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Abstract. Phylogenetic methods are emerging as a useful tool to understand cancer evolution-
ary dynamics, including tumor structure, heterogeneity, and progression. Most currently used
approaches utilize either bulk whole genome sequencing (WGS) or single-cell DNA sequencing
(scDNA-seq) and are based on calling copy number alterations and single nucleotide variants
(SNVs). Here we explore the potential of single-cell RNA sequencing (scRNA-seq) to reconstruct
cancer evolutionary dynamics. scRNA-seq is commonly applied to explore differential gene ex-
pression of cancer cells throughout tumor progression. The method exacerbates the single-cell
sequencing problem of low yield per cell with uneven expression levels. This accounts for low and
uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In
this paper, we demonstrate for the first time that scRNA-seq data contains sufficient evolutionary
signal and can be utilized in phylogenetic analyses. We explore and compare results of such analyses
based on both expression levels and SNVs called from our scRNA-seq data. Both techniques are
shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal
composition of a tumor. Without an explicit error model, standardized expression values appear
to be more powerful and informative than the SNV values at a lower computational cost, due to
being a by-product of standard expression analysis. Our results suggest that scRNA-seq can be a
competitive alternative or useful addition to conventional scDNA-seq phylogenetic reconstruction.
Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further
research is required to refine and improve these approaches to capture the full picture of somatic
evolutionary dynamics in cancer.

Introduction

Phylogenetic analysis is an approach that relies on reconstructing evolutionary relationships be-
tween organisms to determine population genetics parameters such as population growth (Kingman
1982; Heled et al. 2008), structure (Müller et al. 2017a) or geographical distribution (Lemey et al.
2009; Lemey et al. 2010). Typically, the reconstructed phylogeny is not the end-goal. Using pre-
viously estimated trees, various evolutionary hypotheses can be explored, such as the evolutionary
relationship of traits carried by individual taxa (Grafen et al. 1989; Pagel et al. 2004; Freckleton
2012).

Within-organism cancer evolution is increasingly being studied using population genetics ap-
proaches, including phylogenetics (Navin et al. 2011; Yuan et al. 2015; Alves et al. 2017; Schwartz
et al. 2017; Caravagna et al. 2018; Singer et al. 2018; Alves et al. 2019; Caravagna et al. 2019;
Detering et al. 2019; Malikic et al. 2019; Werner et al. 2019; Kuipers et al. 2020), to understand
evolutionary dynamics of cancer cell populatons. These approaches have shown promise to be de-
veloped into therapeutic applications in the personalized medicine framework (Gerlinger et al. 2012;
Abbosh et al. 2017; Rao et al. 2020b). Specifically, the clonal composition of tumors, metastasis
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initiation, development, and timing can be reconstructed using phylogenetic methods (Yuan et al.
2015; Angelova et al. 2018; El-Kebir et al. 2018; Alves et al. 2019). Unlike other evolutionary
processes prone to events such as hybridization or horizontal gene transfer, population dynamics of
somatic cells is underpinned by a strictly bifurcating clonal process driven by cell division. This is
in perfect agreement with theoretical assumptions routinely applied in stochastic phylogenetic mod-
els such as coalescent (Kingman 1982; Hudson et al. 1990; Posada 2020) or birth-death processes
(Aldous 1996; Aldous 2001; Komarova 2006).

From the methodological perspective, however, cancer is an evolutionary process with unique
characteristics which are not modeled in conventional phylogenetic approaches. These include a high
level of genomic instability with structural changes (gene losses and duplications) which accumulate
along with point mutations during the course of growth and evolution (Beerenwinkel et al. 2015;
Posada 2015).

