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Abstract: 

Stability is a physical attribute that stands opposite the change. However, it is still unclear 

how the arrangement of links called topology affects network stability. In this study, we 

tackled this issue in the resting-state brain network using structural balance. Structural 

balance theory employs the quality of triadic associations between signed links to 

determine the network stability. In this study, we showed that negative links of the resting-

state network make hubs to reduce balance-energy and push the network into a more 

stable state compared to null-networks with trivial topologies. In this regard, we created a 

global measure entitled ‘tendency to make hub’ to assess the hubness of the network. 

Besides, we revealed nodal degrees of negative links have an exponential distribution that 

confirms the existence of negative hubs. Our findings indicate that the arrangement of 

negative links plays an important role in the balance (stability) of the resting-state brain 

network. 

  

Keywords: Resting-state network; Network stability; Structural balance; Functional 

magnetic resonance imaging; Triadic associations; Frustration   
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1. Introduction 

The brain has assumed as a complex network that its regions are structurally or functionally 

connected. The non-trivial characteristics of the complex brain network enable it to process 

and communicate neural information efficiently and produce cognitive functions and 

complex behaviors [1-4]. 

In recent years, brain researchers applied the state of the art of physics to study complex 

brain networks. For instance, Dante R. Chialvo showed that the large-scale resting-state 

networks are located at critical states which means they always stay close to the phase 

transition [5-6]. Besides, Enzo Tagliazucchi et.al. also discovered that loss of consciousness 

pushes the networks from the critical states to stable states [7]. 

In general, a system is called critical when it tends to make transitions between different 

states. Criticality is the opposite side of stability. According to the principle of minimum 

energy, a physical system loses energy and leaves the critical state toward a stable state. 

Also, a physical system remains stationary in a stable state with minimum energy level until 

receiving external energy. 

To explore the stability of the functional brain networks, scientists usually divide regional 

brain activations into shorter temporal segments, extract functional connectivity of each 

segment, then explore the variability of functional connections over the segments and 

consider the inverse of them as the stability [8-10]. In the following, we explain two major 

weaknesses of this procedure: 

First, as fMRI time courses have a low signal-to-noise ratio, when we divide them into 

shorter time segments, the validity of extracted functional connections can be 

questionable [8]. Moreover, the correlation coefficient as a common measurement of the 

functional connection is also vulnerable to low numbers of time points [11-12]. So the 

observed temporal variations of the functional connections may be a consequence of 

systematic errors. 

Second, the process ignored the emergent property of complex brain networks and mainly 

determines the stability of each functional link separately then aggregates them to explain 

network stability. The emergent property describes that parts of a complex system don't 
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work individually and belong to a whole [13] and the whole is greater than the sum of the 

parts [14]. Therefore, we have to consider the links interrelatedly and simultaneously as a 

whole to respect the complexity of the brain network. 

To overcome the above-mentioned shortages, we decided to employ the structural balance 

theory to assess the stability of functional brain networks. The structural balance is a well-

known approach to investigate the stability of complex social networks [15-17]. It does not 

restrict us to segment time courses and has no conflict with the emergent property of the 

brain network. Actually, balance theory investigates the association between two entities 

in presence of a third-party, this is in agreement with emergent property.  

The structural balance theory refers to Fritz Heider's researches on personal interrelations 

[18]. The theory classified the quality of relationships between three entities as balanced 

and imbalanced (Fig. 1.a). Balance triads: "a friend's friend is a friend" and "an enemy's 

enemy is a friend"; Imbalanced triads: "a friend's friend is an enemy" and "an enemy's 

enemy is an enemy" [19]. Entities of an imbalanced triad are frustrated about their 

conditions and try to change their relationships to reach one of the balanced conditions. 

This is analogous to the transition of an unstable physical system toward a stable state with 

a lower energy level based on the principle of minimum energy. Accordingly, it can be 

assumed that a balanced (stable) triad situates stationary in a low-level energy state 

despite an imbalanced (unstable) triad that tries to solve its frustrations to reduces its 

energy and moves to the stable states [20].  

Also, structural balance can be investigated in a signed network where positive and 

negative links represent friendship and hostility, respectively [21]. Consequently, the 

balance of a signed network is determined by counting the number of balanced and 

imbalanced elements. In this way, we encounter a large number of triads, quartets, and 

higher-order cyclic relations and their balances [15]. Since the tension of a frustrated cycle 

is reduced by increasing its length, we can derive a first-order approximation of the balance 

by considering only the triadic relations of a signed network. In this regard, Marvel et.al. 

introduced the concept of energy of the signed network [22]. They formulated the balance-

energy of a signed network as the difference between the number of balanced and the 
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number of imbalanced triads. In this context, the topology of signed links represents the 

network state and a state is stable if and only if all of its triads are balanced. A stable 

network has the least energy and remains stationary since there is no dynamic demand to 

change link signs due to the presence of imbalanced triads. 

