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Functional and structural connections vary across conditions, measurements, and time. However,
how to resolve multi-relational measures of connectivity remains an open challenge. Here, we propose
an extension of structural covariance and morphometric similarity methods to integrate multiple
estimates of connectivity into a single edge-centric network representation. We highlight the utility
of this method through two applications: an analysis of multi-task functional connectivity data and
multi-measure structural networks. In these analyses, we use data-driven clustering techniques to
identify collections of edges that covary across tasks and measures, revealing overlapping mesoscale
architecture. We also link these features to node-level properties such as modularity and canonical
descriptors of brain systems. We further demonstrate that, in the case of multi-task functional
networks, edge-level features are consistent across individuals yet exhibit subject-specificity. We
conclude by highlighting other instances where the edge-centric model may be useful.

INTRODUCTION

The human brain is a network and can be modeled as
a graph of nodes and edges, which represent neural ele-
ments and their pairwise functional interactions or struc-
tural links, respectively [1–3]. Using computational tools
from graph theory and network science, the structure
and function of brain networks can be probed, revealing
key organizational and operational principles, including
small-worldness [4, 5], modular structure [6–9], spatial
constraints [10–12], and hubs and rich clubs [13–15].

Despite widespread application of network models
within neuroscience, key challenges remain. In fact, even
the most fundamental question of “what does it mean
for two parts of the brain to be connected?” is not com-
pletely resolved [16–18]. In general, the answer to this
question will vary with data modality, the time at which
the measurement is made, the state in which the brain
is situated, and the cognitive operation being performed.
User preferences also play an important and somewhat
arbitrary role – e.g. should functional connectivity be
measured with full or partial correlations? – as do study
aims – e.g. can connectivity be correlational or does it
need to reflect directed, causal relationships [19]? This
lack of consensus surrounding how connectivity is de-
fined also presents issues with interpreting, contextual-
izing, and comparing results across studies. Although
defining connections is central to every network neuro-
science study, how to reconcile the multi-relational na-
ture of brain connectivity is largely unaddressed.

One particularly useful strategy for measuring con-
nectivity is based on interregional morphometric similar-
ity (alternatively referred to as “anatomical covariance”)
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[20–23]. Calculating these measures involves first defin-
ing a set of features for each brain region and then, for
pairs of regions, calculating their distance (or proxim-
ity) from one another in feature space. In most applica-
tions, feature vectors encode population-level variation of
some morphological measurement, e.g. a region’s corti-
cal thickness. The resulting similarity matrix is therefore
representative of an entire cohort, making this approach
poorly suited for studying individual differences. More
recently, however, this approach was extended by defin-
ing feature vectors that represent a spectrum of struc-
tural and morphological measures for brain regions, e.g.
their myelination status, curvature, and volume [24–27].
This extension makes it possible to define a similarity
matrix at the level of individual subjects.

Both group- and subject-level morphometric networks
are defined at the regional level, meaning that network
nodes represent brain regions. Recently, we proposed an
alternative, edge-centric method for constructing brain
networks, emphasizing a network’s edges as its irre-
ducible units and generating a higher-order network [28–
32]. Edge-level networks have a number of useful prop-
erties not shared by node-level networks, e.g. when clus-
tered they naturally resolve overlapping clusters. More
generally, edge-centric networks can be analyzed to re-
veal rich edge-level topology and present novel features
that can potentially be used as biomarkers [33–35].

Here, we combine the edge-centric framework with an
extension of morphometric similarity to integrate multi-
relational connectivity data into one edge-level network
model. Although this approach is flexible and can be
applied to any set of connectivity measurements, we fo-
cus on two specific examples that highlight its utility for
neuroscience. First, we combine rest and task-evoked
functional connectivity to study multi-task reconfigura-
tion and second, we integrate multiple measurements of
structural connection weights. In these examples, we
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demonstrate that edge covariance networks can be de-
composed into clusters to reveal groups of edges that
cohesively modulate their weights across tasks or vary
similarly across different weighting schemes of structural
networks.

RESULTS

Throughout this manuscript we analyze neuroimaging
data from the Human Connectome Project [36] and a
dense phenotyping study of a single individual [37]. In
the first section, we analyze functional neuroimaging data
from both datasetes. In the second section, we analyze
structural networks estimated using HCP data. Details
of the acquisition, processing, and network construction
procedures can be found in Materials and Methods.

Edge covariance estimation

The presence/absence and weight of connections can
be estimated using many different methods. To con-
solidate this variability into a single model, we propose
a novel edge-centric analog to morphometric similiarity
networks. In this section, we briefly summarize the pro-
cedure (see Materials and Methods for a complete
description).

Traditionally, interregional morphometric similarity
networks are constructed by estimating the pairwise sim-
ilarity between brain regions’ structural and morpholog-
ical features [20, 24]. This approach can be extended to
the level of edges by estimating the connection weight
between pairs of nodes based on different modalities, e.g.
structural or functional connectivity, using different mea-
surements, e.g. full/partial/regularized correlation, spec-
tral coherence, mutual information, etc., or under differ-
ent conditions, e.g. task or rest. These multi-relational
estimates of a connection’s weight can be assembled into
a feature vector (Fig. 1a) and the similarity of this vector
calculated with respect to any other edge in the network
(Fig. 1b). Repeating this procedure for all m edges yields
an edge-by-feature matrix (Fig. 1c) that can be further
transformed into an edge covariance (or edge similarity)
matrix by computing the similarity between all pairs of
edge feature vectors (Fig. 1d). We note that the edge co-
variance matrix is only modestly correlated with the edge
functional connectivity matrix described in our previous
reports (r = 0.48; p < 10−15; Fig. S1a) and its topology
not clearly driven by spatial relationships (correlation of
edge covariance with surface areas of quadrilateral traced
out by the four nodes involved in an edge pair, r = −0.02;
Fig. S2b).

Edge covariance matrices differ from morphometric
networks in several key ways. First, edge covariance ma-
trices have dimensionality of Rm×m, whereas morphome-
tric networks have dimensionality of Rn×n, where n and
m are the number of nodes and edges in the network,

respectively. Whereas morphometric networks compare
measurements taken at the physical nodes, edge covari-
ence networks compare information about the interrela-
tionships between nodes. Note, also, that edges’ feature
vectors are flexible and can be defined multiple ways.
For instance, they could represent connectivity estimates
made using different imaging modalities, while subjects
complete different tasks, or different measurements of
connection weight made on the same network dataset.
They could even reflect connectivity estimates at differ-
ent points in time, in which case edge covariance is nearly
identical to edge functional connectivity, which we ana-
lyzed in previous studies [28–30].

