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Abstract 
 
The lysine-to-methionine mutation at residue 27 of histone H3 (H3K27M) is a driving mutation in 
Diffuse Intrinsic Pontine Glioma (DIPG), a highly aggressive form of pediatric brain tumor with 
no effective treatment and little chance of survival. H3K27M reshapes the epigenome through a 
global inhibition of PRC2 catalytic activity, the placement of methylation at lysine 27 of histone 
H3 (H3K27me2/3), promoting oncogenesis of DIPG. As a consequence, a histone modification 
H3K36me2, antagonistic to H3K27me2/3, is aberrantly elevated. Here, we investigate the role of 
H3K36me2 in H3K27M-DIPG by tackling its upstream catalyzing enzymes (writers) and 
downstream binding factors (readers). We determine that NSD1 and NSD2 are the key writers 
for H3K36me2. Loss of NSD1/2 in H3K27M-DIPG impedes cellular proliferation in vitro and 
tumorigenesis in vivo, and disrupts tumor-promoting gene expression programs. Further, we 
demonstrate that LEDGF and HDGF2 are the main readers that mediate the pro-tumorigenic 
effects downstream of NSD1/2-H3K36me2. Treatment with a chemically modified peptide 
mimicking endogenous H3K36me2 dislodges LEDGF/HDGF2 from chromatin and specifically 
inhibits the proliferation of H3K27M-DIPG. Together, our results indicate a functional pathway of 
NSD1/2-H3K36me2-LEDGF/HDGF2 as an acquired dependency in H3K27M-DIPG and suggest 
a possibility to target this pathway for therapeutic interventions. 
 
Main 
 
H3K27M is a driver mutation in 80% of Diffuse Midline Glioma (DMG), a malignant, treatment-
resistant brain tumor that includes DIPG, arising from the pons, as well as other gliomas in the 
thalamus and spinal cord1–3. Patients affected by this disease typically range from 5-7 years old 
and have a 5-year survival rate less than 2%, with an average post-diagnostic survival of 9 
months4,5. The hallmark of H3K27M DMG/DIPG is a global loss in chromatin-associated di- and 
tri-methylated lysine 27 of histone H3 (H3K27me2/me3)6,7. H3K27me1/me2/me3 is catalyzed 
solely by the Polycomb Repressive Complex 2 (PRC2)8,9. Notably, PRC2 is allosterically 
stimulated by its own catalytic product, H3K27me3, fostering a positive feedback loop10,11. This 
mechanism by which PRC2 “writes” and “reads” H3K27me3 is central to the spreading and 
formation of extensive H3K27me3-chromatin domains, which provide the platform for chromatin 
compaction and thus repression12. Importantly, these H3K27me3-chromatin domains are also 
inherited upon DNA replication13. The inheritance of H3K27me3 together with the PRC2 “write-
read” mechanism can fully restore H3K27me3-chromatin domains upon DNA replication13.  This 
unique property of PRC2 points to its critical role in propagating a particular cellular identity. Yet, 
as reported by our laboratory and others, H3K27M inhibits PRC2 catalysis of H3K27me2/me3 in 
multiple ways6,14. Indeed, H3K27M preferentially binds to the allosterically activated state of 
PRC2, thereby hindering this crucial feedback mechanism leading to a global loss of 
H3K27me314. This phenomenon not only disrupts the formation of extensive, H3K27me3-
repressive domains, but is expected to also impact their inheritance.  Not surprisingly, H3K27M-
mediated dysregulation of this critical epigenetic state fosters genomic de-repression and 
aberrant activation of inappropriate genes that potentially cooperate with other genetic 
mutations in driving early oncogenesis during tumor evolution. 
 