Until here we described the importance of brain network stability and offered balance 

theory as a proper assessment approach for it. Now, let's address the main question of this 

research. In recent years, brain scientists have devoted a lot of effort to investigate the 

topological aspects of brain networks and found that topological properties are the key 

factors in brain functions and affect behavioral and cognitive functionalities [23-26], but 

there is no outstanding research to explore the effect of topology on the brain stability. So 

we decided to study how the topology affects the balance of resting-state networks. It 

should be mentioned that our results can be generalized to any signed networks and will 

be interesting for complex network scientists. 

Figure 1: Triadic associations in balance theory (a) Possible triad types of a signed network. Blue and red colors denote positive 

and negative links. (b) Formation of a triadic relation in the brain. Activity pattern of three brain regions (left) correlate together 

(middle) and build a balanced triangle (right). The selected regions of interest are colored violet, green, and orange that belong 

to Default Mode Network, Dorsal Attention Network, and Visual network of the brain, respectively. Abbreviations: R - Pearson 

correlation coefficient. 
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In this study, we hypothesized that the functional signed connections of the brain tend to 

make hubs mainly by negative links and form a specific non-trivial signed topology that 

pushes the network toward more stable states with greater numbers of balanced triads. In 

this regard, we introduced some global measures to clarify the impact of topology on the 

balance, then investigated them in resting-state signed networks and brought out a 

mechanism based on the results. Moreover, we studied the emergent behavior of the brain 

regions in terms of negative degree distributions. 

  

2.     Results 

We summarized the procedure of the study in Fig. 2 We employed the structural balance to 

assess network stability. The research question was whether the signed network topology 

(independent variable) can affect the balance (dependent variable) of the resting-state 

signed network. To answer it, we used a matched-pairs design to compare the balance of 

actual network (resting-state functional networks) with the balance of null-networks. The 

null-networks were constructed from shuffled regional activations and had the same node 

and link size and the same positive to negative link ratio as the actual networks but they 

had trivial signed link arrangements. Since balance theory works based on signed links and 

considering the fact that the number of positive and negative links differ in balanced and 

imbalanced triads (Fig. 1.a), we regarded the equality of positive to negative link ratio to 

control confounding effects of signed links percentages. Also, we used the matched-pairs 

design to increase internal validity and decrease the chance of occurring selection bias.  

The research procedure is abstractly described as follows. We used publicly shared images 

of the Autism Brain Imaging Data Exchange (ABIDE) [27] to construct actual networks. Then 

we only selected 57 right-handed, young male adults to exclude the covariate effect of age, 

gender, and handedness, and increase the validity of the relationship between 

independent and dependent variables. After standard preprocessing of functional images, 

we extracted time-series of regional cerebral cortex activities using Schaefer’s Local-Global 

parcellation [28]. Then we made functional connectivity for each subject separately and 

binarized its functional connections to +1 and -1 to formed the resting-states signed 
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network (Fig. 1.b). On the other hand, we created an ensemble of signed networks with 

trivial topology for each subject whereas their positive to negative link ratio was equivalent 

to the positive to negative link ratio of the subject's actual network. Subsequently, we 

calculated the balance metrics of actual networks and null-networks, compared the 

balance metrics of the actual network with the ensemble average of balance metrics of the 

null-networks, then used individual differences for group-level analysis. Since these two 

types of networks only differ in topology, we imputed the difference between their 

balances to the topology of the signed links.   

2.1.  Effect of topology on the network balance  

To investigate the effect of topology on the network balance, we compared the balance of 

actual networks with the balance of null-networks. The null-networks were similar to actual 

networks but have trivial signed link arrangements. As we wanted to perform a paired 

analysis, we created a set of null-networks matched to each actual network where the 

matched networks had the same positive to negative link ratios. Afterward, we compared 

the balance-energy of each actual network and the ensemble average of balance-energies 

of correspondent null-networks, then we examined the differences for group-level analysis 

Figure 2. Procedure of the study. 
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(Fig. 3.a). Since extracted balance metrics of the signed networks did not follow a normal 

distribution (p-valueShapiro-Wilkoxon < 0.005) and their paired differences around the median 

were also asymmetric (p-valueMiao-Gel-Gastwirth [29] < 0.001) (Supplementary Fig. 1), we decided 

to use the non-parametric Sign test for the group-level matched-pairs analysis. Fig. 3.a 

shows that balance-energies of resting-state networks were significantly lower than 

balance-energies of their paired null-networks (p-valueSign-test < 0.001, effect size = 0.79 

(large)). We also compared the percentages of each triad type separately. Fig. 3.b shows 

that actual networks have significantly a greater number of balanced triads and a little 

number of imbalanced triads as against null-networks (p-valueSign-test < 0.001, effect size = 

0.78 (large)). As actual networks and null-networks differ in signed link arrangement, these 

results highlight the effect of topology on the balance of the signed networks and indicate 

that resting-state topology provides balance (stability) for the network.  