Task-based edge covariance matrices

It is well-documented that, when estimated using Pear-
son correlation, functional connection weights are subtly
yet systematically shifted when subjects perform cogni-
tively demanding tasks, driving the brain into increas-
ingly integrated states [38–42]. However, the princi-
ples by which edge weights reconfigure remain unclear
[43]. For instance, are there certain classes of connec-
tions whose weights are similar across different tasks?
Are some connections selectively modulated in a small
number of tasks while others fluidly reconfigure across
many? Here, we address these questions by construct-
ing an edge covariance matrix from group-representative
resting-state and task-evoked functional connectivity.
Specifically, we define a set of features for each edge
based on its weight during the seven tasks included in the
HCP dataset (EMOTION, GAMBLING, LANGUAGE,
MOTOR, RELATIONAL, SOCIAL, working memory
(WM)) as well as rest (see Materials and Methods
for details on preprocessing).

Modular structure

Are there clusters of edges that reconfigure similarly
across multiple cognitive domains? In our first analy-
ses we address this question by clustering the multi-task
edge covariance matrix. To do this, we first calculated
functional connectivity as the full matrix of correlation
coefficients for the 92 subjects that pass quality assurance
for all resting-state and the seven task scans (Fig. 2a).
For each edge, we extracted its correlation weight for
each task, averaged these values over all subjects, and
standardized (z-score) their values to generate a feature
vector for each edge (Fig. 2b). In principle, we could then
estimate the edge covariance network by calculating the
pairwise similarity of edges’ feature vectors (Fig. 2c; we
show examples of these correlations in Fig. S1). The
resulting edge-by-edge matrix could be treated as a net-
work and clustered using any of the familiar community
detection methods [44]. However, for computational ease,
we opted to directly cluster the matrix of feature vec-
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FIG. 1. Edge covariance network estimation. (a) Each edge is associated with a set of features that represent estimates
of its weight using different modalities and measures and/or conditions. (b) We can calculate the connection weight between
any two edges, e.g. as the similarity of their feature vectors. In this diagram, points represent features, e.g. different means
of weighting an edge. (c) Scaled to the entire brain, this procedure results in a matrix of edge feature vectors. (d) An edge
covariance network can then be estimated as the matrix of all pairwise similarity values.

tors. Although, there exist many methods for clustering
data, we were again motivated practically and used k-
means with the correlation distance metric. We varied
the number of clusters from k = 2 to k = 25, repeat-
ing the algorithm 250 times at each parameter setting.
We selected the optimal number of clusters to be the k
at which the mean similarity of estimated clusters was
both large and exhibited low variance. These heuristics
revealed both k = 2 and k = 6 as good candidates. We
focused on k = 6 for all subsequent analyses and derived
consensus clustered from the 250 estimates (Fig. 2b-d;
see Materials and Methods for details).

From the clustering results, we defined a connectional
fingerprint for each of the six clusters (Fig. 2e). Our
results allow us to make several interesting observations.
First, we find that two clusters are largely associated with
specific tasks. Clusters three (green) and four (yellow)
include connections that tend to decrease and increase
their weights during the SOCIAL task and at REST, re-
spectively, but only subtly modulate their connections
during all other conditions (Fig. 2e). Interestingly, clus-
ter four included many within-system connections, in-
dicating that the cohesive functional connectivity that
supports the emergence of brain systems is largely rest-
specific. Other clusters exhibit more complicated finger-
prints that involve modulation of edge weights across
multiple tasks. Cluster one (dark blue), for instance,
includes connections between the default mode and so-
matomotor network that decrease their weights during
REST and MOTOR tasks, decrease their weights mod-
estly during EMOTION and SOCIAL tasks, and increase
weights during all others.

The clustering results can also be viewed as node-level
networks, themselves. That is, the set of edges assigned
to each cluster can be treated as node-by-node network
and can be analyzed separately. We show the upper tri-
angle of each such network alongside their respective fin-
gerprints in Fig. 2e. We also calculate and report a se-
lect set of characteristics for each network, including the

extent to which their connections fall within brain sys-
tems, their modularity, and their system composition,
i.e. the canonical brain systems that are concentrated
within each cluster [45]. We find that cluster four (yel-
low) is the only cluster that has greater than 50% of
its connections concentrated within traditionally defined
brain systems, whereas all other clusters are dominated
by between-system connections. Not surprisingly, this
same cluster was the only one that exhibited a positive
modularity (Fig. 2g). Lastly, we considered the compo-
sition of traditionally defined systems in terms of their
within-system edges’ cluster assignments (Fig. 2h). We
found that dorsal attention and somatomotor networks
were dominated by clusters five and four, respectively,
and that other systems contained mixtures of many dif-
ferent clusters. Notably, only default mode and control
networks included edges associated with all six clusters.

Note that for the analysis reported here, we calculated
standardized edge features based on functional connec-
tivity estimates using all frames, irrespective of their in-
scanner motion. To confirm that our analyses are not ob-
viously biased by motion, we repeated this procedure but
based on functional connectivity where we dropped high-
motion frames (relative motion > 0.1 mm). We found
that the group-representative standardized feature vec-
tors were highly correlated (r = 0.998), suggesting that
motion is not an obvious confound in these analyses. A
second potential issue concerns the relative duration of
the scans and the number of samples used to estimate
functional connectivity. To circumvent any possible is-
sues, we repeated our analyses after recalculating func-
tional connectivity using the same number of frames in
all tasks (equal to the minimum number of frames in
any task). Again, we found that the feature vectors were
highly correlated (r = 0.979), suggesting that the number
of samples is not an obvious confound for these analyses.

Collectively, these results suggest that edge covariance
patterns can be used to reveal clusters of edges that
reconfigure across tasks. These results hint that task-
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FIG. 2. Edge covariance matrices for multi-task functional connectivity data. (a) Functional connectivity networks
estimated during eight conditions. (b) Normalized edge feature matrix with rows sorted by edge clusters. (c) Edge covariance
matrix sorted by edge clusters. (d) Force-directed layout of edge covariance matrix (union of minimum spanning tree and
strongest 0.01% connections. Inset shows mean and variance of z-score Rand index as a function of the number of clusters,
k, with peaks and troughs at k = 6. (e) “Connectional fingerprints” for each of the six clusters depicting normalized weights
of edges across different task conditions. (f ) For each cluster, the fraction of its connections that fall within canonical brain
systems. (g) The modularity, q, of each cluster. (h) Composition of within-system edges in terms of edge cluster assignments.

evoked changes in functional connectivity are fundamen-
tally low-dimensional [46] and can be characterized by a
small number of template patterns or fingerprints [47].

