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1 Abstract
Machine learning has been increasingly applied to the field of computer-aided drug discovery in recent years,
leading to notable advances in binding-affinity prediction, virtual screening, and QSAR. Surprisingly, it is
less often applied to lead optimization, the process of identifying chemical fragments that might be added
to a known ligand to improve its binding affinity. We here describe a deep convolutional neural network
that predicts appropriate fragments given the structure of a receptor/ligand complex. In an independent
benchmark of known ligands with missing (deleted) fragments, our DeepFrag model selected the known
(correct) fragment from a set over 6,500 about 58% of the time. Even when the known/correct fragment was
not selected, the top fragment was often chemically similar and may well represent a valid substitution. We
release our trained DeepFrag model and associated software under the terms of the Apache License, Version
2.0. A copy can be obtained free of charge from http://durrantlab.com/deepfragmodel.

2 Introduction
Drug discovery is benefiting from an upsurge in machine-learning approaches for tasks such as binding-affinity
prediction [1–3], virtual screening [4–7], and QSAR [8]. Massive molecular datasets have enabled data-driven
models that outperform handcrafted algorithms in nearly all applications. As these powerful new approaches
come of age, they are increasingly used to augment the drug-discovery pipeline and reduce the time and cost
of developing new pharmaceuticals.

While discriminative models for drug discovery have been studied extensively, the problem of molecular
generation remains challenging. In the field of computer vision, generative models such as recurrent neural
networks (RNNs) and generative adversarial networks (GANs) have had great success in performing tasks
such as realistic image synthesis [9] and style transfer [10]. Naturally one wonders if this same technology can
be applied to molecular synthesis. Several recent works in generative molecular modeling have demonstrated
that it is possible to generate libraries of SMILES strings with desired properties [11] as well as 3D ligand
pharmacophore-type maps from a given receptor pocket [12].

However, the field still faces some challenges. First, it is difficult to enforce the generation of valid molec-
ular structures. Models that produce SMILES strings may contain grammatical errors, and 3D molecular
shapes tend to be blurry and lacking in detail. Second, the inner workings of generative models are difficult to
interpret. Failure cases are hard to diagnose both during training and inference. Finally, while it is clear how
to evaluate a regressive model (L2 loss for example), it is not entirely clear how to quantitatively evaluate
a generative model. The current best practice is to demonstrate “enrichment” for some metric (e.g., QED)
compared to a random baseline [13].

In this paper, we address some of these limitations by restructuring the question of molecular generation
as a type of classification problem. Specifically, we propose a new “fragment reconstruction” task where
we take a ligand/receptor complex, remove a portion of the ligand, and ask the question “what molecular
fragment should go here?” To successfully answer this question, a machine-learning model must consider the
surrounding receptor pocket and the intact portion of the ligand. This task is immediately applicable to lead
optimization, which seeks to improve the binding of a known ligand by swapping and/or adding molecular
fragments. It also represents an important step towards fully de novo drug design.

We here demonstrate that a 3D convolutional network trained on experimentally derived crystal-structure
data can select a missing fragment with >57% accuracy from a set of more than 6,500 fragments. Even
when the network does not predict the “correct” answer, the top predictions are often chemically sim-
ilar and may well represent plausible substitutions. We release our trained model and associated soft-
ware under the terms of the Apache License, Version 2.0. A copy can be obtained free of charge from
http://durrantlab.com/deepfragmodel, where interested users can also find a link to a Google Colaboratory
Notebook [14] for testing.
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Figure 1: DeepFrag workflow. (A) Receptor/ligand complex. Example “parent” and “fragment” portions of
the ligand are highlighted in orange and yellow, respectively. (B) The ligand is cut along a single bond to
separate the parent and fragment. (C) Atoms from the receptor and parent are converted to 3D voxel grids
(density channels). (D) Density channels are concatenated and fed to the DeepFrag model, which predicts a
fragment fingerprint vector. (E) The fingerprint vector is compared against a fingerprint library (label set)
to generate predictions.

3 Materials and Methods

3.1 Training Datasets: Receptor/Ligand Complexes
Our goal was to train a supervised model to complete a 3D structure of a receptor-bound partial ligand
(“parent”) with a molecular fragment, such that the resulting composite molecule (parent + fragment) is
highly complementary to the receptor. To this end, we first constructed a library of (receptor/parent, frag-
ment) tuples, where each fragment is a well-suited choice for the corresponding receptor/parent complex. We
assembled this library from the Binding MOAD dataset [15], which includes experimentally derived structure
data for 38,702 receptor/ligand complexes (Figure 1A).

3.1.1 Data Pre-processing

The crystal structures contained water molecules as well as crystallographic additives (e.g., buffers, salts).
The Binding MOAD specifically catalogues which ligands are biologically relevant. We used these annotations
to strip irrelevant artifacts before generating fragments. Additionally, some complexes contain several bound
ligands per receptor. In these cases, we isolated each ligand as a separate receptor/ligand complex.

3.1.2 Ligand Fragmentation

For each receptor/ligand complex, we generated multiple (receptor/parent, fragment) training examples by
iterating over all ligand single bonds and performing a cut (Figure 1B). We retained the resulting example
if it satisfied the following criteria:

• the cut split the ligand into two disconnected pieces (e.g., cutting a ring was not permitted)

• the smaller piece contained at least one heavy atom

• the smaller piece had a molecular weight < 150 Da

• the connection point between the parent and fragment was within 4 Å of a receptor atom

When these conditions were met, we labeled the smaller and larger pieces of the ligand the fragment and
parent, respectively. All fragments were standardized using MolVS transformation rules [16]. Specifically, for
each fragment, we neutralized the charge and generated a canonical tautomer. By constraining our dataset
to only fragments located near the receptor surface, we ensured that they were likely to form interaction(s)

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425790
http://creativecommons.org/licenses/by/4.0/


with their respective receptors. There were ultimately 308,689 (receptor/parent, fragment) tuples that met
these criteria.

3.1.3 Data Splits

The examples were partitioned into three sets (TRAIN, VAL, and TEST ), in the approximate ratio 60/20/20.
We trained models on the TRAIN set and used the VAL set to monitor performance, tune hyperparameters,
and prevent over-fitting. We report final results on the withheld TEST set.