Previously, we and others reported that H3K27M DIPG cells exhibit elevated levels of another 
chromatin-associated histone post-translational modification, demethylated lysine 36 of histone 
H3 (H3K36me2)14–16.  While H3K36me2 is antagonistic to the catalysis of H3K27me2/me317,18, it 
remains unclear as to whether the elevated levels of H3K36me2 in DIPG arise through the 
increased levels of transcription in these cells or letup from the antagonistic effects of 
H3K27me2/me3. Importantly, the role of these elevated levels of H3K36me2 in promoting 
tumorigenesis is also unclear. Five mammalian lysine methyltransferases can “write”, i.e. 
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catalyze, histone H3K36 methylation, generating H3K36me1 and H3K36me2: NSD1, NSD2, 
NSD3, ASH1L, and SETD219–21. Among these enzymes, only SETD2 can further convert 
H3K36me2 to H3K36me321, the latter being closely associated with transcribed gene bodies 
and with the recruitment of RNA splicing factors through direct protein-protein interactions22. 
However, unlike H3K36me3 the distribution of H3K36me2 is less restricted and appears to be 
generally associated with euchromatic regions23. Both H3K36me2 and H3K36me3 are 
recognized by downstream proteins, “readers”, that contain one or more methyl-lysine reading 
PWWP domains: Pro-Trp-Trp-Pro (PWWP)24. Amongst these readers, we previously 
demonstrated that LEDGF and HDGF2 are associated with all H3K36me2/me3-decorated 
genomic regions and facilitate RNAPII-dependent transcription by relieving the nucleosomal 
barrier, functionally resembling the FACT complex25. Other PWWP-containing readers, such as 
DNMT3A and DNMT3B, have been shown to localize to intergenic regions and to regulate DNA 
methylation patterns26. Here, we investigate the role of H3K36me2 by tackling its writers and 
readers to ascertain the contribution of any of these writer-reader modules in establishing 
dependency on H3K36me2 in H3K27M DIPG cells. 
 
To probe the functional role of the aberrant elevation of H3K36me2 in H3K27M-DIPG cells, we 
first engineered a doxycycline-inducible H3K36M construct in DIPG4 cells comprising an 
H3K27M mutation. H3K36M is a general inhibitor of H3K36 methyltransferases, and its 
expression in DIPG4 cells effectively reduced endogenous H3K36me2/3 levels and impeded 
cell proliferation by an MTT assay (Fig. 1A). To ascertain the writers that are responsible for 
H3K36me2 catalysis in the context of DIPG, we adopted a small interference RNA (siRNA) 
based approach by knocking down NSD1 alone and in conjunction with each of the remaining 
H3K36 methyltransferases in DIPG4 cells. Knockdown (KD) of NSD1 alone in DIPG4 had a 
moderate effect on endogenous H3K36me2 levels, and co-KD of NSD2 manifested an 
additional effect, whereas co-KD of NSD3, ASH1L, or SETD2 was ineffectual (Fig. 1B, left). 
Consistent with the literature, SETD2 is the only mammalian enzyme responsible for H3K36me3. 
While co-KD of NSD1 and NSD2 had a substantial impact on H3K36me2 levels, additional 
knockdown of NSD3, ASH1L, or SETD2 was ineffectual (Fig. 1B, right). We further extended 
our analysis to other DIPG cell lines, including DIPG6 (H3K27M), DIPG13 (H3K27M), DIPG38 
(H3K27M), DIPG10 [H3-wild type (-WT)] as well as a cortex glioma cell line, pcGBM2 (H3-WT) 
(Fig. 1C, S1A, and S1B). While single KD of NSD1 in pcGBM2, and KD of NSD2 in DIPG13 
rendered a major effect on H3K36me2 levels, their co-KD demonstrated a more substantial 
effect on eliminating endogenous H3K36me2 levels (Fig. 1C and S1B). Intriguingly, co-KD of 
NSD1 and NSD2 appeared to strongly reduce the proliferation of two H3K27M DIPG cell lines 
analyzed (DIPG6 and DIPG13), but a considerably milder effect was observed in H3-WT cells, 
including DIPG10 or HEK293T cells (Fig. 1D and S1C, respectively). 
 
Having established that NSD1/2 is crucial for the chromatin deposition of H3K36me2 and the 
proliferation of H3K27M-DIPG cells, we next investigated which readers might mediate the 
downstream effects. Amongst the PWWP domain-containing proteins, LEDGF, HDGF2, 
DNMT3A, and DNMT3B appeared to have preferential binding to H3K36me2/me3 peptides and 
nucleosomes24. KD of LEDGF and/or HDGF2 had little impact on H3K36me2 levels in DIPG4 
cells (Fig. 1E). Similar to the single KDs of NSD1 and NSD2, a moderate reduction in 
proliferation was observed in the single KD of HDGF2 in DIPG4 cells and the single KD of 
LEDGF or HDGF2 in DIPG13 cells, while their co-KD exhibited a far more substantial impact on 
DIPG4 and DIPG13 cells (Fig. 1F). On the other hand, neither the single or joint KDs of 
DNMT3A and DNMT3B had a notable impact on cell proliferation (Fig. S1D). 
 