Overlap

In the previous section, we extracted and clustered
edge-level features from resting-state and task-evoked
functional connectivity, resulting in a non-overlapping
partition of edges into clusters. However, edge clusters
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FIG. 3. Edge cluster projections and overlap. (a) Node-by-node matrix with edges labeled according to the cluster to
which they were assigned. (b) Projections of edge clusters onto brain regions. (c) Matrix representation of projections (left)
and the overlap level, the max affiliation, and the label associated with the max affiliation of each node. (d) Topographic
representation of overlap patterns. (e) Maximum affiliation of each brain region to any of the clusters. (f ) Label of the cluster
to which each brain region was maximally affiliated.

induce overlapping clusters from the perspective of indi-
vidual nodes. Here, we characterize these overlap pat-
terns to identify brain regions and systems that partici-
pate in few or many edge clusters.

To extract measures of edge cluster overlap, we first
reshape cluster labels into the upper triangle of a node-
by-node matrix (Fig. 3a). Then, for each node, we can
calculate the fraction of its edges that are affiliated with
each of the six clusters (Fig. 3b). These projections of
edge-level clusters onto nodes yield an overlapping view
of clusters. That is, rather than forcing nodes to have all-
or-nothing affiliation with clusters, i.e. non-overlapping
clusters, each node can be affiliated fractionally with mul-
tiple clusters through its edges’ cluster assignments. In-
terestingly, we find that the affiliation measures exhibit
non-random topography and align closely with canoni-
cal systems. For instance, cluster four (yellow) largely
involves edges with stub nodes falling within somatomo-
tor and visual networks (Fig. 3b). Similarly, cluster one,
two, and six involve edges with stubs in default mode,
control, and visual systems, respectively (Fig. 3b). Inter-
estingly, clusters three and five exhibit similar patterns
of fractional participation (r = 0.50, p = 8.2 × 10−14),
with both involving edges linked to visual, dorsal atten-

tion, and control networks. Although the projections of
these clusters onto brain regions are similar, the clusters
involve disjoint sets of edges.

We can also compute several summary statistics based
on the affiliation measure (see Materials and Meth-
ods). First, as in [29, 48], we calculated the normalized
entropy of each nodes’ edge cluster assignment distribu-
tion. Intuitively, if a node’s edges are assigned to a single
cluster (or a small number of clusters), this entropy mea-
sure is close to 0. However, if a node’s edges are assigned
to many clusters and evenly distributed, then the entropy
is close to 1. Additionally, we also calculated each node’s
maximum affiliation, i.e. the cluster to which the greatest
number of its edges were assigned (Fig. 3c). Interestingly,
we found high levels of entropy (overlap) across the cor-
tex, with values approaching 1 in many regions and with
98.5% of regions (197/200) exhibiting an entropy greater
than 0.8 (Fig. 3d). At the system level, no system exhib-
ited significantly different levels of entropy (spin test). In
fact, when we ranked nodes according to the entropy, we
found that high-entropy nodes (top 25%) could be found
in every system except for visual.

Next, we calculated the maximal affiliation of each re-
gion to any of the six clusters. We found no evidence
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that the maximum affiliation was significantly elevated
or depressed in any system and that, as in the previous
section, regions ranked in the top 25% based on their
maximum affiliation could be found in every brain sys-
tem. However, when we examined the clusters to which
regions maintained their maximum affiliation, we found
that the resulting partition was highly similar to the
canonical brain systems reported in [45] (adjusted Rand
index, ARI = 0.75; spin test p < 10−3), suggesting that
system-level architecture may play a role in determining
task-evoked patterns of functional network reconfigura-
tion [49, 50].

Repeatability

Finally, we assessed the reliability and repeatability
of normalized edge features, the primary ingredient for
calculating edge covariance matrices. This procedure in-
volved several analyses carried out using functional imag-
ing data from two datasets: the Human Connectome
Project and dense phenotyping data from a single in-
dividual that included thirty scan sessions with both rest
and task conditions of similar duration [37].

Using HCP data, we first tested whether normalized
feature matrices were similar across individuals by com-
puting the inter-subject similarity of observed matrices
with those obtained after permuting subjects’ functional
connectivity matrices using a spatially-constrained test
[51] (Fig. 4a). Note that while the same permutations
were applied to all scans of the same individual, different
permutations were used for different individuals. In gen-
eral, we found that subjects were more similar to one an-
other than expected by chance (Fig. 4b; t-test; p < 10−3).

Next, we tested whether normalized feature matrices
were subject-specific. To do this, we generated separate
feature matrices using the left-to-right and right-to-left
(LR and RL, respectively) phase encoding scans. We
then computed the similarity of these matrices to one
another (Fig. 4c). If features were subject-specific, we
would expect to find that elevated similarity between the
LR and RL matrix from the same subject compared to
matrices from different subjects. In the similarity matrix,
this effect would yield a bright red trace along the diago-
nal. We found that this was the case, suggesting that nor-
malized feature matrices are not only similar across the
HCP cohort, but are also unique to each subject (Fig. 4d;
t-test; p < 10−3).

Finally, we wanted to know how much data was nec-
essary to obtain an accurate estimate of normalized edge
features. To do this, we analyzed data collected from a
single individual over 30 scan sessions during which that
individual underwent resting-state scans along with mul-
tiple task conditions (card-sorting, n-back task, gradual-
onset continuous performance task, stop-signal, card-
guessing, reading the mind in the eyes, movie-watching)
[37]. With multiple observations/scan sessions from the
same individual performing an identical set of tasks, this

dataset is useful for assessing the effect that different
amounts of data have on the veracity of the feature ma-
trix.

To this end, we calculated functional connectivity ma-
trices for each scan and condition (Pearson correlation as
the measure of connectivity) and subsequently computed
a grand average across all scans. As before, we vector-
ized each edge’s weight across all conditions, standard-
ized the weights of each edge, and arranged the standard
scores into a matrix. Then, we repeated this procedure
using random samples of scan sessions, first with each
scan session on its own, then with pairs of sessions, then
triplets, quartets, and so on. Each time, we used more
data to obtain an average, gradually building towards
using the full amount of data available across all scan
sessions. For each random sample, we also calculated the
similarity of its feature matrix to the grand average ma-
trix (Fig. 4e). We found that the similarity to the grand
average increased monotonically as more samples were
used to estimate feature matrices, yielding diminishing
returns. To achieve a level of similarity (Pearson correla-
tion) of r = 0.9, data from 16 scan sessions was required
(482 × 16 = 7712 samples). We also calculated the sim-
ilarity of each column in the feature matrix separately
and found that the movie scan stabilized more quickly
than the others.