Some protein targets are repeated in the Binding MOAD. To ensure our model generalized to unseen
receptors, we created a three-way “vertical split” so that homologous targets were not shared between the
TRAIN, VAL, or TEST sets. The Binding MOAD provides 90% similarity families that we used to determine
if two targets were homologous.

Similarly, many ligands bind to multiple targets, and some metabolites such as ATP occur very frequently.
To prevent the model from simply memorizing common ligands, we further ensured that ligands (in addition
to receptors) were not shared between the TRAIN, VAL, and TEST sets. We examined the previous “vertical
split” dataset and identified ligands shared across multiple splits by comparing canonical SMILES strings.
Each shared ligand was then randomly assigned to one of the sets, and examples from the other set(s) were
discarded.

3.2 Receptor/Parent Complexes as Voxel Grids
We converted the structures of each receptor/parent example into a 3D voxel grid (Figure 1C). To generate
each grid, we placed a virtual box in the receptor pocket, centered on the fragment/parent connection point
(i.e., the location of the parent atom from which the fragment should branch). This section describes the
specific parameters we considered when generating these grids.

3.2.1 Grid Widths and Resolutions

We used cubic grids. The grid width, w, is defined as the number of grid points in each dimension, such that
there are w3 points total. The spacing in Ångstroms between the grid points, s, is called the grid resolution.
The physical length of the grid is thus ws along each dimension, and the volume is w3s3.

3.2.2 Voxelation methods

Our grid representation requires that each atom contribute “density” to neighboring grid points that fall
within a certain distance (the atom-influence radius, r). We considered several functions for calculating
these densities (Figure 2):

1. SPHERE: Set all grid points within r to 1 (spherical boolean).

2. CUBE: Set all grid points within r along the x, y, or z axis to 1 (cubical boolean).

3. POINT: Set only the nearest grid point to 1 (as in ref. [2]).

4. SMOOTH: Set nearby grid points per a continuous, piecewise function (as in ref. [5]), defined as:

A(d, r) =


e−2d2/r2 0 ≤ d < r
4

e2r2 d
2 − 12

e2rd+
9
e2 r ≤ d < 1.5r

0 d ≥ 1.5r

where d is the distance from the grid point to the atom center. Note that in the present work, r is the
same for all atom types and so is not equivalent to an atomic radius.

5. SMOOTH-2: Set nearby grid points per the exponential part of SMOOTH:

A(d, r) =

{
e−2d2/r2 0 ≤ d < r

0 d ≥ r
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Figure 2: Illustration of different grid-voxelation methods in 2D.

6. LJ: Set grid points per the repulsive component of a Lennard-Jones potential (as in ref. [17]), defined
as:

A(d, r) =

{
1− e−(r/d)12 0 ≤ d < 5

0 d ≥ 5

3.2.3 Grid Layers

To distinguish different atom types, we considered several “atom-channel” (i.e., grid-layer) definitions. In all
cases, atoms from the receptor and parent always contributed to different grid layers, allowing our model to
distinguish between the two.

In the flat definition, we assigned all atoms to a single channel. This method serves as a baseline com-
parison and is analogous to converting an image to grayscale before training an image classifier. The flat-h
definition includes hydrogen atoms, but flat does not.

In the simple definition, we assigned atoms to separate layers based on atomic number. We assigned the
most common atoms to individual layers and aggregated all other atoms in a separate “other” layer. For
ligands, the most common atoms are carbon, nitrogen, and oxygen. For receptors, we also include a separate
sulfur layer. The simple-h definition further includes a hydrogen layer.

We also experimented with high-level descriptors for receptor atoms. In the meta definition, we assigned
each atom to one or more channels based on the following properties: aromatic, hydrogen-bond donor,
hydrogen-bond acceptor, partial positive charge, partial negative charge, and occupancy (any atom). For
example, an aromatic carbon atom with a partial positive charge would be present in the aromatic, partial
positive, and occupancy layers. In the meta-mix description we combine the meta layers and the simple-h
layers.

3.2.4 Data-Handling Optimizations

We used two optimizations to accelerate data handling. First, to load the receptor/parent data faster, we
stripped all irrelevant information from the source PDB files and saved only atomic coordinates and atom
types to a packed HDF5 file. During training, we loaded this entire dataset into memory for rapid access,
thereby drastically decreasing training startup time.

Second, to convert this data to a voxel grid, we developed a GPU-accelerated grid-generation routine using
Numba, a high-performance Python just-in-time compiler [18]. As others have noted [19], a GPU-accelerated
approach reduces grid-generation wall-time substantially (more than 10x in our case). We therefore opted to
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Parent Typing Layers
flat single channel, no hydrogen
flat-h single channel, including hydrogen
simple [C, N, O, (other)]
simple-h [H, C, N, O, (other)]

Receptor Typing Layers
flat single channel, no hydrogen
flat-h single channel, including hydrogen
simple [C, N, O, S, (other)]
simple-h [H, C, N, O, S, (other)]
meta [aromatic, H-don, H-acc, pos, neg, occupancy]

meta-mix meta + simple-h

Table 1: Grid-layer (atom typing) descriptions. Note that the simple and simple-h variants for the receptor
include a separate sulfur layer. Otherwise, the parent and receptor typing schemes are identical. Additionally,
the meta and meta-mix descriptions are used only for the receptor.

generate all grids on the fly each time they were needed (i.e., once per epoch), without ever saving them to the
disk or storing them long-term in memory. As part of the grid-generation process, we randomly rotated each
example. The model was thus trained on differently rotated grids every epoch, a form of data augmentation
aimed at encouraging rotation-invariant learning.