Next, we implanted these stable KD cell lines using lentivirus-based shRNAs in a xenograft 
mouse model via an intracranial injection in the cerebral hemisphere. Of note, DIPG4 does not 
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steadily form tumors in the brain in NOD/SCID/IL2γ (NSG) mice although it has been reported to 
form tumors by flank injections in nude mice27. As DIPG13 is more dependent on NSD2 for its 
H3K36me2 levels, KD of NSD2 exhibited reduced tumor size and extended survival of recipient 
mice relative to control and the NSD1 KD group, and this effect was further amplified in the 
NSD1 and NSD2 co-KD group (Fig. 2A). Similarly, KD of LEDGF or HDGF2 alone exhibited a 
partial effect on reducing tumor size and extending mice survival, while their co-KD manifested 
a much more robust effect (Fig. 2B). Of note, we have observed a rapid selection advantage of 
clones that escaped from shRNA-mediated KD in cultured H3K27M-DIPG cells, likely due to the 
strong inhibition of cell proliferation by shRNAs (data not shown). We further confirmed that the 
engrafted tumors formed in NSG mice also escaped from shRNA KD by examining the end-
stage tumor lysates from control and double KD groups (Fig. S2A and S2B). 
 
As loss-of-function of LEDGF/HDGF2 phenocopied that of NSD1/2, we speculated that 
LEDGF/HDGF2 function as the main readers that mediate the downstream effect of NSD1/2 in 
regulating gene expression profiles and pathways in the context of DIPG. Indeed, ChIP-seq of 
H3K36me2, LEDGF, and HDGF2 gave evidence of a general positive correlation among their 
chromatin occupancies (Fig. 3A and25). In a comparison between H3-WT and H3K27M DIPG 
cells, the enriched occupancy of LEDGF/HDGF2 correlated highly with the spreading of 
H3K36me2 at de-repressed loci elicited by H3K27M, in stark contrast to those genes decorated 
by H3K27me3 (Fig. 3A and S3). Genes with higher mRNA expression levels by RNA-seq 
exhibited substantially higher enrichments in H3K36me2, LEDGF, and HDGF2 occupancies by 
ChIP-seq (Fig. 3B). Furthermore, in an isogenic HEK293T-based system with inducible H3 
histone, either WT or H3K27M, we consistently observed increased LEDGF/HDGF2 occupancy 
at select loci which had lost H3K27me3 and gained H3K36me2 either upstream or downstream 
of the transcription start sites (TSS) upon induction of the H3K27M oncohistone (Fig. 3C). Next, 
we generated an NSD1 as well as an NSD2 knockout (KO) line in DIPG13 cells by using 
CRISPR/Cas9 to disrupt the respective catalytic SET-domain. Consistent with RNAi-based 
results, NSD2-KO cells exhibited extremely poor proliferation and very low H3K36me2 levels 
whereas changes in these criteria were almost inconsequential in the NSD1-KO cells (Fig. S4A). 
Importantly, NSD2-KO cells also exhibited largely reduced chromatin occupancies of LEDGF 
and HDGF2 (Fig. 3D). Together, these data ascertain the hierarchical relationship of NSD1/2-
LEDGF/HDGF2 in regulating gene expression in DIPG cells. Of note, we were unable to obtain 
a NSD1/2 double KO (dKO) line in DIPG13, and the NSD2-KO lines were barely maintainable, 
becoming very sensitive to lentiviral infection and the selection process, thereby preventing a 
successful rescue using a WT NSD2 cDNA. In parallel, we also generated an NSD1 and NSD2 
dKO by CRISPR/Cas9 in HEK293T cells and corroborated that loss of NSD1/2 and H3K36me2 
only slightly affected its proliferation (Fig. S1D and S4B). 
 
