ABSTRACT
Systems biology approaches can identify critical targets in complex cancer signaling networks to inform therapy combinations and overcome conventional treatment resistance. Herein, we developed a data-driven, network controllability-based approach to identify synergistic key regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-ALL), a high-risk leukemia subtype associated with hyperactive signal transduction and chemoresistance. Integrated analysis of 1,046 childhood B-ALL cases identified 14 dysregulated network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis pathways and other critical processes. Consistent with network controllability theory, combination small molecule inhibitor therapy targeting a pair of key nodes shifted the transcriptomic state of Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and more similar to prognostically-favorable childhood B-ALL subtypes. Functional validation experiments further demonstrated enhanced anti-leukemia efficacy of combining the BCL-2 inhibitor venetoclax with tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like ALL cell lines and in vivo in multiple patient-derived xenograft models. Our study represents a broadly-applicable conceptual framework for combinatorial drug discovery, based on systematic interrogation of synergistic vulnerability pathways with pharmacologic targeted validation in sophisticated preclinical human leukemia models.
Competing Interest Statement
SKT receives research funding from Incyte Corporation and Gilead Sciences for unrelated studies. The remaining authors declare no relevant conflicts of interest.
Footnotes
↵* SKT and KT share senior authorship
KEY POINTS
Unbiased integrated network analysis of large-scale patient genomic and transcriptomic datasets identified new targetable synergistic regulators in Ph-like ALL
Co-targeting of STAT5 and BCL-2 with kinase inhibitors and venetoclax has synergistic efficacy in vitro and in vivo in Ph-like ALL.