3.3 Representing Fragments as Vectors
We converted the fragments of the TRAIN, VAL, and TEST sets to vectors by applying the RDKFingerprint
algorithm [20] provided by the RDKit library [21]. RDKFingerprint is an implementation of a Daylight-like
topological fingerprint, which enumerates subpaths in a molecule and computes hashes. Each hash seeds a
pseudo-random number generator, which is used to randomly set bits in the fingerprint bitstring. Molecules
with matching subpaths share common bits. Specifically, we allowed the subpath enumeration to consider
all paths of size ≤ 10 to differentiate between larger fragments (e.g., alkanes). We folded the final bitstring
to a size of 2048. The generated fingerprints contained only 0’s or 1’s, but we allowed our model to predict
continuous vectors with each element in the range [0, 1] (enforced with a sigmoid activation layer).

3.4 DeepFrag Model
3.4.1 Architecture

We used a deep 3D convolutional neural network to predict appropriate RDKFingerprint fragment vectors
from voxel-grid representations of receptor/parent complexes (Figure 1D). The model consists of several
repeated blocks of 3D convolution layers followed by a global average pooling layer and several fully connected
layers. Each convolution block starts with a batch normalization layer and ends with a 3D max pooling layer
(except the last block). In the fully connected section, we use dropout layers to prevent overfitting. All
intermediate activations are ReLU except for the last layer, which uses a sigmoid activation to map values
into the range (0,1). The final “optimized” model architecture is shown in Figure 3.

3.4.2 Training Details

Models were implemented in PyTorch [22]. We used the Adam optimizer [23] with the default momentum
schedule. For each epoch, we randomly sampled batches from the TRAIN set and computed predicted
fingerprint vectors after applying random grid rotations. The loss was computed as the average cosine distance
between the predicted fragment vectors and the vectors of the corresponding correct (known) fragments for
each batch (Equation 1).

To monitor training, we randomly sampled a subset of the VAL set after each epoch and computed an
average validation loss using the same loss function. We only saved new model checkpoints when the validation
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Figure 3: Final DeepFrag convolutional neural network architecture. The input tensor consists of concate-
nated atom-wise channels (grids) from the parent and receptor (N = total number of atom channels). The
output tensor contains a raw fragment-fingerprint prediction. For this model, blocks = [64,64] and fc = [512]
(see Supporting Information).
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cos(a, b) = 1− a · b
‖a‖‖b‖

(1)

Equation 1: Cosine distance between vectors a and b. A distance of 0 represents parallel vectors. A distance
of 1 represents orthogonal vectors.

Grid-layer parameters
Parent types flat, flat-h, simple, simple-h
Receptor types flat, flat-h, simple, simple-h, meta, meta-mix

Voxelation parameters
Voxelation method SPHERE, CUBE, POINT, SMOOTH, SMOOTH-2, LJ
Atom-influence radius 1.0 Å, 1.75 Å, 2.5 Å

Table 2: Select hyperparameters varied during our tuning protocol. During the grid-layer experiment, the
receptor typing scheme was fixed at simple while the parent typing scheme was varied, and vice-versa.

loss reached a new global minimum. Training continued until we observed convergence. To accelerate training,
we trained models using either NVIDIA Titan X or NVIDIA GTX1080 GPUs.

3.5 Label Sets, Fragment Selection, and TOP-k Accuracy
The model itself predicts a vector in RDKFingerprint space, not a human-interpretable fragment represen-
tation. To map an output vector to specific fragments, we compute the cosine distance (Equation 1) between
the predicted vector and each vector in a large library of RDKFingerprints corresponding to known fragments
(Figure 1E), which we call a “label set.” Using these distances we can rank fragments by similarity to the
predicted vector and identify the “closest match.” The label set is not necessarily the same set of fingerprint
vectors used to train, validate, or test the model. Rather, it is the set of all fragments from which the model
can ultimately choose.

If the label set contains fragments known to be correct (i.e., if it includes the fragments of the VAL and/or
TEST sets), it is possible to quantitatively evaluate a model’s accuracy. We consider TOP-k accuracy, for
k ∈ {1, 8, 64}. For example, TOP-8 accuracy represents the probability of finding the correct fragment in
the set of the top eight predicted fragments.

3.6 Hyperparameter Tuning
We optimized hyperparemeters in several phases. Early-stage efforts focused on identifying suitable model
and grid-density parameters (see Supporting Information). We here describe our subsequent efforts to identify
suitable voxelation and grid-layer parameters. For these steps, we trained on examples in the TRAIN set and
evaluated TOP-k accuracy on examples in the VAL set. We merged the fragment vectors from the TRAIN
and VAL sets into a combined label set, which we used for fragment selection.

We trained each model variant for 15 epochs (approximately 20 hours) on a GPU, achieving accuracy
roughly 80-90% of the eventual maximum. During early experiments, we found that this shortened training
cycle was sufficient to assess relative validation accuracy between model variants. That is, in general if a
model performed better after 15 epochs, it also performed better after full convergence.

Using suitable model and grid-resolution parameters identified previously (see Supporting Information),
we explored the effect of varying the grid-layer definitions of the parent and receptor atoms. When the parent-
atom definition was varied, the receptor-atom definition was fixed as simple, and vice versa. We trained each
of the 9 model variants in triplicate and report the average validation accuracy after 15 epochs.

Additionally, we experimented with changing the shape and size of atom densities by performing a
comprehensive grid search. In this experiment, we fixed the parent and receptor typing schemes as simple
and varied the voxelation method and atom-influence radius (Table 2).
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TRAIN VAL TEST ALL
Receptors 22,968 7,641 8,093 38,702
Ligands 10,284 3,677 4,101 18,062

Unique Fragments 4,654 2,070 2,328 6,522
Examples 185,198 55,221 68,270 308,689

Table 3: Fragment dataset details. Receptors: number of unique receptor targets per split. Ligands: number
of unique ligands per split (determined by SMILES comparison). Unique Fragments: number of unique
molecular fragments per split. Examples: total number of (Receptor/Parent, Fragment) tuples.

3.7 Final Model: Training to Convergence
Once we settled on a set of effective hyperparameters, we trained an “optimal” model, which we call DeepFrag.
We trained the final model to convergence (5 days on a GPU) and evaluated its TOP-k accuracy on the
withheld TEST set, using as a label set the fragment vectors of the TRAIN, VAL, and TEST sets. Training
to convergence required substantial computer resources. But using DeepFrag to prospectively evaluate a
single receptor/parent complex (i.e., at inference time) requires only a few grid-generation steps that can
easily run on a CPU.