We then investigated the functional consequence to gene expression profiles and the pathways 
affected upon loss of NSD1/2 or LEDGF/HDGF2 in DIPG13 cells. We performed RNA-seq 
analysis using NSD2-KO cells in which we transiently knocked-down NSD1 using siRNAs 
(NSD2-KO+siNSD1), as well as LEDGF/HDGF2 double KD (dKD) cells. By Gene Set 
Enrichment Analysis (GSEA), we detected the down-regulation of a total of 1228 previously 
established gene signatures/pathways in NSD2-KO+siNSD1 cells (clone #7), two-thirds 
(788/1228, 64%) of which overlapped with those down-regulated in LEDGF/HDGF2 dKD cells 
(Fig. 4A, left). A similar result (752/1129, 66%) was observed in a second independent NSD2-
KO clone (clone #10) (Fig. 4A, right). The high-ranked overlapping signatures/pathways 
included ESC stemness gene signature, CHEK2 pathway, EGFR signaling, MYC targets, Pre-B 
lymphocyte developmental genes, and hypoxia-down-regulated genes (Fig. 4B and S5), 
indicating that the NSD1/2-H3K36me2-LEDGF/HDGF2 writer-reader module is necessary for 
maintaining the distinctive tumorigenic gene expression pattern in H3K27M DIPG cells (Fig. 4B). 
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On the other hand, co-KD of DNMT3A and DNMT3B exhibited some, but less correlation with 
loss of NSD1/2 as gauged by RNA-seq and GSEA analyses (Fig. S5). 
 
Lastly, we adopted a chemical approach to tackle the H3K36me2 writer-reader pathway. We 
engineered a transportable H3K36me2 peptide comprising a cell-penetrating peptide (CPP) of 
11 amino acids (a.a.) derived from an HIV TAT protein-based cell membrane entry signal, in a 
disulfate bond fusion with an H3 peptide (a.a. 21-43) having a dimethyl chemical modification at 
lysine 36 (H3K36me2-CPP) (Fig. 5A). Importantly, the CPPs enter the nucleus as evidenced by 
the literature28. Upon cell entry, the disulfate bond is reduced in the intracellular redox 
environment and the released H3K36me2 peptide acts as an endogenous competitive inhibitor 
against the PWWP domains of LEDGF and HDGF. Strikingly, incubation with this peptide 
largely reduced the proliferation of H3K27M DIPG cells (DIPG6, DIPG13), but had little impact 
on that of H3-WT cells (DIPG10, pcGBM2) (Fig. 5B). Importantly, treatment with H3K36me2-
CPP in DIPG13 cells competitively dislodged endogenous LEDGF and HDGF2 from chromatin, 
pointing to its functional efficacy (Fig. 5C). Of note, H3K36me2-CPP was more efficient at 
dislodging LEDGF relative to HDGF2, possibly due to HDGF2 having a stronger preferential 
binding to H3K36me3 peptides and nucleosomes than LEDGF24,25. 
 
Similar to the case of PRC2 and H3K27me3, NSD1/2 and H3K36me2 are essential for normal 
development but also play pleiotropic and context-dependent roles in human cancer29. For 
example, inactivating mutations in NSD1 were frequently found in Head and Neck Cancers30, 
whereas an activating NUP98-NSD1 fusion protein that arises from a chromosomal 
translocation drives leukemogenesis in human Acute Myeloid Leukemia (AML)31,32 and further, a 
gain-of-function mutation in NSD2 is present in Acute Lymphoblastic Leukemia (ALL)33,34. Here, 
we established that LEDGF/HDGF2 are functional readers mediating pro-tumorigenic effects 
downstream of NSD1/2 in the context of H3K27M-DIPG. Importantly, H3K27M-DIPG acquire a 
novel dependency on this H3K36me2 writer-reader axis through its maintenance of a tumor-
promoting gene expression profile. Yet, the tumor evolution process that leads to this acquired 
dependency following the initial H3K27M-mediated epigenome remodeling remains to be 
defined. Interestingly, while NSD1 and NSD2 functionally converge, H3K27M-DIPG cell lines 
exhibited a spectrum of dependency on either of them, similar to the case with LEDGF and 
HDGF2. Additional layers of regulation may foster such individual differences, including the ratio 
of expression levels as well as involvement of potential co-factors. In addition, as H3K36me2 is 
antagonistic to H3K27me2/me3, depletion of NSD1/2 could partially restore H3K27me3 at some 
normally repressed loci, which might also contribute to a tumor-inhibiting effect even with the 
presence of H3K27M in DIPG cells, as implied by a recent study reporting the generation of an 
isogenic DIPG system16. 
 