It should be pointed out that we obtained the explained results based on consideration of 

the fully connected topology. So we applied several thresholds to the functional 

connections to make partially connected networks then compared the balance-energies to 

explore the external validity of the results. Supplementary Fig. 2 shows that group-level 

differences remain significant only for some ranges of the thresholds even after the 

thresholding process. Nevertheless, the sign of differences switched several times by 

Figure 3: Matched-pairs comparison of balance metrics. (a) Balance-energies. (b) Percentages of triad types. Violet and green 

colors denote actual-networks and null-networks, respectively. Circles correspond to the signed networks. The boxes indicate 

median and interquartile ranges. The blue lines also connect the paired points of the actual and ensemble average of null-

networks. P-values and effect sizes are related to the Sign test. 
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increasing the threshold. The balance-energy of the resting-state is lower than the balance-

energy of the random network from zero to 0.08, higher from 0.14 to 0.22, and again lower 

from 0.32 to 0.4.  

2.2.  Hubness of functional negative links 

In the previous section, we indicated that the actual network and null-networks that were 

only varied in signed topology had different balance-energies. So we decided to explore the 

centrality of the network topology. In this regard, we introduced a global hubness measure 

entitled "Tendency to Make Hub (TMH)" and compared signed TMH of actual networks and 

null-networks (see method section for further details). 

Fig. 4.a shows a matched-pairs comparison between negative TMH scores of actual 

networks and ensemble average of negative TMH scores of null-networks. Since negative 

TMHs of networks had non-normal distributions (p-valueShapiro-Wilkoxon < 0.001) and their 

paired differences distributed symmetry (p-valueMiao-Gel-Gastwirth = 0.71) (Supplementary Fig. 

3), we used Wilcoxon signed-rank test to explore group-level paired differences. The test 

revealed that actual networks have larger negative TMH or negative hubness than their 

correspondent null-networks (p-valueWilcoxon signed-rank test  < 0.01, effect size = 0.84 (large)). 

Figure 4: Negative hubness and balance-energy (a) Matched-pairs analysis of negative TMHs between actual networks and 

their correspondent null-networks. Vertical boxes indicate median and interquartile ranges and blue lines connect paired 

points. P-value and effect size of Wilcoxon signed-rank test are reported in the figure. (b) A negative correlation between the 

negative TMHs and the balance-energies of simulated networks. Circles denote simulated signed networks and the violet line 

indicates the linear fitted function to them. Abbreviations: TMH – Tendency to Make Hub; R Pearson correlation coefficient. 
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2.3.  Negative hubness and network balance 

In the last sections, we indicated that the actual networks have greater negative hubness 

and lower balance-energy compared to the null-networks. The question arises that is there 

any relations between signed hubness and network balance. To answer it, we generated 

some set of fully connected random signed networks (see method section 4.6 for more 

details) then explored the relation of negative TMH and balance-energy. The generated 

networks were constrained to have 10 percent negative links but there was no restrictions 

on signed links arrangements. Fig. 4.b shows a negative correlation between negative TMH 

and balance-energy (R = -0.67). It means that signed networks with higher signed hubness 

are more stable. 

2.4. Description of the effect 

In the previous section, we indicated that signed networks with larger negative TMH have 

lower balance-energies. So, we decided to explore the effect of topology on the network 

Figure 5: Effect of changing signed topology on the stability of the signed 

network. (a) Descriptive table. Rows demonstrate corresponding metrics of 

each topology. Positive and negative links of networks are indicated with blue 

and red curved lines, respectively. The size of green circles displays negative 

degrees of nodes. (b) Schematic diagram. Abbreviation: TMH – Tendency to 

Make Hub. 
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balance in a descriptive manner. Fig. 5.a represents three different topologies of a fully 

connected signed network with 8 nodes and 4 negative links. The topologies have similar 

positive to negative link ratios. From left to right, the network topology changes in a way 

that the negative links tend to gather together and make negative hubs. Mutually, this 

happens for the positive links moderately, it does not seem significant hence the majority 

of the links are positive. Increasing negative TMH as a global hubness measure quantifies 

the hub formation. Also, the balance-energy of the signed network is reduced as a 

consequence of increasing the number of balanced triads and decreasing the number of 

imbalanced triads. Additionally, Fig. 5.b schematically describes how the explained 

mechanism pushes the signed network into a more stable state.  

2.5.  Collective properties of negative links 

Although minor of resting-state functional connections are anti-synchronous (negatively 

correlated) (Supplementary Fig. 4), their collective behavior has the most magnificent 

effect on the network balance. Fig. 5 also confirms this fact. Therefore we decided to 

explore the collective behavior of resting-state negative links. 