Traditional Whole Genome Sequencing (WGS) methods have been instrumental in understanding
cancer mutational profiles and oncogene detection (Mardis et al. 2009; Nakagawa et al. 2018). DNA
from a tissue sample is isolated and sequenced “in bulk”. This increases the total amount of DNA
which improves coverage and reduces amplification errors. To establish the presence or absence of
mutations, a variant allele frequency (VAF) is calculated and compared to a threshold, typically
10 − 20% (Strom 2016). This filters out rare mutations present only in a few reads that are likely
to be false positives or sequencing errors (Petrackova et al. 2019). More recently, bulk sequencing is
used to study cancer evolution using phylogenetic methods, either by comparing VAF (Zhai et al.
2017; Zhao et al. 2016; Ling et al. 2015) or estimating copy number variants (CNV) (Desper et al.
1999; Demeulemeester et al. 2016; Tarabichi et al. 2021). However, the usage of bulk sequencing in
this context is problematic. Bulk samples contain cells from multiple cell lineages including non-
tumor cells, such as immune or blood vessel cells (Racle et al. 2017), and strong evidence also points
out a constant migration of metastatic cells between tumors (Aguirre-Ghiso 2010; Cheung et al.
2016; Reiter et al. 2017; Casasent et al. 2018). High VAF thresholds ignore tumor heterogenity,
but by lowering the threshold, mutations in non-tumor cells or clonal lineages are retained instead.
Sequences or mutational profiles derived from bulk samples thus have a chimeric origin (Alves et al.
2017).

A typical assumption in classical phylogenetics is that the sequences or mutational profiles repre-
sent individual taxonomic units, either individuals or populations of closely related individuals. If
these methods are used on the data from bulk samples, the reconstructed trees are not phylogenies
describing an evolutionary history, but evolutionary meaningless sample similarity trees (Alves et
al. 2017). To address this issue, phylogenetic trees are reconstructed by estimating the sequential
order of somatic mutations using VAF from one or multiple tumor samples (Deshwar et al. 2015;
El-Kebir et al. 2018; Miura et al. 2018). Given the tumor heterogenity and insufficient read depth
to reliably estimate VAF, this is not a simple problem and the performance of current methods is
limited (Miura et al. 2020).

Single-cell DNA sequencing (scDNA-seq) does not suffer from the chimeric DNA origin of bulk-
sequencing as each DNA segment is barcoded to guarantee its known cell of origin. Recent progress
in WGS technology made sequencing individual cells cost-efficient (Gawad et al. 2016) and this
approach is now regularly used for the phylogenetic reconstruction of metastatic cancer or the
subclonal structure of a single tumor (Potter et al. 2013; Roth et al. 2016; Leung et al. 2017; Myers
et al. 2019). However, this increased resolution comes with additional complications. Current
methods are not sensitive enough to sequence DNA from a single cell and DNA amplification is
required (Gawad et al. 2016). This process suffers from a random bias with different parts of the
genome amplified in different quantities or not at all (Satas et al. 2018). In addition, polymerase
does not replicate DNA without error, this can have a significant impact if the replication errors
occur early in the amplification process (Gawad et al. 2016). This does not only increase the error
rate for identified SNVs, but a large proportion of SNVs might be simply missing (Hicks et al. 2018).
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The advantages associated with scDNA-seq led to the development of novel approaches that tackle
these challenges using an error model to correct for amplification errors and false-positive SNV calls
(Zafar et al. 2016; Zafar et al. 2018; Luquette et al. 2019; Kozlov et al. 2020).

Similar technological development led to proliferation of single-cell RNA sequencing (scRNA-seq)
which, compared to traditional bulk RNA sequencing, enabled detection of gene expression profiles
for individual cells in the tissue sample (Müller et al. 2017b; Olsen et al. 2018; Jerby-Arnon et al.
2018; González-Silva et al. 2020). This allows to understand tumor heterogenity by identifying
different cell populations (Andrews et al. 2018), estimating immune cell content within a tumor (Yu
et al. 2019), or even identify individual clones and subclones, as they can differ in their behavior
(Fan et al. 2020). However, as the levels of RNA expression vary between genes and cells, the
amplification problems of scDNA-seq that cause unequal expression and drop-out effect are more
pronounced in scRNA-seq. There is an increased interest for SNV calling on scRNA-seq data using
bulk-SNV callers (Chen et al. 2016; Poirion et al. 2018; Liu et al. 2019; Schnepp et al. 2019) and
specialized CNV callers (Kuipers et al. 2020; Harmanci et al. 2020b; Harmanci et al. 2020a; Gao
et al. 2021) as this allows for identification of mutations in actively expressed genes.