In summary, our findings suggest that standardized
edge feature matrices are similar across subjects, exhibit
high-levels of subject specificity, and small increases in
the amount of data leads to rapid increases in the stabil-
ity of their estimates, followed by a protracted regime of
diminished returns. These observations suggest that fea-
ture matrices and edge covariance matrices may be use-
ful substrates for investigating multi-modal differences in
connectivity patterns across individuals [52, 53].

EDGE COVARIANCE MATRICES FOR
STRUCTURAL CONNECTIVITY

In the previous section, we introduced a novel edge-
centric analog of morphometric similarity, prioritizing an
analysis of functional MRI data acquired during resting-
state and task conditions. However, the edge covariance
matrix framework is general and can be applied to other
imaging modalities. Here, we demonstrate this flexibil-
ity by applying this technique to structural connectivity
networks reconstructed from diffusion MRI using trac-
tography (see Materials and Methods for more de-
tails). One of the key challenges in studying structural
brain networks is that there exists multiple methods for
weighting network edges [54, 55]. Some weights are based
on tractography measure, e.g. streamline counts, normal-
ized number of streamlines, etc.. Others are based on mi-
crostructural properties of the reconstructed tracts, e.g.
the mean fractional anisotropy along a streamline’s path,
its mean diffusivity, diffusion kurtosis, etc..

Here, we use the edge-covariance method to recon-
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FIG. 4. Subject specificity and repeatability of normalized edge feature matrices. (a) Within-subject similarity
of normalized edge feature matrices compared with spin test (nodal permutation that preserves spatial relationships among
brain regions) b) Boxplot showing distributions of similarity values for original and spin test data. (c) Similarity of normalized
edge feature matrices separately estimated using left-to-right and right-to-left phase encoding data. (d) Distribution of within-
subject and between subject similarity. (e) Similarity of subsampled normalized edge feature matrices to grand average. (f )
Similarity of specific tasks.

cile disparate measurements of structural connectivity,
focusing on: streamline counts, normalized counts, num-
ber of streamlines, fractional anistropy, mean diffusiv-
ity, and diffusion kurtosis (see Materials and Methods
for detailed definitions), and combining them into a sin-
gle edge-centric model. However, this procedure requires
some additional preprocessing steps. First, unlike func-
tional connectivity, structural brain networks are funda-
mentally sparse. This means that most edges do not
exist and, accordingly, we have no measure of their con-
nection weight. In this analysis, we omit those edges.
Second, structural connectivity edge weights vary from
one another by orders of magnitude, making them es-
pecially difficult to compare. For instance, streamline
counts are integer values and can vary from a value of 0
to a maximum determined by the number of seeds, with
typical values as large as 103 or 104. In contrast, mea-
sures like fractional anisotropy are bounded to the inter-
val [0, 1]. To account for these disparities, we opted to re-
sample edge weights within modalities from a zero-mean
and unit variance Gaussian distribution while preserv-
ing weight ranks, a procedure used previously to ensure
normally distributed edge weights [56]. All analyses re-
ported in the following sections were carried out using a
group-representative structural network [57].

The group-representative structural connectivity ma-
trix was sparse (δ = 0.30; m = 6036 undirected edges)
(Fig. 5a, left; ordered by nodal clusters; see Fig. S3 for to-
pographic representation of edge clusters). Of the exist-

ing edges, we extracted the Gaussian resampled weights,
combined them into a normalized feature matrix, and
clustered this matrix using k-means. We used the same
heuristic as in the previous section to select the number
of clusters and found that repeated runs of the algorithm
converged to a highly similar solution at k = 5. We an-
alyzed the consensus partition obtained from these data
here (edges with cluster labels are shown in Fig. 5a,right).

The edge clusters divided the normalized feature vec-
tors into five clusters (Fig. 5b) and resulted in an edge
covariance matrix with high levels of within-cluster sim-
ilarity (Fig. 5c,d). The first two clusters were comprised
of edges that exhibited elevated streamline-based connec-
tivity (average, normalized average, and total streamline
count) and reductions in edge weights of diffusion kurto-
sis (cluster one) and fractional anisotropy (cluster two)
(Fig. 5e). In contrast, clusters three, four, and five ex-
hibited modest decreases in streamline-based connectiv-
ity measures, but elevated connection weights for frac-
tional anisotropy (cluster three), mean diffusivity (clus-
ter four) and kurtosis (cluster five) (Fig. 5e). Note also
that, broadly, edge clusters partition structural links into
groups of dissimilar lengths (Euclidean distance; Fig. S4).

Interestingly, when we project edge clusters onto the
cortical surface, we find distinct topographic represen-
tations aligned broadly with canonical brain systems
(Fig. 5f). Cluster one overlapped closely with visual and
dorsal attention networks, cluster two with control and
default mode, cluster three with somatomotor and vi-
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sual networks, cluster four with somatomotor, default
mode, and dorsal attention, and cluster five with con-
trol and salience/ventral attention network. The edge
clusters also induce typical patterns of overlap (normal-
ized entropy; Fig. 5g). Similar to the entropy measured
using functional edge covariance clusters, the overlap is
reduced in visual cortex but is elevated to some extent
in all other systems.

Finally, we analyzed the edge clusters patterns as sub-
graphs. We found that different edge clusters one and
two contained edges that tended to fall within nodal clus-
ters (Fig. 5h) and exhibited elevated modularity (Fig. 5i).
Edge clusters also were also distributed non-randomly
within node clusters (Fig. 5j) and canonical brain sys-
tems (Fig. 5k).

Collectively, these results suggest that edge covariance
matrices can be used to integrate multiple connectivity
modalities into a single edge-level network. Our findings
further suggest that edge weights covary with one another
in sometimes complicated patterns, but that by combin-
ing multiple measures into the same model, we can better
understand these relationships and their links to network
topology and the brain’s system-level organization.

DISCUSSION

In this manuscript, we introduce a method for inte-
grating multi-relational datasets into a unified edge-level
network representation. We apply this framework in two
contexts: first to study task-evoked changes in functional
connectivity and second to combine different weighting
schemes for structural connections. Our results suggest
that edge-level models capture repeatable and subject-
specific patterns of connectional covariance and identify
non-overlapping clusters of edges that fluctuate similarly
across tasks and weights (analyses one and two, respec-
tively). We also demonstrate that edge clusters can be
projected to the level of brain regions, yielding distinct
patterns of cluster overlap. Our work capitalizes upon
and extends other recent edge-level models, further high-
lighting their viability for neuroscience.