So we decided to explore the distribution of nodal negative degrees. Fig. 6.a shows the 

logarithm of the negative degree distribution of all the subjects. Linear functionality of the 

logarithmic distribution denotes that negative degrees distribute exponentially. We used 

Figure 6: Collective behavior of resting-state negative functions. (a) Semi-logarithmic negative degree distribution of actual 

networks and null-networks. (b) A negative correlation between the logarithm of negative TMH and the logarithm of the rate 

parameter of negative degree distribution. Each circle corresponds to the signed network of a subject. Abbreviations: TMH – 

Tendency to Make Hub; R Pearson correlation coefficient; λ – rate parameter of the exponential degree distribution.  
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the Maximum Likelihood Estimation to assess the rate parameter of the exponential 

distribution (λresting-state network = 0.14). The figure also represents the negative degree 

distribution of the null-networks. The difference between the right tail of distributions 

highlights the presence of negative hubs in actual networks despite null-networks. 

In fact, when we study exponential distributions in logarithmic form, the sharpness of 

degree distribution is associated with the hubness of the network. Therefore, we explored 

the relation between the negative TMH of the actual networks and the rate parameters of 

the negative degree distribution of the actual networks. We found a negative correlation 

between the logarithm of rate parameters and the logarithm of negative TMHs (R = -0.96) 

(Fig. 6.b). This result indicated that actual networks with lower rate parameters and lower 

sharpness of distributions have higher negative hubness. 

2.6.  Emergence of brain regions 

 Since investigating the collective behavior of functional negative links brought out 

Figure 7: Emergence property of regions of interest. Colored portions of the brain images show regions that their negative 

degree distributions significantly differ from the whole-brain negative degree distribution (multiple comparisons corrected). 

Various colors denote that each region belongs to which large-scale cortical networks. The brain maps were created using 

BrianNet Viewer toolbox [30] of the Matlab (http://www.mathworks.com/products/matlab/).  
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interesting results, we decided to explore the existence of emergent behavior between 

brain regions in terms of negative degree distribution. Emergence is a property of complex 

systems that occurs when individuals behave in a different manner as compared to the 

whole. Each brain region has a distribution that contains negative degrees of subjects. We 

compared the negative degree distribution of each region with the negative degree 

distribution of the whole brain using the Kolmogorov-Smirnov test. Statistical tests 

indicated that negative degrees of some cortical regions differently distribute than the 

whole. Fig. 7 represents significantly different ROIs after a multiple comparison correction 

using the False Discovery Rate (FDR) method (corrected p-value < 0.05). The significant 

ROIs locate at right and left precuneus/posterior cingulate of default mode network, left 

frontal operculum of the insula, left median of ventral attention network, and right 

frontoparietal control network. Please see Supplementary Table 1 for details. 

Supplementary Fig. 5 also displays the results without multiple comparison correction. 

 

3.    Discussion 

In brief, we indicated that functional negative links of the resting-state network formed an 

especial topology to push the network toward more balance (stable) states. In this regard, 

we compared actual networks and null-networks with trivial topologies and the same 

positive to negative link ratio. We showed that the actual networks have lower balance-

energy as compared to the null-networks. We also introduced a global measure of hubness 

entitled Tendency to Make Hub (TMH) and showed that the actual networks have higher 

negative TMH against the null-networks. According to the results, we brought out a 

mechanism to describe how signed hubness causes network stability. Since we found that 

negative links of the brain have an influential role in network stability, we decided to 

explore the collective behavior of them. We discovered functional negative links of resting-

state networks distribute exponentially and the rate parameter of the distribution 

negatively correlates with the negative TMH. Also, we affirmed the emergence of brain 

regions in terms of negative degree distribution where some brain regions do not follow 

the behavior of the whole-brain. 
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3.1. Definition of brain energy 

In recent years, some studies have defined the energy of neuroimaging data at a particular 

moment using brain regional activations at that moment multiplied by long-term 

coactivations between regions [31-35]. Since they used momentary activations and 

considering the fact that fMRI signals have low signal-to-noise-ratio, the validity of 

calculated energies may be questionable. Since we used long-term coactivation in 

calculating energy we kept away from this issue. 

3.2. Low energy resting-state signed network 

Fig. 3.a showed that the balance-energy of the resting-state network is negative and it 

posits near the absolute stable state. It not only depends on the topology but also is a 

consequence of positive and negative link appearance. Exploring this issue may disclose 

why most brain regional interactions are synchronous, not anti-synchronous. 

