not. By analyzing the variants
with PacBio reads, we point out many zero-frequency variants in 1000Genomes located in
difficult-to-map regions, but likely not genetically novel in the population. This suggests
that the power of population-aware methods should increase as large panels of long-read
population data become available.
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4 Methods

4.1 Model training

We trained the model following the procedure described in [2], with additional Illumina
WGS datasets included [28]. Variants in chromosomes 1 to 19 are used as the training ex-
amples, and those in chromosome 21 and 22 are used for tuning. Variants in chromosome
20 are never used in the training process.

4.2 Datasets

The model is evaluated using the GIAB v4.2.1 truth set for HG003 across the whole genome
[26]. We also generated another high-quality SNP set using DeepVariant v0.10 and HG00733
PacBio HiFi data [35] across the whole genome. We used the intersection of high-confidence
regions of HG002, HG003, and HG004 (GIAB v4.2.1) as the high-confidence regions for the
HG00733 SNP set. The read sets used for experiments are listed in Table 2 and the read
sets for supporting experiments are provided in Table 3.

Table 2: Testing datasets
Sample Ethnicity Truth variant Dataset
HG003 Ashkenazi Jewish v4.2.1 (GRCh38) 35x Illumina WGS [26]

HG003 Ashkenazi Jewish v4.2.1 (GRCh37)
100x Illumina WES [28]
300x Illumina WES [20]

HG00733 Puerto Rican
DeepVariant v0.10
PacBio SNP calls (GRCh38)

30x Illumina WGS [36]

Table 3: Other datasets used in this study
Sample Ethnicity Dataset
HG003 Ashkenazi Jewish 35x PacBio HiFi [26]
HG00733 Puerto Rican 32x PacBio HiFi [35]

4.3 Allele matching algorithm

When incorporating population information in DeepVariant, we need to match a variant
candidate with a cohort variant. However, this is not a straightforward task since a variant
can be represented in multiple formats [3, 42, 43]. A common approach is to normalize
variants, such as using bcftools norm [44], but that’s not sufficient for complicated
cases.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.01.06.425550doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425550


We designed an algorithm that constructed local haplotypes and performed precise
allele matching (Figure 1, inset). The algorithm starts with querying all cohort variants
VC overlapped with a window [vstart, vend), where vstart and vend are the starting and
ending positions of a variant candidate v respectively. The queried cohort variants and
the candidate variant form set V ≡ v ∪ VC . Then the window is extended to the small-
est starting position and the largest ending position within V , as [Vstart, Vend), where
Vstart ≡ min(ustart)∀u ∈ V and Vend ≡ max(endw)∀w ∈ V . Local reference haplotype
is queried from the reference genome in window [Vstart, Vend). For each variant allele in
V , we construct its local allele haplotype. If there’s a perfect match between a cohort al-
lele haplotype and a candidate allele haplotype, the allele frequency of the cohort allele is
added to an allele frequency dictionary, using the alternate allele of the candidate variant
as its key. Afterwards, DeepVariant looks up the dictionary to update the allele frequency
of each read that overlaps with the candidate variant.

4.4 Allele frequency channel for DeepVariant

To make full advantages of the CNN-based classifier of DeepVariant, allele frequencies
need to be encoded in pileup images. We apply a logarithmic transformation to gain
resolution for low-frequency signals. For each variant candidate, an additional allele fre-
quency channel is added to the pileup image. In this channel, a read is colored by the
transformed frequency of its allele at the variant candidate position. A read can carry
multiple alternate alleles with different frequencies, so its color intensity may vary across
pileup images, where the variant candidates differ. An alternative method to encode al-
lele frequencies is to include the information as features in the fully-connected layers [45],
but this approach sacrifices the capability to incorporate allele frequencies with base- and
read-level information and thus is not adopted.

To enable the allele frequency channel, users need to enable flag --use allele frequency
and provide DeepVariant cohort variants in VCF format with flag --population vcfs
<vcf>.

4.5 Stratifying variants by commonness

To measure precision, we matched the called variants with the 1000Genomes reference
panel and annotated allele frequencies using the allele matching algorithm. Similarly, we
annotated the allele frequency of GIAB v4.2.1 truth variants and measured recall. We ex-
cluded multi-allelic variants where one allele is common and the other is rare. We didn’t
perform this analysis for results from Octopus because the variants were represented dif-
ferently.
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4.6 Model-specific error analysis

We compared actual variant calls with GIAB v4.2.1 truth variants. Variants specific to
actual calls are regarded as false positives, and those specific to the truth set are false
negatives. We generated the false-positive and false-negative sets for two models, and
obtained model-specific false positives and false negatives. For both sets, we applied
the allele matching algorithm to annotate the allele frequency (AF) of the variants. For the
false-positive sets, we extracted variant allele fractions (VAF) from the VCF files generated
by DeepVariant.

4.7 1000Genomes frequencies from the DeepVariant-GLnexus pipeline

We used the 1000Genomes reference panel generated with the DeepVariant-GLnexus pipeline
(v3) [9] for all population-aware experiments, including training and inferring the models.
We filled the missing genotypes with the reference genotypes with bcftools +missing2ref
to make sure all variants have the same denominator.

5 Availability of data and materials

5.1 Software

The DeepVariant source code is available at https://github.com/google/deepvariant
under the BSD-3-Clause License. The pre-trained population-aware DeepVariant models
are available at https://console.cloud.google.com/storage/browser/brain-genomics-public/
research/allele_frequency/pretrained_model_WGS (WGS) and https://console.
cloud.google.com/storage/browser/brain-genomics-public/research/allele_
frequency/pretrained_model_WES (WES).

5.2 Data

The 1000Genomes callset generated using the population-aware model is available at:
https://console.cloud.google.com/storage/browser/brain-genomics-public/
research/allele_frequency/1KGP/cohort_dv_af_glnexus. The PacBio-based
HG00733 SNP set is available at https://console.cloud.google.com/storage/
browser/brain-genomics-public/research/allele_frequency/HG00733_SNP_
set. The VCF files used in this study are available at https://console.cloud.google.
com/storage/browser/brain-genomics-public/research/cohort/1KGP/cohort_
dv_glnexus_opt/v3_missing2ref (GRCh38) and https://console.cloud.google.
com/storage/browser/brain-genomics-public/research/cohort/1KGP/cohort_
dv_glnexus_opt/v3_GRCh37_missing2ref (GRCh37).
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