Using the fully converged model, we also explored the effect of test-time augmentation on model accuracy.
We evaluated the effect of sampling multiple random rotations per example and averaging the predicted
fingerprints to generate a multi-rotation, ensemble prediction.

4 Results and Discussion
The fragment-reconstruction task we here introduce aims to complete a partial, receptor-bound ligand (“par-
ent”) by adding a new molecular fragment such that the combined molecule is highly complementary to
the given receptor. For the purpose of this work, a fragment is a terminal ligand substructure with a mass
less than 150 Da. The cutoff choice of 150 Da is relatively arbitrary; this value allows for a large variety
of fragment types without including overly complex structures. The fragment may be an explicit functional
group with known behavior such as a hydroxyl or phenyl group, but this is not a requirement.

The intuition behind this task is that fragment selection is a function of the local receptor environment and
the existing ligand scaffold (parent). Therefore, it should be possible to learn a model f(receptor, parent) =
fragment. We here introduce just such a model and show that it can be used to implicitly rank a set of
candidate complementary fragments. We expect models such as these to be useful for lead optimization (e.g.,
to generate congeneric series of small-molecule ligands with improved binding affinities). The same model
could be used indirectly as a way to evaluate the importance of each group in an existing ligand by removing
and re-predicting existing fragments.

4.1 Generating and Representing Molecular Data
4.1.1 Assembling a Dataset of (Receptor/Parent, Fragment) Tuples

Ideally, we would like to train a model to predict the single, optimal fragment for any receptor/parent pair.
But given that there are roughly 1060 drug-like molecules [24], identifying optimal fragments for training
is impracticable. We instead trained on datasets derived from the Binding MOAD [15] database (Table 3),
which currently includes experimentally derived structural data for 38,702 receptor/ligand complexes.

We make the assumption that because each ligand in the dataset is known to bind the corresponding
target, its structure must be to some extent optimized relative to a random molecule. It follows that each
ligand fragment (i.e., substructure) is also at least somewhat optimized—especially those fragments that
interact directly with the receptor. We therefore trained a model to reconstruct correct fragments from
known active ligands, as a surrogate for training on optimal fragments.
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4.1.2 Voxelizing Receptor/Parent Complexes

We represented receptor/parent complexes as 3D voxel grids (tensors) similar to those described elsewhere
[4, 5]. We chose a grid representation because the 3D local context is certainly critical for fragment binding.
Converting molecular structures to voxel grids also allowed us to easily translate machine-learning techniques
from other fields (e.g., computer vision). To learn a rotation-invariant model and prevent overfitting, each
grid was randomly rotated each time it was used (i.e., once per training epoch).

4.1.3 Converting Fragments to Fingerprint Vectors

We converted molecular fragments to vectors using the RDKFingerprint algorithm [20, 21]. This fingerprint
can be generally seen as a vectorized description of the fragment’s topology, or structure. Our approach thus
differs from a typical categorical classification task, where a model predicts a vector containing class scores
or normalized class probabilities. In this typical formalization, classes must be fixed at training time (i.e.,
the model has no capacity to predict unseen classes), and any prior knowledge about class relationships
is effectively stripped, precluding the training of a more generalizeable model. In our fragment prediction
task, we expect structurally similar fragments to have similar binding properties; by training on fingerprint
vectors, we enforce this prior knowledge.

4.2 Hyperparameter Tuning
We systematically explored a number of hyperparameter combinations to identify one well-suited for fragment
prediction (see Supporting Information and Section 3.6). We found that the choice of hyperparameters can
substantially impact both the speed of grid generation and the quality of information ultimately provided
to the machine-learning model.

4.2.1 Model Learning and Architecture

We explored the impact of varying parameters related to network architecture and training (Table S1). Our
base model (Section 3.4.1) was inspired by related works that use 3D atomic densities with convolutional
neural networks [5, 17]. We ultimately selected a learning rate of 0.0001, a batch size of 16, and a model
architecture with two convolutional blocks of size 64 and a single fully connected layer of size 512 (Figure 3).

4.2.2 Grid-Density Parameters

We also varied the grid width and resolution parameters used to generate the voxel grids. Both these variables
impact the speed of grid generation and the amount of information provided to the network. The grid
resolution (i.e., the distance between adjacent grid points) is particularly impactful. Low-resolution grids
can be generated quickly, but high-resolution grids provide more information. Based on our hyperparameter
search, we selected a grid width of 24 and a grid resolution of 0.75 Å (Table S1).

4.2.3 Grid-Layer Parameters

In the same way a 2D image has three color channels (e.g., red, green, blue), our 3D grids have N atom
channels (e.g., carbon, nitrogen, oxygen, etc.). It is tempting to construct a large array of features (e.g.,
to create separate layers for aliphatic and aromatic carbon atoms) in order to maximize information. But
using too many layers can slow training and make the model harder to deploy because each feature must be
separately computed during inference. On the other hand, too few layers may result in information loss and
worse performance.

We tested several grid-layer schemes (Table 4) and ultimately settled on a straightforward approach
based solely on the atomic elements of receptor (N, O, C, S, other) and parent (N, O, C, other) heavy
atoms, without regard for atomic hybridizations (i.e., the simple definition for both the receptor and parent,
see Section 3.2.3). Other works [5] have found that element-type channels are sufficient to achieve high
performance on the related binding-affinity prediction task. Similarly, including hydrogen atoms appears to
have little impact on affinity-prediction performance [25]. In our preliminary tests, we similarly saw little
benefit to including hydrogen atoms (Table 4).
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Parent Typing Receptor Typing TOP-1 Accuracy
flat simple 45.87 (± 0.44)
flat-h simple 46.00 (± 0.55)
simple simple 50.57 (± 0.25)
simple-h simple 50.45 (± 0.06)

Parent Typing Receptor Typing TOP-1 Accuracy
simple flat 46.20 (± 0.51)
simple flat-h 47.27 (± 0.83)
simple simple 50.57 (± 0.25)
simple simple-h 50.10 (± 0.58)
simple meta 49.22 (± 0.58)
simple meta-mix 50.10 (± 0.87)

Table 4: Effect of varying grid layer descriptions on TOP-1 accuracy. For each parent grid-layer variant, the
receptor grid-layer definition was fixed at simple, and vice-versa. Each model variant was trained in triplicate
on the TRAIN dataset for 15 epochs. We report TOP-1 accuracy (%) and standard error on the VAL set.