Importantly, these H3K36me2 writers and readers can be potentially targeted by 
pharmacological approaches through their functional domains, such as the PWWP domains and 
the SET domains of NSD1/2.  However, extensive efforts to target the SET domains of NSD 
proteins with potent inhibitors have proven unsuccessful at the nano-molar scale. In this regard, 
a recent Cryo-EM study revealed that a series of residues within and flanking the SET domain 
are crucial for unwrapping the linker and nucleosomal DNA such that an autoinhibitory state 
inherent to NSD proteins is converted to an active conformation35,36. Understanding these 
unique features of NSDs could further facilitate the structurally-assisted design of new inhibitors. 
Other pharmacological targeting strategies that might function in a more specific manner involve 
the PWWP domains of LEDGF/HDGF2. Fortunately, two selective PWWP domain binding 
ligands have been reported recently by the Structural Genome Consortium 

(https://www.thesgc.org). Such prototype compounds will provide insights into future 
pharmacological development. In addition to H3K27M-DIPG, an impaired PRC2 activity and 
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loss of H3K27me2/me3 also drive tumorigenesis of several other types of cancer, including 
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) having frequent genetic deletions in 
multiple  PRC2 core subunits37, and Posterior Fossa Type A (PFA) ependymoma having 
aberrant expression of EZHIP, an endogenous protein that inhibits PRC2 38–40. The results 
herein expand our understanding of epigenetic dysregulations in H3K27M-DIPG and suggest 
that disruption of the H3K36me2 pathway should be taken into consideration for developing and 
designing therapeutic interventions for a broad spectrum of tumors that exhibit impaired PRC2 
activity. Recently, several studies have also explored the transcriptional and epigenetic 
vulnerabilities of H3K27M-DIPG and suggested a number of potential targets, including CDK7 of 
TFIIH, bromodomain proteins (BRD) binding to acetylated histones, and the residual activity of 
PRC227,41,42. Together with our results, these approaches may provide a foundation for 
combinatory therapies. 
 
Methods 
 
Cell Culture 
SU-DIPG-4, SU-DIPG-6, SU-DIPG-13, and SU-DIPG-38 cells are gifts from the laboratory of M. 
Monje (Stanford). DIPG-N is generated by D.G.P at NYU. All DIPG cell lines were cultured and 
maintained in tumor stem media (TSM), which contains 1:1 mixture of Neurobasal-A and 
DMEM/F12 media (Life technologies), supplemented with 1% antibiotic/antimycotic solution 
(Life technologies), 2 mM GlutaMAX (Life technologies), 10 mM HEPES buffer (Life 
technologies), 1 mM sodium pyruvate (Sigma), 1% MEM non-essential amino acids solution 
(Sigma), B-27 supplement minus vitamin A (Gibco), human EGF (20 ng/ml) (Shenandoah 
biotech), and human FGF (20 ng/ml) (Shenandoah biotech). HEK293T and HEK293-FT cells 
were maintained in DMEM supplemented with 10% FBS,1 mM sodium pyruvate (Sigma), 2 mM 
L-glutamine (Sigma), and 1% penicillin/streptomycin solution (Sigma). 
 
Antibodies 
The antibodies used in this study are listed below: 
LEDGF (Proteintech) Rabbit Polyclonal, Cat # 25504-1-AP 
HDGF2 (Proteintech) Rabbit Polyclonal, Cat # 15134-1-AP 
H3K27me3 (Cell Signaling) Rabbit Monoclonal C36B11, Cat # 9733 
H3K36me2 (Cell Signaling) Rabbit Monoclonal C75H12, Cat # 2901 
H3K36me3 (Cell Signaling) Rabbit Monoclonal D5A7, Cat # 4909 
NSD1 (UC Davis/NIH NeuroMab Facility) Mouse Monoclonal, N312/10 
NSD2 (Millipore) Mouse Monoclonal 29D1, Cat# MABE191 
NSD3 (Cell Signaling) Rabbit Monoclonal D4N9N, Cat # 92056 
ASH1L (Bethyl Laboratories) Rabbit Polyclonal, Cat # A301-748A 
SETD2 (Bio-Rad) Mouse Monoclonal OTI1E1, Cat # VMA00449 
GAPDH (Cell Signaling) Rabbit Monoclonal D16H11, Cat # 5174 
Histone H3 (Abcam) Rabbit Monoclonal EPR16987, Cat # ab176842 
Anti-Flag (Sigma) Mouse Monoclonal M2, Cat # F1804 
H2Av (Active Motif) Rabbit Polyclonal, Cat # 39715 
 