3.3. Null-network formation 

As we explained, we hypothesized that the special topology of signed links affects the 

stability of the resting-state network. To test the hypothesis, we compared the balance of 

actual networks with the balance of null-networks. Considering the validity of statistical 

inference highly depends on null-network selection, we innovated a null-network 

formation procedure to control confounding variables. In addition to equality of node size 

and link size, null-networks had positive to negative link ratios similar to actual networks 

and they were extracted from shuffled regional brain activations to remain signal 

distributions consistent. As the null-networks only varied in signed link arrangement, we 

attributed the difference between the balance of actual networks and the balance of null-

networks to the topology. 

Since two balanced triads totally have greater numbers of positive links and two 

imbalanced triads totally have greater numbers of negative links (Fig. 1.a), we had to 

regard the condition of equality of positive to negative link ratio to control confounding 

factor of sign link presence. Although there are various approaches to construct null-

networks [36], since none of them focused on the signed networks and balance theory 
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works based on signed links interactions, we decided to create our procedure to form 

proper null-networks.  

In our null-network creation procedure, we used signals to construct null-networks, not 

signed links. It enabled us to apply adjusting signals and form null-networks with desired 

positive to negative link ratios.     

It is also necessary to point out another benefit of using signals. As we investigated triadic 

interactions of brain regions and considering the fact that dual relations of a triadic relation 

in the brain are not independent, generation of null-networks from signed links 

disregarding constraints on triadic interrelations could be problematic. In other words, a 

correlation between region A and region B and a correlation between region A and region C 

restrict correlation between B and C which was not considered when we only assigned 

signed links to a network. 

3.4. Thresholding functional connections 

Network neuroscientists usually apply thresholds on the correlation coefficients to remove 

specious connections and magnify key topological features of the networks [37]. Since the 

impact of positive links and negative links on the balance of the resting-state network were 

not equal, we claimed that the negative weak correlations should not be ignored when we 

study network balance, so we decided to consider signed networks fully-connected. 

Nevertheless, we employed a thresholding process on the connections and obtained 

significant differences between the balance-energies of actual networks and balance-

energies of null-networks in some range of thresholds (Supplementary Fig. 2). We also 

observed that sign of group-level differences switches by increasing the threshold. It 

reveals the importance of further investigation in the effect of the thresholding process on 

the signed network balance. 

3.5. Effect of topology on the balance 

After more than half a century since the appearance of Heider's balance theory, there is no 

research work to clearly describe the origin of the balance in the signed networks. 

Typically, network balance is determined by counting the triad types. It seems more an 

observative fact than a causal effect. So, it is not still clear what emerges the triad types? In 
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this study, we concluded that the network topology plays an influential role in triad type 

appearance. We described that gathering sign links around the nodes and making signed 

hubs increases the number of balanced triads and decreases the number of imbalanced 

triads (Fig. 4.b and Fig. 5). 

3.6. Exponential negative degree distribution 

Network neuroscientists usually regarded both positive functional connections and 

negative functional connections as links and construct brain network without considering 

signed of functional connections [37]. In addition, sometimes they ignored negative 

connections due to the difficulties in the interpretation and justification of anti-correlated 

activations [38]. But in this study, we highlighted the role of functional negative links. In 

accordance with the work of Valerio Ciotti et al. [39], we extracted positive and negative 

subnetworks and explored them separately. We studied the collective behavior of resting-

state functional negative links and found out that they distribute exponentially (Fig. 6.a). 

Whereas previous works indicated a power-law distribution without any consideration on 

the sign of the links [40-43], we assigned a new attribute to the collective behavior of 

functional negative links and emphasized the study on the anti-synchrony in the brain 

functional network. 

3.7. Emergence of the resting-state “signed” network  

Ordinarily, brain networks have been considered unsigned. They emerge complex 

properties such as small-worldness that facilitate the integration of information and 

segregate brain functions [24]. Based on our knowledge, there is no outstanding research 

that regards the brain as a signed network. Since we considered brain network signed to 

determine network balance, we think it is necessary to explore the complexity of resting-

state signed network regarding signed links. So we explored the emergence of brain 

regions in terms of negative degree distribution. Emergent property explained that 

individuals may work differently from the whole in a complex system [44]. We found that 

the negative degree distribution of some brain regions significantly differed from the 

degree distribution of the whole brain. It is in agreement with the emergent behavior of a 

complex system.   
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3.8. Metastability of resting-state signed networks 

Metastability refers to a stable state other than the state of least energy (ground state). A 

metastable state has a shorter lifetime than the ground state and is the place that 

transition to other states is likely to occur [45]. Some studies indicated metastability of the 

brain regarding brain dynamics [46-47], but we observed it in a static manner. Fig. 3.a 

indicates that resting-state functional networks inhabit at a low energy level near the 

absolutely stable state, we claimed that is a metastable state.  