1.0 Å 1.75 Å 2.5 Å Overall
1. SPHERE 49.12 (± 0.48) 49.65 (± 0.38) 48.50 (± 0.43) 49.09 (± 0.30)
2. CUBE 49.27 (± 0.55) 42.12 (± 0.13) 39.18 (± 0.13) 44.06 (± 1.41)
3. POINT 44.13 (± 0.18) 43.27 (± 0.48) 43.40 (± 0.56) 43.64 (± 0.28)
4. SMOOTH 50.38 (± 0.08) 49.00 (± 0.06) 46.93 (± 0.70) 48.74 (± 0.56)
5. SMOOTH-2 51.13 (± 0.61) 49.40 (± 0.61) 46.23 (± 0.74) 48.92 (± 0.78)
6. LJ 50.03 (± 0.42) 48.68 (± 0.88) 47.32 (± 0.30) 48.68 (± 0.50)
Overall 49.01 (± 0.58) 47.13 (± 0.76) 45.62 (± 0.71)

Table 5: Effect of voxelation method on TOP-1 accuracy (%). Each model variant was trained three times
on the TRAIN dataset for 15 epochs. We report TOP-1 accuracy (%) and standard error on the VAL set.

Our straightforward grid-layer definition is particularly advantageous in terms of end-user usability. Most
crystal structures lack the resolution required to correctly position hydrogen atoms, and computational
methods for predicting protonation/tautomerization states are error prone. Similarly, predicting ligand-atom
hybridizations from 3D coordinates is challenging. Because DeepFrag does not require this information, end
users deploying DeepFrag in production do not need to guess at these atomic properties prior to use.

4.2.4 Voxelation Parameters

We also varied the parameters used to convert atomic coordinates to voxel-grid densities (Table 5). The
voxelation method controls the shape of atomic densities 2 and the atom-influence radius controls the size
of atomic densities (Tables 2 and S1).

Various grid-voxelation methods can convert atomic coordinates and atom types into 3D density tensors.
Simple boolean voxelation is fast to compute but may oversimplify the input representation, while more
complex functions can retain high-resolution distance information at the cost of slower grid generation.
Surprisingly, the specific method had little effect on overall prediction accuracy (Table 5), with the exception
of the CUBE and POINT methods, which apparently fail to provide sufficient information to the model. We
hypothesize that the CUBE method does not preserve atomic symmetries (especially as the atom-influence
radius increases), and the POINT method is too sparse. As others have noted [5], the hard boolean cutoff in
SPHERE and the smooth Gaussian in SMOOTH are remarkably competitive, even though the former does
not preserve atomic-distance information.

We ultimately settled on the SMOOTH-2 voxelation method (1.75 Å radius) because it is the fastest to
compute of the distance-preserving spherical methods. However, our hyperparameter search did not reveal a
clearly optimal voxelation method and atom-influence radius; indeed, different methods/radii produce similar
results.
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N TOP-1 TOP-8 TOP-64
1 56.41 64.79 70.78
2 57.17 65.47 71.36
4 57.57 65.87 71.78
8 57.72 66.03 71.98
16 57.83 66.06 72.05
32 57.91 66.17 72.13

Table 6: Effect of multiple-rotation sampling on the accuracy of a fully converged model (roughly 50 epochs
of training). Each entry represents the TOP-k VAL-set accuracy obtained by averaging N -rotations per
sample.

TOP-1 TOP-8 TOP-64
TEST/LBL-ALL (6,522) 57.77 (0.02 ) 66.16 (0.12 ) 72.26 (0.98 )
TEST/LBL-TEST (2,328) 57.80 (0.04 ) 66.67 (0.34 ) 74.28 (2.75 )

Table 7: The TOP-k % accuracy, for k ∈ {1, 8, 64}, of the final model (DeepFrag) evaluated on the withheld
TEST set (68,270 examples), using the LBL-ALL label set (default). For reference, we also report the
accuracy using the LBL-TEST set. The expected accuracy of an equivalent random model is given in
parenthesis (italics).

4.3 Training a Final Production Model
4.3.1 Training to Full Convergence

After exploring different combinations of hyperparameters, we trained an “optimal” model to full convergence,
using the examples of the TRAIN set. Training ran for approximately 50 epochs (5 days on a TITAN-X
GPU). We call this fully converged, final model “DeepFrag.” For this production model, we used a learning
rate of 0.0001, a batch size of 16, and the model architecture shown in Figure 3. We generated cubic grids of
resolution 0.75 Å and width 24 points. Grid density was calculated using the SMOOTH-2 voxelation method
(atom-influence radius of 1.75 Å). We used the simple grid-layer definition (based solely on atom elements)
for both the receptor and parent.

4.3.2 Averaging the Fragment Vectors of Multiple Rotated Grids

Although all grids were randomly rotated once per epoch to encourage rotation-invariant training, we found
that the model was still not perfectly robust to rotation. That is, otherwise identical grids with different
rotations generated slightly different prediction vectors, and some rotations even generated poor predictions.
We found that averaging the fingerprint predictions of multiple randomly rotated grids improved accuracy
by “smoothing out” any rotation dependence of the converged model. In Table 6 we report the TOP-k test
accuracy on the VAL set obtained by averaging N -rotations per sample for different values of N .

4.3.3 Final Evaluation on the TEST Set

As a final evaluation of the fully converged DeepFrag model, we considered the examples of the TEST set.
For each TEST -set tuple, we randomly rotated the associated receptor/parent voxel grid 32 times and used
DeepFrag to predict 32 fragment vectors. In all cases, we averaged the 32 vectors to produce one vector per
receptor/parent pair. To calculate TOP-k accuracies, we compared these averaged vectors to the set of all
fragment vectors in the TRAIN, VAL, and TEST sets (the “LBL-ALL” label set). The LBL-ALL vector
closest to the predicted vector was the correct vector 57.77% of the time (Table 7).