shRNA constructs and lentivirus production 
pLKO.1-based shRNAs against NSD1, NSD2, LEDGF, and HDGF2 were purchased from 
Sigma for lentiviral production and delivery. A lentiviral vector expressing firefly luciferase and 
mCherry was used for bioluminescence imaging experiments43. For the production of viral 
particles, 10 µg of lentiviral vectors were co-transfected with 2.5 µg of pcREV, 3 µg of BH-10, 
and 5 µg of pVSV-G packaging vectors into 293-FT cells. The virus-containing medium was 
collected 48 h after transfection and the target cells were spin infected. Polybrene was added to 
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the viral medium at a concentration of 8 µg/ml. Infected cells were selected by puromycin at 1 
ng/ml for 2 days, G-418 at 400 µg/ml for 5 days, or FACS-sorted for mCherry. The target 
sequence of each shRNA used is as follows:  
NSD1: AGGAGTGGATGGGACATATAA (TRCN0000238370).  
NSD2: CGGAAAGCCAAGTTCACCTTT (TRCN0000274182).  
LEDGF: GCAGCTACAGAAGTCAAGATT (TRCN0000286344).  
HDGF2: GCAGGAGAGCAGAGCAGAGAA (TRCN0000107975). 
 
siRNA transfection 
The siRNAs used in this study were purchased from Dharmacon (ON-TARGETplus SMART 
Pool), including the ones against NSD1, NSD2, NSD3, ASH1L, SETD2, DNMT3A and DNMT3B. 
5 nmol of each pooled siRNA was transfected into DIPG cells at ~50% confluency in 6-well 
plates using Lipofectamine RNAiMAX, under the manufacturer’s instructions. 
 
CRISPR/Cas9 genome editing 
sgRNAs were designed using CRISPR design tool in https://benchling.com. All sgRNAs used 
were cloned in pSpCas9(BB)-2A-GFP (plasmid 48138, Addgene). The sgRNAs were 
transfected into DIPG cells using Lipofectamine 2000 (Life Technologies). Single clones from 
green fluorescent protein (GFP)–positive cells were isolated individually into each well of 96-well 
plates by FACS. The sequence of sgRNA that targets the SET domain of NSD1 is: 
GTAGCTTTACAGTTGCAACG and that of NSD2 is: CCCACAGATGAGAATCCTTG. 
 
Mouse intracranial injections and bioluminescence imaging 
Mice were housed within NYU Langone Medical Center’s Animal Facilities. All procedures were 
performed according to our IACUC-approved protocol as previously described44. Briefly, 6-8 
week old NOD.SCID IL2γ-null mice were anesthetized by intraperitoneal injection of 
Ketamine/Xylazine (10 mg/kg and 100 mg/kg, respectively), mounted on a stereotactic frame 
(Harvard Apparatus), a high speed drill was used to drill a hole in the calvaria (2 mm off the 
midline and 2 mm anterior to the coronal suture), and stereotactically injected with 5 μl of a 
suspension of human DIPG cells (50,000 cells per μl) at a depth of 3 mm. Animals were imaged 
for luciferase expression at the time points indicated. Mice were injected with luciferin (Gold 
Biotechnology 115144-35-9) at a dose of 200 mg/kg 15 minutes prior to imaging on the 
PerkinElmer IVIS Spectrum instrument. The resulting images were analyzed using Perkin 
Elmer’s Living Image software package. 
 
ChIP-seq and RNA-seq 
ChIP-seq experiments were performed as previously described11. Briefly, cells were cross-
linked with 1% Formaldehyde for 10 minutes.  Following nuclei isolation, the chromatin was 
extracted and fragmented to ~250 bp using a Diagenode Bioruptor.  Chromatin 
immunoprecipitation was performed with the specific antibodies listed above.  For quantification, 
(spike-in) chromatin from Drosophila (1:100 ratio to the experimental chromatin) with Drosophila 
specific H2Av antibody was added to each sample as a spike-in control, allowing ChIPs to be 
compared to one another.  Libraries were prepared using 1-30 ng of immunoprecipitated DNA 
as previously described45. For RNA-seq experiments, RNA was isolated using RNeasy mini spin 
columns (Qiagen) under the manufacturer’s instruction. 1-5 μg of total RNA was then processed 
by Oligo dT selection and library preparation using the Automated KAPA Library Prep Kit. 
 