In this work, we test if expression values and SNVs inferred from scRNA-seq contain phylogenetic
information to reconstruct a population history of cancer. We perform an experiment to guarantee a
known population history, and then try to reconstruct this history using computational phylogenetics
from both expression values and identified SNVs derived from the same scRNA-seq data set. We
then compare phylogenies obtained from these methods against the known population history to
evaluate the strength of the phylogenetic signal contained in the scRNA-seq data set.

Methods

Experimental design. To a guarantee known population history, immunosuppressed mice were
injected with human breasts cancer cells. The tumors that develop are derived from the same
population and thus share a common ancestor, but evolved independently in each mouse. As
each tumor was seeded by a population of cancer cells, a number of small sample-specific clades
representing subclonal diversity of the population sample should be observed. To test for the
presence of these sample-specific clades, as well as the strength of phylogenetic relationship between
cells from each tumor, we employ phylogenetic clustering tests. If the phylogenetic tests confirm
sample-specific clustering of cells, then the scRNA-seq data contains sufficient phylogenetic signal.

Sample preparation and scRNA sequencing. MDA-MB-231-LM2 (GFP+) (Minn et al. 2005)
cells were injected into the R4 mammary fat pad of Nu/J mice (250, 000 cells per mouse, 3 mice), and
tumor growth was monitored for 8 weeks. Mice were euthanized when tumor size approached the
endpoint (2 cm). Tumors were resected and dissociated into single cells. To extract circulating tumor
cells (CTC), up to 1ml of blood was drawn immediately post euthanasia using cardiac puncture.
Red blood cells were removed using RBC lysis buffer. All cells (tumor derived and circulating tumor
cells) were stained with DAPI and sorted for DAPI and GFP using a BD FACSAria cell sorter.
Libraries were generated using the 10x Chromium single cell gene expression system immediately
after cell sorting, and sequenced on an Illumina NextSeq platform together to eliminate batch effect.

Mapping and expression analysis. Reads were mapped with the Cellranger v5.0 software to the
GRCh38 v15 from the Genome Reference Consortium using the analysis-ready assembly without
alternative locus scaffolds (no_alt_analysis_set) and associated GTF annotation file.

The Cellranger software performs mapping, demultiplexing, cell detection, and gene quantification
for the 10x Genomics scRNA-seq data.

Postprocessing expression data.
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Standardizing expression values. The filtered feature-barcode expression values from Cellranger were
processed using the R Seurat v3.2.0 package (Stuart et al. 2019) and according to the Seurat’s
standard pre-processing workflow. However, low-quality cells, such as cells with small number
of unique reads or small number of represented genes, were not removed at this stage and no
normalization was performed. The expression values for each gene were centered (µ = 0) and
rescaled (σ2 = 1).

Discretizing expression values. The rescaled expression values were then categorized into a 5 level
ordinal scale ranging from 1 (low level of expression) to 5 (high level of expression). The five-level
scale was chosen to capture the data distribution of the rescaled expression values and represent a
compromise between introducing data noise with too many levels or artificial similarity with only a
few categories.

Interval ranges, according to which the values were categorized, were chosen according to the
60% and 90% High Density Intervals (HDI), the shortest intervals containing 60% or 90% of values
respectively. The values inside the 60% HDI were categorized as normal, values inside the 90%
HDI, but outside the 60% as increased/decreased expression and values outside the 90% HDI as a
extremely increased/decreased expression.

Genes that contain only a single categorized value for each cell were removed as phylogenetically
irrelevant and the discretized values were then transformed into a fasta format.

SNV.

Pre-processing reads for SNV detection. The BAM file from Cellranger was processed using the
Broad Institute’s Genome Analysis ToolKit (GATK) v4.1.7.0 (Poplin et al. 2018) according to
GATK best practices of somatic short variant discovery.

SNV detection and filtering. To obtain SNVs for individual cells of the scRNA-seq data, first a list
of SNVs were obtained by running the Mutect2 (Benjamin et al. 2019), treating the data set as a
pseudo-bulk sample, and retaining only the SNVs that passed all filters.

SNVs for individual cells were then obtained by individually summarizing reads belonging to each
single cell at the positions of the SNVs obtained beforehand using the pysam library, which is built
on htslib (Li et al. 2009). The most common base for every cell and every position was retained,
base heterogeneity or CNVs was ignored. This SNV table was then transformed into a fasta format.