4.4 Best Practices for Fragment Selection: Label Set Size
A large label set such as the LBL-ALL set (6,522 vectors) is advantageous in that it gives the model the
freedom to select from a wider range of fragments. On the other hand, smaller sets may also have their
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advantages. For example, allowing DeepFrag to choose from a smaller label set could conceivably improve
accuracy. Smaller sets comprised of easily synthesizeable fragments may also be critical when chemical
synthesizeability is a concern. Even a few dozen fragments can cover a wide range of potential biochemical
interactions.

To assess the impact of label-set size, we applied DeepFrag to all the (receptor/parent, fragment) tuples
in the TEST set (68,270 tuples) and recalculated TOP-k accuracy using a much smaller label set comprised
of only the fragment vectors present in our TEST set (LBL-TEST ). Remarkably, the correct label was the
closest roughly 58% of the time (Table 7), regardless of the label set used. Increasing the size of the label
space by nearly threefold (LBL-TEST -> LBL-ALL) thus bears little cost on accuracy. In other words,
model predictions are fairly precise; despite “cluttering” the label space with many more incorrect fragments,
top predictions from the smaller space are generally also top predictions in the larger space.

4.5 Examples Demonstrating Effectiveness
4.5.1 DeepFrag Generalizability

We were encouraged to see evidence that our model can generalize beyond the correct fragments used for
training. The true optimal fragment for a given protein/parent pair is unlikely to ever be in any chosen label
set. Generalizability ensures that the model can nevertheless predict chemically similar fragments that are
well suited for a given binding-pocket region. Synthesizing and testing congeneric series of distinct compounds
that each incorporate a different top-scoring fragment may enable the rapid discovery of optimized ligands
with improved binding affinities.

To illustrate, we randomly selected six TEST -set (protein/parent, fragment) tuples and identified the
eight LBL-ALL fragment fingerprints that were most similar to each predicted vector (Figure 4). The correct
fragment was selected first in two of the six cases, and among the top five in another two cases. But it is
telling that the other top-ranked fragments are often very plausible substitutes. Interestingly, the single-atom
halogen fragments (*Cl, *Br, and *F) share no common fingerprint bits, yet the model learned to group them
together. This result suggests that our model may be more predictive than even the TOP-k metric would
suggest. It is entirely possible that in some cases where DeepFrag does not select the correct fragment, the
selected fragment may in fact be superior.

4.5.2 Human and DeepFrag Intuition are Complementary

We also provide a simple comparison of human and DeepFrag “intuition” by considering the structure of H.
sapiens peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (HsPin1p), a cancer drug target [26], bound
to a phenyl-imidazole ligand (IC50 = 8 µM, PDB 2XP9 [27], Figure 5). Importantly, neither HsPin1p nor
the ligand were included in the DeepFrag TRAIN or VAL sets.

Intuitively, carboxylate A (Figure 5, highlighted in pink) seems well optimized, per the crystal structure.
It forms electrostatic interactions with R69 and K63, and hydrogen bonds with C113 and S114. We removed
this carboxylate group and used DeepFrag to predict replacement moieties. The top predicted fragment was
the correct carboxylate group. Interestingly, the second- and third-place fragments were chemically similar:
*CO and *CC(=O)O.

Phenyl B (Figure 5, highlighted in blue) also appears to be well optimized. It binds near multiple hy-
drophobic residues (L122, F134, M130, and L61) and forms π-π interactions with H59. We repeated the
same DeepFrag analysis multiple times, this time removing phenyl B. Multiple runs are useful in some cases
because DeepFrag is not strictly deterministic; it randomly rotates the 32 grids it uses for output-fingerprint
averaging, so different DeepFrag runs can in some cases predict different outputs. While some of our Deep-
Frag runs targeting phenyl B did identify a phenyl group as the correct fragment, we here describe a run
in which the top predicted fragment was the bicyclic moiety *c1ccnc2c1C(=O)N(C)C2. To further examine
the potential binding pose of this fragment, we used RDKit [21] to generate multiple fragment conform-
ers/rotamers and to identify a parent-connected fragment position that was low-energy, per the UFF force
field (Figure 5, in yellow) [28]. This fragment pose preserves the π-π interactions with H59 but potentially
enhances hydrophobic interactions with M130 and L122, illustrating how DeepFrag can serve as a useful tool
for lead optimization.
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Figure 4: Example predictions using the final model. Examples are drawn from the (unseen) TEST set, and
fragments are selected from the LBL-ALL label set (6,522 choices) Each predicted vector is the average of
32 predictions obtained by randomly rotating the corresponding input voxel grid. Left: The ground-truth
(correct) fragments. Right: The top eight predicted fragments, labeled with the cosine similarity to the
respective averaged prediction vector.
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Figure 5: A crystal structure of HsPin1p bound to a phenyl-imidazole ligand (PDB 2XP9 [27]). A, B, and
C indicate a carboxyl (pink) and two phenyl (blue and green) fragments that we reassessed with DeepFrag.
The DeepFrag-suggested bicyclic and ethyl replacements for phenyl B and phenyl C, respectively, are shown
in yellow.
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Finally, human intuition suggests that phenyl C (Figure 5, highlighted in green) is not well optimized.
Aside from possible hydrophobic interactions with a portion of the R68 side chain, there are no other specific
interactions with HsPin1p. This phenyl group also appears to be more solvent exposed than is phenyl B.
When we applied DeepFrag, it in fact did not suggest aromatic groups at this position. The top predicted
fragments were methyl and ethyl groups. To further examine the potential binding pose of the suggested ethyl
moiety, we again identified a low-energy, parent-connected fragment pose (Figure 5, in yellow). Interestingly,
this predicted pose maintains the potential hydrophobic interactions with the R68 side chain.

This analysis suggests that DeepFrag has learned much of the same chemical-biology intuition typical of
experts in the field. The Supporting Information includes three additional examples of DeepFrag use.