3.9. Limitations and considerations  

We had to select our imaging data from various studies. Although most of the scan 

parameters including repetition time (TR) and the length of scanning were similar, other 

scanning parameters such as echo time (TE) might vary. 

It has been shown that applying global signal regression may induce anti-synchronous 

activities and increase the number of negative links [38, 48-49]. Considering the recent 

neuroimaging studies that suggest not remove the global signal [50-53], we did not 

perform global signal regression in the preprocessing steps. Nevertheless, we performed 

our analysis with global signal regression as well. The results were still valid and are 

presented in Supplementary Fig. 6. 

The main consideration of the current study is about the semantic of balance-energy. In 

this paper, the energy term does not refer to physical energy which roots in biological 

metabolic actions; but, it is a metaphor to explain the global behavior of a signed network. 

It should be considered that, to the best of our knowledge, there was no application of 

balance theory in neuroscience so far. 

3.10. Conclusion and future directions 

In summary, we concluded that negative functional connections of the resting-state brain 

network make hubs to form an especially signed network topology and push the network 

toward more balance states with lower balance-energies. Negative links play an important 

role in the stability of resting-state networks, their collective behavior is not trivial, can 

expose the complexity of brain regions. So further researches are needed to investigate 

them. 
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Nevertheless, we only investigated the balance of resting-state networks in young adults. 

However, more investigation during the development and degeneration of the mature 

brain would be required in future works. Also, stability and phase transition of task-

dependent and dynamic functional networks could be traced by the balance theory. We 

also expect that the balance-energy of functional brain networks in neurodevelopmental 

disorders such as autism falls into a jammed-state (metastable states) that restricts their 

behavioral performance. Lastly, we hope the introduced topological basis of balance could 

bring new solutions for escaping from that jammed-states. 

 

4.    Method 

4.1. Neuroimaging data 

We selected 70 healthy male adults from 2226 available subjects of the ABIDE repository 

[27]. Fig. 8 shows the subject selection process. All of the subjects were right-handed and 

aged from 18 to 31. Each participant underwent a T1-weighted structural MRI and a 

resting-state fMRI scan in the same session. The high-resolution T1-weighted structural 

MRI was acquired using magnetization-prepared rapid. The resting-state fMRI was also 

acquired using a single-shot EPI sequence during eyes-open task-free condition with a 

repetition time (TR) of 2 seconds. We reported the demographics of the subjects and 

scanning parameters of the selected dataset in Supplementary Table 2. Finally, we 

eliminated some cases with destructive artifacts (movement parameters more than one 

voxel size) to derive 57 subjects (age = 24+-4).  

4.2. Pre-processing of resting-state functional images 

We used a standard preprocessing pipeline that utilizes the FMRIB software library v5.0 

(FSL: http://www.fmrib.ox.ac.uk/fsl) [54] and Analysis of Functional NeuroImages 

Figure 8: Subject selection procedure. 
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environment (AFNI: http://afni.nimh.nih.gov/afni) [55]. We deobliqued all of the structural 

images to FSL friendly spaces and extracted the brain. Then, we discarded the first five 

volumes of resting-state fMRI images to ensure the magnetization stability. Subsequently, 

we carried out slice time correction for interleaved acquisitions using Fourier interpolation. 

After that, we registered 3D volumes of functional images to their corresponding high-

resolution structural images of native space using the least square algorithm (3 

translational and 3 rotational variables were optimized). Then, we interpolated outlier time 

points using a continuous transformation function and normalized each voxel to the 

average of its activities. We then applied spatial smoothing using a Gaussian kernel 

function with Full width at Half Maximum (FWHM) equal to 5mm, and we performed 

temporal bandpass filtering (0.009-0.01 Hz) on the functional images. To prepare for group-

level analysis, we nonlinearly registered 3D images to MNI152 standard space using 

optimizing 12 variables which were related to translation, rotation, scaling, and shearing. 

Then, we regressed out confounds of motion (3 translational and 3 rotational parameters), 

white matter (WM) and cerebral spinal fluid (CSF). Finally, we checked whether movement 

parameters of the functional images to be less than one voxel size and visually inspected 

the quality of brain extraction and segmentation in structural images. In this regard, 13 out 

of 70 subjects could not pass the imaging criteria, so we removed them from further 

analysis. We have performed and checked the above-mentioned procedure in our previous 

works as well [26, 56, 57]. 

4.3. Activity pattern of the brain regions 

We used MATLAB software to extract time courses of the brain regional activities. We 

chose Schaefer’s Local-Global atlas [28] to parcellate the cerebral cortex into 100 

homogenous regions of interest (ROIs). In this atlas, each parcel is located in one of 

Thomas Yeo’s canonical networks [58]. To extract the activity pattern of a region, we 

multiplied the binary mask of that ROI to 3D images and considered the average of BOLD 

signals in each 3D image as activity of ROI at that time point. In this way, we drew out 100 

time-series from the fMRI image of each subject. The number of recorded 3D images 

(volumes) in the functional imaging determined the length of the time series. Considering 
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that we used functional images from various imaging-sites with different numbers of 

recorded volumes, we peaked up the extracted times series equaled to the shortest ones. 