Edge covariance networks for neuroscience

Brain networks are made up of nodes and edges. Al-
though there are many ways to divide a brain into nodes,
it is generally agreed upon that each node should repre-
sent a distinct area or parcel of gray matter (although
occasionally nodes are defined as sensors/electrodes).
However, the question of how to define edges is more
complicated, and represents a moving target that varies
with imaging modality, condition, and/or time. Finally,
the decision is somewhat arbitrary and usually left to
the user’s discretion, leading to a multitude of possible
weighting schemes.

Here, we present an edge-centric strategy for address-
ing this challenge. Rather than force a user to weight
their network using only one of many possible sets of
weights, we construct an edge-by-edge network whose or-
ganization reflects edges’ covariances with one another.
This approach not only helps sidestep one of the key
challenges in network neuroscience, but it offers many
advantages, including the ability to categorize edges into
sub-networks and to detect pervasively overlapping clus-
ters.

To date, applications of edge-centric models in net-
work neuroscience are uncommon and, in some cases, not
wholly appreciated as being edge-centric. For instance,
several early papers used sliding windows to estimate
time-varying functional networks and track the correla-
tion of edges with one another across time, inadvertently
creating edge-level networks [58–60]. Other recent pa-
pers have deliberately adopted edge-centric approaches,
usually citing [33, 34] as inspiration. In addition to the
edge time series and edge functional connectivity mod-
els discussed earlier [28–32], others have generated edge-
edge networks by embedding edges in a some metric space
and using inter-edge distances to quantify the connection
weight between edges [35].

Although these approaches all adopt an edge-centric
perspective, their mathematical underpinnings differ as
does the intuition they provide about brain network or-
ganization. Moving forward, an important avenue for
future work involves systematically comparing these dif-
ferent approaches to better understand their relative ad-
vantages and disadvantages.

Relationships with existing methods

The edge-centric model presented here is, to our knowl-
edge, novel. However, it is similar to a number of ex-
isting methods. For instance, the general framework
of computing covariances (or more accurately, corre-
lations) between a set of feature vectors and treating
the resulting matrix as a network has been studied at
length in the form of structural covariance matrices [20],
which are a special case where the features correspond
to a regional measure of brain structure (usually corti-
cal thickness) estimated across a population. This ap-
proach has been extended recently [24] by calculate a
set of features for a given region, making it possible to
estimate subject-specific structural covariance matrices
(morphometric similarity matrices). Note, also that pre-
vious studies have investigated the covariance structure
of other node-level properties using network measures.
These include gene and transcriptomic similarity net-
works [61–63], microstructural profiles [64], co-atrophy
patterns [65], meta-analytic co-activation networks [66],
and time series features [67].

In our work we generate a similar construct but at
the level of connections rather than regions. Specifically,
we estimate features at the level of edges and compute
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FIG. 5. Edge covariance matrices for structural connectivity data. (a) Binary structural connectivity mask (left) and
edge cluster assignments (right). (b) Normalized edge feature vector with rows sorted by edge clusters. (c) Edge covariance
matrix sorted by edge clusters. (d) Force-directed layout of edge covariance matrix (minimum spanning tree plus 0.001%
strongest connections). (e) Connectional fingerprints. (f ) Projections of edge clusters onto brain regions. (g) Edge cluster
entropy (overlap). (h) Fraction of connections associated with each edge cluster that fall within node clusters. (i) Modularity
of each edge cluster. (j ) Edge cluster composition of node clusters. (k) Edge cluster composition of canonical brain systems.

the pairwise similarity between feature vectors for edge
dyads, resulting in an edge-by-edge correlation matrix.
This extension of connectomics from nodes to edges is in
line with several recent papers [28, 35], which build on
earlier work promoting edge-centric analysis of complex
networks [33, 34]. In particular, our work here general-
izes the methods from Faskowitz et al [28]. In that paper,
the authors compute a measure called “edge functional
connectivity” as the similarity of edge time series – mea-
surements of the co-fluctuation between pairs of brain re-
gions. In the context of the current paper, we can think
of co-fluctuation time series as a set of edge-level features,
and edge functional connectivity as a specific instance of

an edge covariance matrix.

Future directions

Our work opens up a multitude of opportunities for
future work. Any dataset in which there exists mul-
tiple measurements of an edge’s weight can be imme-
diately transformed into its corresponding edge covari-
ance matrix. For instance, building on our analysis of
multi-task edge covariance networks, one can apply this
approach to data from individual subjects to investi-
gate inter-individual differences in edge-level organiza-
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tion [68]. Note that while our approach requires multi-
task data in order to construct an edge covariance matrix,
it would be straightforward to calculate subject-specific
edge covariance matrices using data from only a single
condition, e.g. the resting state, by computing multi-
ple measures of connectivity and assessing edges covari-
ances across these measures. Our work also helps re-
solve methodological issues associated with preprocessing
pipelines. For instance, it is well known that decisions in
preprocessing can yield dissimilar estimates of functional
connectivity downstream in the pipeline [69, 70]. Rather
than trying to identify the singularly optimal pipeline,
our work could allow users to take the agnostic approach
and treat functional connectivity estimates from many
pipelines as features and compute an edge covariance net-
work based on these estimates. For instance, one could
include models that include and omit controversial steps
like global signal regression [71, 72]. Yet another possi-
ble extension involves the construction of edge covariance
matrices from multi-subject data. Using this approach
one could examine patterns of inter-subject variability.

A final possibility is to consider multi-modal edge-
covariance networks. For instance, one could include fea-
tures for node pairs based on their structural and func-
tional connectivity, matrix measurements derived from
those matrices (e.g. topolgoical distance, communicabil-
ity, search information, etc. [73]), spatial relationships
(e.g. Euclidean distance or geodesic distance on cortical
surface), the similarity of regions’ transcriptomic profiles
[62, 74], or even morphometric similarity. Of course, care
needs to be taken that edge weights are of comparable
scale and that missing connections are dealt with ap-
propriately. This type of model could help provide new
insight into structure-function relationships [75] or, more
generally, help us understand the statistical relationship
between different connection modalities.

Limitations

Here, we present an edge-centric model for resolving
variable estimates of connection weights. The model op-
erates by treating multi-relational connectivity data as a
set of edge-level features and the edge-by-edge similarity
matrix as the connectivity matrix for a network. How-
ever, in the effort to maintain a sense of agnosticism con-
cerning edge weights, we nonetheless are forced to make
a decision about weights in the edge covariance network.
Here, we select the Pearson correlation to maintain con-
sistency with the most common measure of functional
connectivity, but note that other measures could be used.