4.6 Comparison with Other Approaches
Recently, machine-learning techniques have been applied to many tasks in computer-aided drug discovery.
Specifically, the use of 3D-voxel descriptors in conjunction with convolutional neural networks is now com-
monplace, with reported applications for binding-affinity prediction [1–3], virtual screening [4–7], and QSAR
[8].

Generative modeling appears to be a more challenging task. Several authors have repurposed generative
architectures used in computer vision for use in drug design (e.g., generative adversarial networks, GANs;
variational autoencoders, VAEs). For example, Skalic et al. developed a generative adversarial model derived
from BicycleGan [29] that can create 3D pharmacophoric maps from a receptor target. A subsequent step
generates SMILES strings using a recurrent “captioning network” [11]. Several other authors have created
models that generate molecular analogues independently of a target receptor using a continuous, learned la-
tent space [30, 31], generative recurrent networks [32], or deep reinforcement learning [33]. While promising,
these approaches are difficult to evaluate quantitatively, making it challenging to decide when to use them
in a production pipeline. In contrast, DeepFrag in unique in that it (1) formulates small-molecule lead opti-
mization as a classification problem rather than a generative modeling problem and (2) predicts a fragment
fingerprint given a 3D-voxel representation of a ligand/protein complex. To the best of our knowledge, ours
is the first system to perform data-driven lead optimization in this way.

Others have applied more traditional approaches to fragment-based lead optimization that do not leverage
machine learning. For example, a recent publication by Shan et al. [34] proposed FragRep, a program that
also aims to guide local fragment optimization in the context of a binding pocket. Whereas FragRep uses
hand-crafted rules to identify suitable fragments, DeepFrag infers these rules from a large dataset of examples.
Additionally, generating a prediction in DeepFrag takes roughly 0.3 seconds on a GPU, compared to 60-120
seconds for FragRep. On the other hand, FragRep is advantageous in that it can also generate predictions
for internal scaffold fragments (i.e. non-terminal fragments).

5 Conclusions
Lead optimization is a critical early step in the drug-discovery process. DeepFrag, a free machine-learning
program aimed at guiding this important process, will thus be a useful tool for the computational-biology
community. Though not a substitute for a trained medicinal chemist, DeepFrag is highly effective for hy-
pothesis generation. It provides fragment suggestions that trained chemists and biologists can then evaluate,
synthesize, and experimentally test.

Although DeepFrag accuracy is impressive, our approach has several notable limitations. Two of these
limitations stem from our use of crystallographic data for training. First, crystallographic artifacts (e.g., due
to crystallographic packing [35]) occasionally produce ligand/receptor conformations that differ from the
physiological conformations that are most useful for drug discovery. Second, even when a crystallographic
conformation is physiologically relevant, it represents only a single conformation. In reality, binding pockets
are often highly dynamic, sampling multiple druggable conformations. And ligand/fragment binding can
influence those dynamics via conformational-selection and induced-fit mechanisms [36]. Our approach also
assumes that adding a fragment does not substantially impact the binding geometry of the initial parent
portion of the ligand. This same assumption underlies many lead-optimization approaches, but it is possible
that in some cases useful fragment additions might fundamentally alter the binding mode of the entire ligand.
Our approach will likely fail in these cases.
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Finally, to mitigate the challenges associated with ambiguous protonation states, the current version of
DeepFrag simply ignores hydrogen atoms and makes predictions based on heavy-atom positions alone. We
found that including hydrogen atoms leads to only modest improvements in accuracy (Table 4), but future
computational methods that can accurately predict ionization and tautomerization may enable improved
DeepFrag models.

These limitations aside, we expect DeepFrag to be useful in many applications. To encourage broad
adoption, we release the DeepFrag model and software under the permissive Apache License, Version 2.0
(http://durrantlab.com/deepfragmodel). The git repository also includes a link to a Google Colaboratory
Notebook [14] for testing.
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6.1 Hyperparameter Tuning
Our early efforts were focused on identifying model and grid-density parameters well suited to the fragment-
selection task. Because this phase of hyperparameter tuning required us to generate many models for com-
parison, we considered only the receptor/ligand complexes present in the PDBBind database [37, 38], rather
than those in the larger Binding MOAD database [15]. In this sense our early hyperparameter-tuning steps
differed than those described in the main text. We note that the ligand SMILES strings in the PDBBind
database are somewhat inconsistent (e.g., carboxylate moieties are inconsistently protonated), so that some
fragment labels were duplicated in this dataset. This duplication led to overall lower accuracy. Fortunately,
for the purpose of hyperparameter tuning we were concerned only with the relative performance between
models. To further reduce the size of the dataset, we also considered only (receptor/parent, fragment) tuples
with connection points that came within 3 Å of any receptor atom.

We divided these tuples into TRAIN, TEST, and VAL sets (60/20/20), using the same approach described
in the main text. We trained on examples in the TRAIN set and evaluated TOP-k accuracy on examples in
the VAL set. We merged the fragment vectors from the TRAIN and VAL sets into a combined label set that
we used for fragment selection. We trained each model variant for 8 hours on a GPU, achieving accuracy
roughly 80-90% of the eventual maximum.

In the first phase of early-stage hyperparameter tuning, we used a random search to identify reasonable
model parameters. We randomly sampled 32 combinations of learning rates, batch sizes, grid widths, grid
resolutions, and model architecture parameters (blocks and fc) (Table S1), where “blocks” describes the
number of filters in each 3-part convolution block, and “fc” describes the number and sizes of fully-connected
layers between the “Flatten” layer and the fragment output. For all models generated during this phase, we
used an atom-influence radius of 2.0 Å, a grid resolution of 1.0 Å, the SMOOTH voxelation method, the
SUM accumulation type, and the simple grid-layer definition for both the parent and receptor.