Bioinformatics 
ChIP-seq and RNA-seq analyses were processed as previously described11,14,25. Briefly, the 
ChIP-seq data were first mapped to human genome (hg38) using the Bowtie2 software package 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.425580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425580
http://creativecommons.org/licenses/by-nc-nd/4.0/


(version 2.3.0). All reads that failed to align to the human genome were mapped to the fly 
genome (dm6). The total library size was then adjusted to the reference genome (fly). MACS2 
software package was used (version 2.1.1) for calling significantly enriched peaks at a false 
discovery rate (FDR) less than 5% relative to the input samples. For RNA-seq data, 
STAR  (version 2.6.1)46 and RSEM (version 1.3.2)47 indices were created based on the mouse 
10 ensemble genome and gene annotations downloaded from UCSC genome browser[]. 
Paired-end 79 bp reads were directly mapped to this STAR index with command line options “--
outFilterMismatchNmax 3 outFilterMultimapNmax 20 --winAnchorMultimapNmax 50 --
quantMode  TranscriptomeSAM GeneCounts”. RSEM software package was then used to 
estimate relative gene expressions with parameter settings “--paired-end --strandedness 
reverse ” on the alignments generated by STAR. For all genes with at least one of the libraries 
above zero transcript per million (TPM), the average expression values across biological 
replicates were compared between samples for detecting differentially expressed genes, using 
DESeq248.  Gene ontology (GO) term enrichment analysis was performed using DAVID 
Functional Annotation Tool49. The complete list of GO term categories with significant 
enrichment was extracted. Gene Sets Enrichment Analysis was conducted using 
GSEAPreranked50 software package on differential analysis results generated by DESeq2. 
 
Metagene profile analyses 
Metagene profiles for Figs. 3C, 5C and S3 were generated with deepTools v2.3.3. Genes were 
divided in 3 equal categories (low, mid and high) by their RNA-seq counts. Only genes 
containing peaks for H3K36me2, LEDGF and HDGF2, respectively, were selected and then 
plotted (Figure 3B). Genes with peaks in the control condition for H3K36me2 and H3K36me3 
were selected and plotted for HDGF2 and LEDGF enrichment, respectively, for control and 
H3K36me2-CPP conditions (Figure 5C). Genes with peaks for K27me3, H3K36me2 and 
H3K36me3, respectively, were selected and then plotted for K27me3, H3K36me2, H3K36me3, 
HDGF2 and LEDGF and compared to multiple WT and K27M DIPG cell lines (Figure S3). 
 
Cell Penetrating Peptide (CPP) treatment 
Cell penetrating peptides were purchased from LifeTein. The cell penetrating peptide was 
reconstituted and diluted in PBS as vehicle.  For CellTiter-Glo® cell survival assays, cells were 
treated for 72 h with a titration of cell penetrating peptide as indicated. For ChIP-seq, cells were 
treated with 250 μM CPP or vehicle only (control) for 16 h and then cross-linked with 1% 
Formaldehyde for 10 min and processed for ChIP-seq. 
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Figure Legends 
 

Figure 1: 
A, Left, western blot of H3K36me2, H3K36me2, histone H3, and Flag in DIPG4 (H3K27M) cells 
expressing doxycycline-inducible, flag-tagged wildtype histone H3 (H3-WT) or H3K36M 
constructs. 0, 1, or 5 ng/mL of doxycycline was administrated for an induction of ectopic 
histones. Cell lysates were harvested 3 days after induction. Right, a MTT assay was conducted 
for assessing the proliferation of cells treated with respective conditions in the left panel. Cells 
were seeded 3 days after induction and the MTT assay was conducted 6 days after induction. B, 
Western blot of GAPDH, H3K36me2, H3K36me3, and histone H3 in DIPG4 cells transfected 
with indicated siRNAs, including NSD1 and NSD2, NSD3, ASH1L, or SETD2. C, Western blot of 
NSD1, NSD2, GAPDH, H3K36me2, and histone H3 in DIPG10 (H3-WT), DIPG6 (H3K27M), and 
DIPG13 (H3K27M) cells transfected with and without siRNAs against NSD1 and/or NSD2. Cell 
lysates were harvested 3 day after transfection and GAPDH was used as a loading control in B 
and C. D, Proliferation assays of DIPG10, DIPG6, and DIPG13 cells stably expressing control or 
shRNAs against NSD1 and/or NSD2. Cell numbers were counted after 2, 4, and 6 days. E, 
Western blot of LEDGF, HDGF2, GAPDH, H3K36me2, and histone H3 in DIPG4 cells stably 
expressing control or shRNAs against LEDGF and/or HDGF2. F, Proliferation assays of DIPG4 
cells used in E and DIPG13 cells with the same conditions. *p<0.05, **p<0.01, ***p<0.001 by 
Student’s t-test. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2021. ; https://doi.org/10.1101/2021.01.06.425580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 2: 
A, Left, a Kaplan-Meier survival curve plot of mice bearing xenograft tumors with endpoints 
defined by a sign of distress. DIPG13 cells stably expressing a firefly luciferase and control or 
shRNAs against NSD1 and/or NSD2 were implanted in the cortex of NOD/SCID/IL2γ (NSG) 
mice by intracranial injection. 250,000 cells were implanted in each mouse. Right, a 
quantification of firefly luciferase signals in mice described in the left panel. Bioluminescent 
imaging (BLI) data were presented at Day 35 post-injection before the first mouse exhibited a 
sign of distress. Bottom, representative BLI images from indicated conditions. B, Left, a Kaplan-
Meier survival curve of mice implanted with DIPG13 cells stably expressing control or shRNAs 
against LEDGF and/or HDGF2 in the same experimental conditions described in A. Right, a 
quantification of BLI signals in mice describe in the left panel. Bottom, representative BLI 
images from indicated conditions. *p<0.05, ***p<0.001 by Log-rank test. n.s., not significant 
(p>0.05) for Kaplan-Meier survival analysis. *p<0.05, **p<0.01, ***p<0.001 by a nonparametric 
Mann-Whitney test for BLI quantifications. 
 