We carried out the equalization process because the length of time courses might affect 

the temporal correlations between regions and connectivity matrices. 

4.4. Resting-state signed networks 

Functional connectivity represents temporal synchrony between brain regional activations. 

The synchrony between two regions also is defined as the Pearson’s correlation coefficients 

of their temporal activations. In this way, activity patterns of the brain regions may be 

positively correlated (synchronous) or negatively correlated (anti-synchronous). The 

correlations are considered as elements of the functional connectivity matrix. Finally, we 

binarized the elements of connectivity matrices to +1 and -1 by considering the sign of 

correlation coefficients and built a resting-state signed network for each subject (Fig. 1.b). 

4.5. Structural balance 

Structural balance theory studies collective behavior and stability of signed networks based 

on triadic associations between entities. The theory is rooted in Fritz Heider's researches 

on attitude change then applied to interpersonal relations [59, 18]. According to the 

theory, if you are a friend of your friend's friend or an enemy of your friend’s enemy, they 

are trivial and your triadic relation is balanced (stable); otherwise, if you are an enemy of 

your friend’s friend or an enemy of your enemy's enemy, your triadic relation is imbalanced 

(unstable) [19]. These 4 triadic relations can be modeled using signed links (Fig. 1a). It 

should be noted that an imbalanced triad is considered a frustrating condition and endures 

tension to change their links to become balanced.  

We can explore the balance of a signed network where there are lots of triad types [21]. 

More balance networks have a larger number of balanced triads and less number of 

imbalanced triads. So, the balance-energy of a signed network defines as the difference 

between the number of balanced triads and the number of imbalanced triads [22] as 

follows: 

𝐸 =  − 
1

(3
𝑁

)
 ∑ 𝑆𝑖𝑗 𝑆𝑖𝑘 𝑆𝑗𝑘

{𝑖,𝑗,𝑘}
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The summation is performed on the possible triads of the network. 𝑆𝑖𝑗 denotes a signed 

connection between node i and node j. 𝑆𝑖𝑗 𝑆𝑖𝑘 𝑆𝑗𝑘 also represents the multiplication of 

edge values in a triad where − 𝑆𝑖𝑗 𝑆𝑖𝑘 𝑆𝑗𝑘 is balance-energy of the triad and equal to either 

-1 or +1 for balanced or imbalanced triads, respectively. Minus sign behind the 

multiplication helps to better understand the equation from the physical energy 

perspective. (3
𝑁

) also denotes the number of 3-combination from N elements which is 

equal to the number of possible triads in an N-node network. This term plays the role of 

normalization and confines balance-energy between -1 and +1.  

The stability of a signed network is associated with the minimization of its balance-energy. 

Actually, the most stable state when all triadic relations are balanced has the lowest 

balance-energy equal to -1, and the most unstable state when all triadic relations are 

imbalanced has the highest balance-energy equal to +1.  

4.6. Creating null-networks 

We innovated a procedure to form null-networks to compare their balance metrics with 

the balance metrics of signed resting-state networks. We provided a set of null-networks 

matched to each actual network. The null-networks had the same number of nodes and 

links and positive to negative link ratio as the actual network but differed in signed link 

topology. We created a null-network corresponded to an actual network as follows:  

At first, we shuffled time points of regional brain activations (which make the actual 

network) and built new signals. These shuffled signals had similar lengths and distributions 

to the actual regional activations. It is clear that if we wanted to construct connectivity 

from these shuffled signals, the connectivity matrix had an equal number of positive and 

negative connections. It may conflict with the nature of brain functional connectivity where 

most of the connections are positive and is not appropriate for testing our hypothesis. 

Therefore, we decided to add a random signal to all of the shuffled signals before 

calculating the connectivity. The random signal had a normal distribution with “a mean and 

a variance” equal to “the mean and the variance of regional activations”. In this way, we 

could increase shared information between the shuffled signals and increase the number 

of positive connections (positive links). Actually, we multiplied the random signal by an 
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adjusting coefficient then added it to the shuffled signals. So, by changing the coefficient of 

summation we could adjust the number of positive and negative connections and make it 

similar to the actual brain network. In this way, we equalized the positive to negative link 

ratio of the null-network and the actual network. Fig. 9 schematically describes the 

procedure.  

 In general, we produced 1000 null-networks corresponded to each actual network, then 

compared the balance metrics of each actual network with the average ensemble of the 

balance metrics of corresponded null-networks, and finally used the calculated differences 

for group-level analysis (Fig. 3 and Fig 4.a). We also explained why we chose this 

procedure to construct null-networks in the discussion, at “null-network formation” section.  