Phase 1: Model parameters
Learning rate 0.01, 0.001, (0.0001)
Batch size (16), 32, 64, 128
Grid width 16, (24), 32
Grid resolution 0.5 Å, 1.0 Å, 2.0 Å
Blocks [32,64], [16,32], [64,128], ([64,64])
Fully Connected (fc) [256], ([512]), [1024], [2048], [256,256], [512,512], [1024,1024]

Phase 2: Grid-density parameters
Grid resolution 0.25 Å to 3.00 Å (0.75 Å)
Atom-influence radius 0.25 Å to 4.00 Å (1.0-2.0 Å)

Table S1: Hyperparameters varied during our early-stage tuning protocol. Parentheses indicate optimal values
that were fixed for later phases.
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Figure S1: Crystal structures used to explore the DeepFrag model. The corresponding crystallographic ligands
are overlaid in the lower right-hand corners. (A) Protein myeloid cell leukemia1 (Mcl-1) (PDB ID: 6QZ8
[39]). A key ligand chlorine atom is marked with an asterisk. (B) Family GH3 β-D-glucan glucohydrolase
from barley (PDB ID: 1X38 [40]). A key ligand hydroxyl group is marked with an asterisk, and an original
phenyl group is shown in yellow. (C) NanB Sialidase from S. pneumoniae (PDB ID: 4FOW [41]). A key
ligand primary amine, which DeepFrag replaced with an ethylamine, is marked with an asterisk.

In the second phase of hyperparameter tuning, we fixed the best learning rate, batch size, grid width,
and model architecture parameters found during the first phase. We then randomly sampled 32 different
combinations of grid resolutions and atom-influence radii (Table S1). We continued to tune the grid resolution
in the second phase because the first phase did not reveal an optimal value. All other parameters were the
same as the first phase.

6.2 Additional Examples of Use
We here provide three additional examples of DeepFrag use. We selected these protein/ligand complexes
because (1) the associated PDBs were among those in the TEST set; (2) the associated ligands had diverse
low-weight fragments of the type commonly considered during lead optimization; and (3) visual inspection
confirmed that those fragments formed specific interactions with their respective protein receptors, suggesting
they are well optimized.

6.2.1 Myeloid Cell Leukemia 1 (Mcl-1)

We first applied DeepFrag to the cancer-implicated protein myeloid cell leukemia 1 (Mcl-1) bound to a ligand
designated “10d” (Figure S1A; PDB ID: 6QZ8 [39]). As a demonstration of DeepFrag’s ability to optimize
for electrostatic interactions, we removed the ligand carboxylate group, which forms a strong electrostatic
interaction with R263, and used DeepFrag to predict appropriate replacement fragments. The top predicted
fragment was in fact a carboxylate group, and the second- and third-ranked fragments were chemically
similar: *C(=O)OC and *C(=O)OO.

To demonstrate DeepFrag’s ability to optimize for hydrophobic interactions, we separately removed a
terminal methyl and ethyl group from the ligand. Both appear to be well optimized. The methyl group
forms hydrophobic contacts with F270, F228, and M231; and the ethyl group forms hydrophobic contacts
with F270, V253, V249, M250, and M231. In both cases, DeepFrag identified the “correct” fragment as the
top-ranked candidate and also suggested other chemically plausible hydrophobic fragments.

We also removed the ligand chlorine atom, which is predicted to form a halogen bond with the A227 back-
bone carbonyl oxygen atom (Figure S1A, marked with an asterisk). The top-ranked replacement fragments
were methyl, methyl alcohol, and ethyl groups. Although methyl halide fragments did rank well (e.g., methyl
floride, methyl chloride, methyl bromide, and methyl iodide ranked 8th, 12th, 13th, and 15th, respectively),
it is reasonable that DeepFrag preferred a small, hydrophobic fragment (methyl) at this location because
surrounding amino acids (i.e., F228, A227, and M231) are also hydrophobic.
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6.2.2 Family GH3 β-D-glucan Glucohydrolase (Barley)

We next applied DeepFrag to family GH3 β-D-glucan glucohydrolase from barley, bound to gluco-
phenylimidazole (Figure S1B; PDB ID: 1X38 [40]). To show how DeepFrag can optimize for hydrogen-bond
interactions, we first removed the hydroxyl group at position 8 (Figure S1B, marked with an asterisk), which
participates in hydrogen bonds with R158 and D285. The top-ranked replacement fragment was the “correct”
hydroxyl group, and other top-scoring fragments were chemically similar (e.g., *OC and *COO).

To test DeepFrag’s ability to optimize for aromatic stacking interactions, we next removed the ligand
phenyl group (Figure S1B, in yellow), which participates in π-π stacking interactions with W286 and W434.
Phenyl groups are larger than those tested above, making it less likely that DeepFrag will select the exact,
“correct” fragment. But DeepFrag does often produce reasonable alternatives in these cases, showing that it
has learned a certain degree of chemical intuition. The top replacement fragments were in fact all aromatic.
The top fragment, *c1ncnc2c1C(C)CC2(O), was particularly interesting. To further examine its potential
binding pose, we used RDKit [21] to generate multiple fragment conformers/rotamers and to identify a
low-energy, parent-connected fragment position, per the UFF force field [28]. This pose suggests that the
fragment’s bicyclic structure may enable more extensive contacts with W286 (Figure S1C). Interestingly,
the fragment also overlaps with a crystallographic glycerol molecule (not shown), suggesting the expanded
ligand may now occupy a new but “druggable” subpocket.

6.2.3 NanB Sialidase (Streptococcus pneumoniae)

Finally, we applied DeepFrag to NanB Sialidase from S. pneumoniae, bound to 3-ammoniopropane-1-
sulfonate (Figure S1C; PDB ID: 4FOW [41]). The primary amine of the ligand (marked with an asterisk) is
likely positively charged because it is positioned among three negatively charged amino acids (E541, D327,
and D270). To further illustrate how DeepFrag can account for electrostatic interactions, We removed the
amino group and used DeepFrag to replace it. Though the “correct” amino group was among the top-ranked
fragments (8th), the top fragment was in fact ethylamine (*NCC). We again used RDKit to find a low-
energy, parent-connected fragment pose. The secondary amine of the expanded fragment could still form
electrostatic interactions, but the expanded ethyl group may form additional hydrophobic interactions with
I246 and P492, possibly explaining why DeepFrag prefered the larger fragment at this position.
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