A second related issue concerns the calculation of sim-
ilarity between edges using only on a small number of
features. It is understood that the sampling distribution
around correlation coefficients narrows as the number of
samples increases. Consequently, estimating edge covari-
ance from a limited number of samples may hinder the
ability to accurately calculate edge covariance matrices.

In the future, several steps could be taken to mitigate
this issue. For instance, the number of samples used to
estimate similarity could be increased dramatically by in-
cluding data from many subjects, rather than group-level
data as was done here. Doing so requires also modeling
the effect of individual differences, e.g. some subjects
may exhibit increases or decreases in their baseline con-
nectivity so that when edge weights are standardized, all
data from these subjects appears elevated or depressed
relative to the other subjects. Nonetheless, this strategy
would help narrow the sampling error associated with the
edge similarity measures and improve statistical power
for identifying “true” edge-level interactions.

A final limitation concerns the analysis of structural
connectivity. Here we calculate edge covariance based on
features of sparse structural edges (physical white-matter
tracts between brain regions), resulting in an edge covari-
ance matrix whose dimensionality does not match that of
the functional connectivity covariance matrix. In princi-
pal, however, we could match their dimensions by trans-
forming the sparse structural connectivity matrix into a
fully-weighted matrix by calculating relational measures
between pairs of brain regions, e.g. the similarity of their
connectivity profiles, the length and cost of the shortest
topological path between them, or their capacity to com-
municate with one another [73]. Here, however, we focus
on the structural connections alone.

MATERIALS AND METHODS

Datasets

The Human Connectome Project (HCP) dataset [36]
consisted of resting state and task functional magnetic
imaging (fMRI) data, as well as diffusion magnetic res-
onance imaging data (dMRI) from 100 unrelated adult
subjects (54% female, mean age = 29.11 ± 3.67, age
range = 22-36). These subjects were selected as they
comprised the “100 Unrelated Subjects” (U100) released
by the Human Connectome Project. After excluding sub-
jects based on data completeness and quality control (see
Quality Control), the final fMRI subset utilized in-
cluded 92 subjects (55% female, mean age = 29.32 ±
3.66, age range = 22-36). The final dMRI subset utilized
included 95 subjects (56% female, mean age = 29.29 ±
3.66, age range = 22-36). The study was approved by
the Washington University Institutional Review Board
and informed consent was obtained from all subjects. A
comprehensive description of the imaging parameters and
image prepocessing can be found in [76, 77]. Images were
collected on a 3T Siemens Connectome Skyra with a 32-
channel head coil. Subjects underwent two T1-weighted
structural scans, which were averaged for each subject
(TR = 2400 ms, TE = 2.14 ms, flip angle = 8◦, 0.7 mm
isotropic voxel resolution). Subjects underwent four rest-
ing state fMRI scans, and 14 task fMRI scans (2 of each
task; EMOTION, GAMBLING, LANGUAGE, MOTOR,
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RELATIONAL, SOCIAL, working memory (WM)) over
a two-day span. The fMRI data was acquired with a
gradient-echo planar imaging sequence (TR = 720 ms,
TE = 33.1 ms, flip angle = 52◦, 2 mm isotropic voxel
resolution, multiband factor = 8). Each resting state run
duration was 14:33 min, with eyes open and instructions
to fixate on a cross. Task scans ranged from 2:16 to 5:01
min in duration, with 5 to 10 blocks per task. Details
about each task can be found in [78]. Finally, subjects
underwent two diffusion MRI scans, which were acquired
with a spin-echo planar imaging sequence (TR = 5520
ms, TE = 89.5 ms, flip angle = 78◦, 1.25 mm isotropic
voxel resolution, b-vales = 1000, 2000, 3000 s/mm2, 90
diffusion weighed volumes for each shell, 18 b = 0 vol-
umes). These two scans were taken with opposite phase
encoding directions and averaged.

The single subject dataset included resting state and
task fRMI collected over a 10-month period at Yale Uni-
versity. The data was originally collected as part of a
study investigating the influence of tasks on functional
parcellation estimation [37]. The subject (male, age =
56 at onset of study) underwent 33 scanning sessions.
The subject provided written informed consent in accor-
dance with a protocol approved by the Human Research
Protection Program of Yale University. Images were col-
lected on two identically configured Siemens 3T Prisma
scanners with a 64-channel head coil. In each session,
the subject underwent two resting state fMRI scans and
six task scans (N-back, gradual-onset continuous perfor-
mance, stop-signal, card guessing, reading the Mind in
the eyes, movies). The fMRI data was acquired with a
gradient-echo planar imaging sequence (TR = 1000 ms,
TE = 30 ms, flip angle = 55◦, 2 mm isotropic voxel
resolution, multiband factor = 5). Each resting state
run duration was 6:49 min, and task scans were approxi-
mately 6 min in duration. A T1-weighted structural scan
(MPRAGE) was also acquired for the subject during the
first session (TR = 2400 ms, TE = 1.22 ms, flip angle =
8◦, 1 mm isotropic voxel resolution).

Image preprocessing

HCP functional preprocessing

Functional images in the HCP dataset were minimally
preprocessed according to the description provided in
[76]. Briefly, these data were corrected for gradient dis-
tortion, susceptibility distortion, and motion, and then
aligned to a corresponding T1-weighted (T1w) image
with one spline interpolation step. This volume was
further corrected for intensity bias and normalized to
a mean of 10000. This volume was then projected to
the 32k fs LR mesh, excluding outliers, and aligned to
a common space using a multi-modal surface registra-
tion [79]. The resultant cifti file for each HCP sub-
ject used in this study followed the file naming pattern:
* REST{1,2} {LR,RL} Atlas MSMAll.dtseries.nii.

Single subject functional preprocessing

Functional images for the single subject dataset were
preprocessed using fMRIPrep 1.3.2 [80], which is based
on Nipype 1.1.9 [81]. The following description of
fMRIPrep’s preprocessing is based on boilerplate dis-
tributed with the software covered by a “no rights re-
served” (CC0) license. Internal operations of fMRIPrep
use Nilearn 0.5.0 [82], ANTs 2.2.0, FreeSurfer 6.0.1, FSL
5.0.9, and AFNI v16.2.07. For more details about the
pipeline, see the section corresponding to workflows in
fMRIPrep’s documentation.

The T1-weighted (T1w) image was corrected for in-
tensity non-uniformity with N4BiasFieldCorrection
[83, 84], distributed with ANTs, and used as T1w-
reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow, using NKI as
the target template. Brain surfaces were reconstructed
using recon-all [85], and the brain mask estimated pre-
viously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray-matter using Mindboggle
[86]. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c [87] was performed
through nonlinear registration with antsRegistration,
using brain-extracted versions of both T1w volume and
template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using FSL’s
fast [88].