4.7. Tendency to Make Hub  

Measures of the complex networks are either local or global. The global measures assess 

the collective properties of the network and the local measures explain features of the 

network elements [60]. A hub is a local feature of a network that is assigned to the nodes 

with extremely connected links [61]. In this study, we introduced a novel global hubness 

measure and named it "Tendency to Make Hub (TMH)" to quantify the strength of link 

gathering around the nodes in the network from a global perspective. The TMH is defined 

for a networks as follows:   

𝑇𝑀𝐻 =  
∑ 𝐷𝑖

2𝑁
𝑖=1

∑ 𝐷𝑖
𝑁
𝑖=1

 

Figure 9: Procedure of null-network formation. 
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where 𝐷𝑖  denotes the degree of an individual node, and N represents the total number of 

nodes in the network. The TMH takes the value of 1 or above since the degrees of the 

nodes have values of 1 or above. In fact, the TMH has a higher value when the links have 

more tendency to assemble around the nodes and make more hubs. In this study, we were 

interested in the assemblage of the negative links; so, we defined sign-dependent TMH as 

follows: 

𝑃𝑜𝑠𝑇𝑀𝐻 =   
∑ 𝑃𝑜𝑠𝐷𝑖

2𝑁
𝑖=1

∑ 𝑃𝑜𝑠𝐷𝑖
𝑁
𝑖=1

         𝑁𝑒𝑔𝑇𝑀𝐻 =   
∑ 𝑁𝑒𝑔𝐷𝑖

2𝑁
𝑖=1

∑ 𝑁𝑒𝑔𝐷𝑖
𝑁
𝑖=1

 

where “positive TMH (𝑃𝑜𝑠𝑇𝑀𝐻)” demonstrates the tendency to make hub with positive 

links and “negative TMH (𝑁𝑒𝑔𝑇𝑀𝐻)” indicates the tendency to make hub with negative 

links. In this regard, we defined the number of connected positive links to a node as 

“positive degree (𝑃𝑜𝑠𝐷)” and the number of connected negative links to a node as 

“negative degree (𝑁𝑒𝑔𝐷)” of that node. “Signed degree distribution” also refers to the 

distribution of positive degrees or negative degrees.  

4.8. Statistical analysis 

To perform a matched-pairs group analysis between balance-energies of resting-state 

networks and ensemble averages of balance-energies of random topology networks (Fig. 

3.a), initially, we tested group-level normality of the balance-energies using the Shapiro-

Wilcoxon test. In this way, we found that the distribution of the balance-energies was far 

from normal and this finding led us to use non-parametric statistics. Then, we employed 

the Miao-Gel-Gastwirth test [29] to check the symmetry of paired differences distribution. 

The results showed that the differences were asymmetric, therefore, we utilized the Sign 

test which is a non-parametric statistical method for matched group-level analysis when 

the paired differences distribute asymmetrically. We also carried out this procedure for the 

percentages of the triad types (Fig. 3.b). 

Also, to compare the negative TMHs of actual networks and negative TMHs of null-

networks (Fig. 4.a), at first we applied Shapiro-Wilcoxon and Miao-Gel-Gastwirth tests. The 

Shapiro-Wilcoxon test showed the non-normality of negative TMHs as similar to the 

balance-energies, but Miao-Gel-Gastwirth could not reject the null hypothesis of symmetry 
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of the paired-differences distribution. In this situation, we had two choices for the non-

parametric matched-pairs analysis, the Sign test and the Wilcoxon signed-rank test. So we 

chose the Wilcoxon signed-rank that provide greater statistical power.  

We also applied Maximum Likelihood Estimation using Nelder-Mead algorithm [62] to fit an 

exponential model to negative degree distribution of actual networks and extract 

correspondent rate parameter (Fig. 6). 

Moreover, to explore the emergent behavior of brain regions from the aspect of negative 

degree distributions (Fig. 7), we compared the negative degree distribution of each ROIs to 

the negative degree distribution of the whole brain using Kolmogorov-Smirnov test. 

Subsequently, we corrected p-values from false positives caused by multiple comparisons 

using the False Discovery Rate (FDR) method developed by Benjamini & Hochberg 

algorithm [63].  

We used the R software [64] and some of their packages [65-69] for statistical analysis and 

creating graphical figures. We also created brain images (Fig. 7 and Supplementary Fig. 5) 

using BrianNet Viewer toolbox [30] and drew diagrams (Fig. 2, Fig. 9, and Supplementary 

Fig. 7) by Draw.io free online diagram editor [70]. 

In addition, we shared our codes on 

“https://github.com/majidsaberi/NegLinkTopoBalance”. So everyone can replicate and 

develop our work. 
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