Figure 3: 
A, Representative ChIP-seq tracks of H3K36me2, LEDGF, and HDGF2 chromatin co-
occupancy in H3-WT (DIPG10 and pcGBM2) and H3K27M (DIPG4, DIPG6, and DIPG13) cells. 
B, Violin plots showing enrichment of H3K36me2, LEDGF, or HDGF2, respectively, for genes 
categorized  as low, mid, or high based on their mRNA expression. The central thick dash line 
indicates the mean value of each plot; the upper thin dash line indicates the top 25% percentile 
and the lower one for the bottom 25% percentile. C, Metaprofile plots of H3K27me3, H3K36me2, 
LEDGF, and HDGF2 ChIP-seq data in HEK293T cells ectopically expressing wildtype histone 
H3 (H3-WT) or H3K27M for 24 hrs. Genes exhibiting loss of H3K27me3 by H3K27M were 
categorized by its loss upstream or downstream from transcription start sites (TSS) and 
subsequent changes in H3K36me2, LEDGF, and HDGF2 occupancies were presented below. 
Data were presented within a 500-kb window upstream or downstream from TSS. D, Top, 
metaprofile plots of LEDGF and HDGF2 occupancy in wildtype or NSD2-KO DIPG13 cells 
(clone#7 and clone#10). Bottom, representative ChIP-seq tracks for the top panel. Overlayed 
panels were presented at the bottom to better illustrate the differences. ****p<0.0001 by 
Student’s t-test. 
 
Figure 4: 
A, Venn diagrams showing overlaps of gene signatures/pathways downregulated in 
LEDGF/HDGF2 double knockdown (dKD) DIPG13 cells and NSD2-KO#7+siNSD1 or NSD2-
KO#10+siNSD1 DIPG13 cells. The alteration of gene signatures/pathways were detected by 
Gene Set Enrichment Analysis (GSEA). B, Representative images of highly ranked GSEA 
signatures/pathways detected in A, including a CHEK2 pathway, an embryonic stem cell (ESC) 
steamness signature, and a set of EGFR signaling target genes. 
 
Figure 5: 
A, Top, a schematic illustration of the design of Cell Penetrating Peptide (CPP). A HIV-based 
cell entry peptide was linked to a H3K36me2 peptide (histone H3 21-43 a.a., Cargo Peptide) by 
a disulfide bond. Bottom, Amino acid (a.a.) sequence of H3K36me2 linked CPP. B. A CellTiter-
Glo® cell survival assay for H3-WT (DIPG10 and pcGBM2) and H3K27M (DIPG6 and DIPG13) 
cells treated with control (vehicle only) or H3K36me2-CPP. Cells were assayed at 72 hours after 
dosing with a titration of control or H3K36me2-CPP and data were presented by ratios of 
CellTiter-Glo signals in control versus H3K36me2-CPP treated cells. C, A metaprofile of ChIP-
seq analysis for changes in LEDGF and HDGF2 occupancy of genes decorated by H3K36me2 
and H3K36me3 in DIPG13 cells treated with a control vehicle (Red) or a H3K36me2-CPP (Blue). 
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