Functional data was slice time corrected using AFNI’s
3dTshift and motion corrected using FSL’s mcflirt
[89]. wang2017evaluation distortion correction was per-
formed by co-registering the functional image to the
same-subject T1w image with intensity inverted [90]
constrained with an average fieldmap template [91],
implemented with antsRegistration. This was fol-
lowed by co-registration to the corresponding T1w us-
ing boundary-based registration [92] with 9 degrees of
freedom. Motion correcting transformations, field dis-
tortion correcting warp, BOLD-to-T1w transformation
and T1w-to-template (MNI) warp were concatenated and
applied in a single step using antsApplyTransforms us-
ing Lanczos interpolation. Several confounding time-
series were calculated based on this preprocessed BOLD:
framewise displacement (FD), DVARS and three region-
wise global signals. FD and DVARS are calculated for
each functional run, both using their implementations in
Nipype [93]. The three global signals are extracted within
the CSF, the WM, and the whole-brain masks. The resul-
tant nifti file utilized for this study followed the file nam-
ing pattern * space-T1w desc-preproc bold.nii.gz.
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HCP structural preprocessing

Diffusion images in the HCP dataset were minimally
preprocessed according to the description provided in
[76]. Briefly, these data were normalized to the mean b0
image, corrected for EPI, eddy current, and gradient non-
linearity distortions, corrected for motion, and aligned
to the subject anatomical space using a boundary-based
registration [92]. In addition to this minimal preprocess-
ing, images were corrected for intensity non-uniformity
with N4BiasFieldCorrection [83]. FSL’s dtifit was
used to obtain scalar maps of fractional anisotropy, mean
diffusivity, and mean kurtosis. The Dipy toolbox (ver-
sion 1.1) [94] was used to fit a multi-shell multi-tissue
constrained spherical deconvolution [95] to the diffusion
data with a spherical harmonics order of 8, using tissue
maps estimated with FSL’s fast [88].

Tractography was performed using Dipy’s Local
Tracking module. Multiple instances of probabilistic
tractography were run per subject [96], varying the step
size and maximum turning angle of the algorithm. Trac-
tography was run at step sizes of 0.25, 0.4, 0.5, 0.6, and
0.75 with the maximum turning angle set to 20◦. Ad-
ditionally, tractography was run at maximum turning
angles of 10◦, 16◦, 24◦, and 30◦ with the step size set
to 0.5. For each instance of tractography, streamlines
were randomly seeded three times within each voxel of a
white matter mask, retained if longer than 10 mm and
with valid endpoints, following Dipy’s implementation of
anatomically constrained tractography [97], and errant
streamlines were filtered based on the cluster confidence
index [98].

Image quality control

For the HCP fMRI data, scans were filtered out based
on motion criteria recommended elsewhere [69]. Where
a spike is defined as relative root mean squared (RMS)
movement of 0.25 mm or greater, scans were excluded if
one of the following criteria was met: 1) greater than 15%
of frames are spikes, 2) average RMS movement greater
than 0.2 mm, or 3) any spike larger than 5 mm. Further-
more, data was visually inspected for artifacts. After
applying these criteria, eight subjects lacked a full set
of fMRI data. For the HCP dMRI data, scans were fil-
tered based on the motion estimated by FSL’s eddy and
motion estimated during the subject’s associated rest-
ing scans. Scans were filtered out if measurements for
resting state fMRI and dMRI mean and median absolute
deviation (MAD) of the RMS motion exceeded 1.5 times
the interquartile range (in the adverse direction) of the
measurement distribution. After applying these criteria,
four dMRI datasets were excluded. Furthermore, data or
one subject failed to complete the spherical deconvolution
step. For the single subject data, scans were visually in-
spected using the fMRIPrep output. All fMRI data was
retained. However, data of three fMRI runs could not

be downloaded from the source data repository, due to
technical difficulties.

Functional and structural networks preprocessing

Parcellation preprocessing

The Schaefer parcellation [45] was used to delineate
200 regions on the cortical surface. For HCP fMRI
data, the cifti version of this atlas in ’32k fs LR’ space
was used. For the HCP dMRI data and the single
subject data, a volumetric parcellation was rendered in
anatomical space using the spherical warp computed by
FreeSurfer’s recon-all [85]. This warp is based on indi-
vidual curvature and sulcal patterns.

Functional network preprocessing

Each preprocessed BOLD image (from both the HCP
and single subject datasets) was linearly detrended,
band-pass filtered (0.008-0.08 Hz), confound regressed
and standardized using Nilearn’s signal.clean func-
tion, which removes confounds orthogonally to the tem-
poral filters. The confound regression strategy included
six motion estimates, mean signal from a white matter,
cerebrospinal fluid, and whole brain mask, derivatives of
these previous nine regressors, and squares of these 18
terms. Spike regressors were not applied. This 36 pa-
rameter strategy has been show to be a relatively effective
option to reduce motion-related artifacts, particularly in
tandem with the filtering of high motion subjects [69].
Following these preprocessing operations, the mean sig-
nal was taken at each node.

Structural network preprocessing

The number of streamlines between nodes of the volu-
metric parcellations was recorded for each tractography
instance. Fractional anisotrophy, mean diffusivity, and
mean kurtosis maps were sampled from the middle 80%
of each streamline’s path, which were averaged within
streamline and then across all streamlines between each
pair of nodes. Streamline counts were normalized by di-
viding the count between nodes by the geometric average
volume of the nodes. Since tractography was run nine
times per subject, edge values had to be collapsed across
runs. To do this, the weighted mean was taken, with
weights based on the proportion of total streamlines at
that edge. This operation biases edge weights towards
larger values, which reflect tractography instances better
parameterized to estimate the geometry of each connec-
tion.
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Edge covariance networks

In this subsection we describe the procedure for con-
structing a generic edge covariance matrix. We also pro-
vide additional details about how edge covariance matri-
ces were constructed for the multi-task functional con-
nectivity data and multi-measure structural connectivity
data.

Brain networks are usually modeled such that there
exist n nodes linked to one another by a set of m edges.
We let W ∈ Rn×n be a weighted connectivity matrix
where Wij is the weight of the connection between nodes
i and j. In general, there may be nW ways of weight-
ing that connection. We denote this ensemble of weights
as Wij = [W 1

ij , . . . ,W
nW
ij ]. In practice, we z-score the

elements of this vector, which we treat as a list of fea-
tures for the edge eij . These features can be assem-
bled in matrix form as Ψ = [We1 , . . . ,WeM

]ᵀ, where
em is the feature vector for edge m ∈ {1, . . . ,m}. We
can then calculate the matrix of feature correlations,
Ω ∈ Rm×m, which we refer to as the edge covariance
matrix, as Ω = 1

nW−1Ψ×Ψᵀ.