Phylogenetic analysis. To reconstruct phylogenetic trees from the categorized expression values
and identified SNVs, we used the IQ-TREE v2.0.3 (Minh et al. 2020) and BEAST2 v2.6.3 (Bouckaert
et al. 2019).

For the expression data, IQ-TREE was used with an ordinal model and an ascertainment bias cor-
rection ( -m ORDINAL+ASC ). For the SNV values, we used a generalized time reversible model (GTR)
(Tavaré 1986) as the most complex substitution model present in both IQ-TREE and BEAST2.
Tree support was evaluated using the standard non-parametric bootstrap (Felsenstein 1985) with
100 replicates ( -b 100 ).

The BEAST2 analysis was performed with a birth-death tree prior (Kingman 1982) and an
exponential population growth (Kuhner et al. 1998) as these models most closely mimic the biological
conditions of tumor growth. The substitution model of choice for the categorized expression values
was the ordinal model available in the Morph-Models package and the GTR model for the SNVs as
described above.

Phylogenetic clustering tests. To test if the phylogenetic methods were able to recover expected
population history history, we employ Mean Pairwise Distance (MPD) (Webb 2000) and Mean
Nearest Taxon Distance (MNTD) (Webb 2000) to investigate the relationship between cells from
each sample. MPD is calculated as a mean distance between each pair of taxa from the same
group, while MNTD is calculated as a mean distance to the nearest taxon from the same group.
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For each sample and samples isolated from a single individual, MPD and MNTD are calculated
and compared to a null distribution obtained by permuting sample labels on a tree and calculating
MPD and MNTD for these permutations. The p-value is then calculated as a rank of the observed
MPD/MNTD in the null distribution normalized by the number of permutations. The MPD and
MNTD are calculated using the ses.mpd and ses.mntd functions implemented in the package
picante (Kembel et al. 2010) For the Bayesian phylogenies, MPD and MNTD were calculated for
a sample of 1000 trees from the posterior distribution and then summarized with mean and 95%
confidence interval.

Code and data availability. Code required to replicate the data processing steps is available at
https://github.com/bioDS/phyloRNAanalysis.

To aid in creating pipelines for phylogenetic analysis of scRNA-seq data, we have integrated a
number of common tools in the R phyloRNA package, which is available at https://github.com/
bioDS/phyloRNA.

All data will become available in the NCBI GEO under the accession number GSE163210 upon
acceptance of this paper by a peer-reviewed journal.

Results

Phylogenetic expectation derived from experimental design. To test if scRNA-seq contains
sufficient phylogenetic information to reconstruct a population history of cancer, immunosuppressed
mice were injected into the mammary fat pad with human breast cancer cells. The tumors that
develop are derived from the same population and thus share a common ancestor, but evolved
independently in each mouse and should form separate clades on reconstructed phylogenetic trees
when analysed together. As each tumor was seeded by a population of cancer cells, number of
smaller sample-specific clades representing subclonal diversity of the population sample should be
observed. We would thus expect clustering of each tumor and CTC sample as well as clustering of
tumor and CTC samples isolated from single individual. Due to the lack of a specialized scRNA-seq
caller or error model to account for the uncertainty in the data, some intermixing is possible, but
heavy intermixing would demonstrate an insufficiency of scRNA-seq for phylogenetic analyses.

Sample overview. In total, five samples were used in this analysis, three tumor samples (T1, T2,
T3) and two CTC samples (CTC1, CTC2). The number of cells isolated from the CTC3 sample
was too small for scRNA sequencing and the sample was removed from the study. The number
of detected cells in the tumor samples was generally smaller than in the CTC samples, but the
reverse was true for the total number of detected unique molecular identifiers (UMIs) – the number
of unique mRNA transcripts (see Table 1). In the T2 sample, a large number of cells but a small
number of UMIs were detected in a similar pattern to the CTC samples.