Clustering algorithm

We can also cluster the matrix of features, Ψ. Here, we
use the traditional k-means algorithm with the correla-
tion distance. We initialize the algorithm 250 times with
different centroids, yielding slightly dissimilar solutions
each time. To resolve the variability of solutions we use
a modified consensus clustering algorithm. Briefly, this
algorithm transforms each of the 250 estimates of clus-
ters into a set of indicator vectors of size M × k, where k
is the number of clusters. The elements of each indicator
vector are one for points assigned to that cluster and zero
otherwise. Then, we concatenate indicator vectors into
a single matrix and perform an eigendecomposition, re-
taining the top k components which we then iteratively
recluster using k-means with the same number of clus-
ters. The algorithm stops when all 250 repeats arrive at
the same solution.

Here, we use k-means to cluster edge feature vectors.
We note that this choice is motivated practically and
that, in general, any clustering algorithm could be ap-
plied to the feature matrix or the edge covariance ma-
trix to obtain clusters. The output of the clustering al-
gorithm is a partition of edges into clusters, such that
ceij ∈ {1, . . . , k} denotes the cluster to which edge eij
is assigned. We analyze these clusters in two formats.
First, as the vector C ∈ Rm×1, but also as in matrix
form as D ∈ Rn×n, with elements Dij = ceij .

Nodal affiliations

For each brain region, we can calculate its affiliation to
any of the k clusters. To do this, we analyze the matrix

representation of edge clusters. The affiliation of region
i to edge cluster c ∈ {1, . . . , k} is defined as:

αic =
1

n− 1

∑
j 6=i

1Dij=c. (1)

From this equation, we can also calculate the maximum
affiliation of each brain region as αmax

i = maxc αic.
This equation is modified for the sparse structural con-

nectivity data. Rather than normalize by n−1 (the total
number of edges incident upon a node in a functional con-
nectivity matrix), we normalize by each node’s degree, so
that the affiliation reads:

αic =
1

degi

∑
j 6=i

1Dij=c. (2)

Entropy measures

We can also use the affiliation measurement to mea-
sure the extent to which a brain region participates in
multiple clusters, i.e. its level of overlap. One possibility
is to simply count the number of non-zero elements in
each region’s affiliation vector, αi = [αi1, . . . , αic]. This
measure, however, could be biased by small values, e.g.
instances where a node is affiliated primarily with a single
cluster but maintains weak affiliations to the remaining
clusters via single edges. Accordingly, we measure over-
lap using an entropy measure:

hi = −
∑
c

αic log2 αic. (3)

We then normalize this measure as hnormi = hi/log2k,
so that it is bounded to the interval [0, 1]. Intuitively,
values close to 0 indicate regions whose edges maintain
a consistent affiliation with a small number of clusters,
while values close to 1 indicate regions whose edges are
uniformly distributed over multiple clusters.

Network measures

In the main text, we treat the set of edges assigned
to a given cluster as a network. Like any other network,
we can calculate properties of this network, including its
cluster structure and modularity [99]. The modularity
heuristic, q, measures the cohesiveness – within-cluster
density of connections – compared to what would be ex-
pected under a chance model and is calculated as:

q =
∑
ij

[Aij − Pij ]δ(gi, gj) (4)
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where Aij and Pij are the observed and expected weight
of the edge eij , δ(x, y) is the Kronecker delta function and
is equal to 1 when x = y and 0 otherwise, and gi is the
cluster assignment of node i. Here, we use the Louvain
algorithm [100] to detect clusters in the edge networks
and to quantify their modularity. For simplicity, with use

a degree-preserving null model, so that Pij =
degidegj∑

i degi
.

We also normalize q so that it is bounded to the interval
[−1, 1] as follows: q∑

i degi
.

Partition similarity

In general, there are many heuristics available for
choosing the optimal number of clusters in a dataset.
Here, we select the k at which the k-means algorithm
consistently converges to a similar solution (low variance)
and where the average partition similar is greater than
nearby values of k. To do this, we compute for every k
the similarity matrix comparing all pairs of the 250 de-
tected partitions. As a measure of similarity, we use the
z-score Rand index [101]:

ZXY =
1

σwXY

(wXY −
WXWY

W
). (5)

In this equation, W is the total number of node pairs
in the network; WX and WY are the total number of
pairs within clusters in partitions X and Y ; wXY is the
number of pairs assigned to the same module in both X
and Y ; and σXY is the standard deviation of wXY . The
value of ZXY reflects the similarity between X and Y
after accounting for chance.

Here, we compute the similarity between all pairs of
partitions detected at each k and calculate the mean and
variance. We select the optimal k to be the value at
which the mean achieves a local maximum and where

the variance is low, i.e. where the algorithm repeatedly
converges to a similar solution.

Structural connectivity clusters

To estimate nodal clusters from structural connectiv-
ity, we used an extension of modularity maximization
that accounts for spatial relationships, which are known
to exert a strong pressure on structural connections [12].
Briefly, this approach involves reframing the modularity
equation so that Pij depends on the distance between
nodes i and j. To do this, we run a rewiring model 1000
times to estimate the value of Pij for all edges. This
model exactly preserves each node’s degree and, to an
arbitrary level of precision, preserves the network’s edge
length distribution, and hence its total cost of wiring
[102]. The resulting clusters can be interpreted as groups
of nodes that are more densely connected to one another
given their degree and the brain’s wiring cost constraints.
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FIG. S1. Examples of feature correlations for multi-task functional connectivity dataset. We show example
scatterplots of normalized edge weights between pairs of edges. The stub regions (endpoint) of each edge are displayed at the
top of each plot.
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FIG. S2. Relationship of edge covariance with edge functional connectivity and surface area. (a) Two-dimensional
histogram of edge covariance weights and edge functional connectivity as estimated in [28]. (b) Two-dimensional histogram of
edge covariance weights and the surface area of the quadrilateral formed by the four nodes comprising the two edge pairs.

FIG. S3. Topographic distribution of communities estimated from structural connectivity data.

FIG. S4. Length profiles of structural edge clusters. Boxplot of edge lengths (Euclidean distances) of edges assigned to
the structural edge clusters. All clusters are significantly different from one another except for cluster three with four and three
with five (p < 6.6 × 10−10; FDR corrected with false discovery rate fixed at q = 0.05.)
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