Compared to the fluorescent-activated cell sorting (FACS), Cellranger detected fewer cells for
tumor samples, but more cells for the CTC samples. Cellranger classifies barcodes as cells based on
the amount of UMI detected to distinguish real cells from a background noise (Lun et al. 2019). The
large number of detected cells in the CTC samples is likely a result of lysed cells or cell-free RNA
(Fleming et al. 2019). In all cases, the number of detected genes across data sets was relatively low,
with the best sample T3 amounting to about 3% of expressed genes when summarized across all
cells.

Recording unexpressed genes as unknown data. The amount of coverage in a standard bulk
RNA-seq expression analysis is usually sufficient to conclude that genes for which no molecule
was detected are not expressed (Lähnemann et al. 2020). In scRNA-seq however, the sequencing
coverage is very small, drop out effect is likely, and thus this assumption does not hold. This is
especially a problem for non-UMI based technologies (Cao et al. 2021), but not entirely absent from
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Table 1. An overview of data set used in this work. In total, five samples were
isolated from three individuals (Table 1a): 3 tumor samples (T1, T2, T3) and 2 circu-
lating tumor cell samples (CTC1, CTC2). For each sample, the number of cells from
fluorescent-activated cell sorting (FACS), the number of identified by Cellranger,
the number of detected genes, the number of unique molecular identifiers (UMIs),
UMI/Cell ratio, and the data density are reported (Table 1b).

1

2

3

Tumor Circulating
tumor cells

mouse 1 T1 CTC1
mouse 2 T2 CTC2
mouse 3 T3 N/A

(a) Experiment overview

Sample Cells (FACS) Cells (Cellranger) Genes UMI UMI/Cell data density

T1 11,258 701 17k 3,428k 4518 2.97 %
T2 20,233 2,794 5k 69k 25 0.04 %
T3 13,865 806 18k 2,876k 3569 2.57 %
CTC1 605 3,125 8k 129k 41 0.06 %
CTC2 415 3,161 9k 155k 49 0.06 %
total: 46,376 10,587 6.4M 20k 604 0.44 %

(b) Sample overview

the UMI-based technologies as well due to biological and technological processes (Townes et al.
2020; Hsiao et al. 2020).

According to the standard expression pipeline, these values are commonly treated as biological
zeros, i.e., no detected expression of a particular gene, and have a significant impact on the data
distribution during the normalization and rescaling steps (Hicks et al. 2018; Townes et al. 2020).
Without an explicit model of drop out effect to account for technical or biological variation, these
values are more accurately represented as unknown values rather than true biological zeros (Van
den Berge et al. 2018). We have modified the Seurat code to treat these values as unknown values
( NA in R) and included modified functions in the phyloRNA package.

We will further use data density to describe the number of unknown values in both expression
and SNV datasets, with 100% representing dataset without unknown values. For example, the T3
sample has 1% data density after recoding zeros as unknown values.

SNV identification and data density. To identify SNVs in scRNA-seq data, we first identified a
list of SNVs by treating the single-cell reads as a pseudo-bulk sample. The total of 120,310 SNVs that
passed all quality filters were identified this way. When these SNVs were called for each individual
cell, the resulting data set had data density of less than 0.09%. The expression data is expected to
have higher data density than SNV because for expression quantification a presence or absence of
a molecule is sufficient while for SNV, knowledge of each position is required. This expectation is
confirmed in Table 1, where data density of the expression data is summarized. About 16% of the
10,587 cells represented in this data set did not contain any known SNV (data density 0%), these
were relatively equally distributed among the T2 (651), CTC1 (571) and CTC2 (475) samples. This
represents a challenge from a data analysis perspective given the large sample size and its small
data density.
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Finding the most well-represented subset of data. When treating the potentially unexpressed
genes as unknown values, only a small proportion of the expression count values was known, with
the data set derived from SNV suffering from the same problem due to the low number of reads for
each cell.

While model-based phylogenetic methods can process missing data by treating the missing data
as phylogenetically neutral, this significantly flattens the likelihood space which can cause artefacts,
convergence problems or increase computational time (Wiens 2006; Jiang et al. 2014; Xi et al. 2016).
It is however not only the proportion of the unknown values, which is about 99% for both data sets,
but also the sheer size of the data set that is problematic. With over 10, 000 cells and more than
54, 000 genes or over 120, 000 SNVs, the unfiltered data set would require substantial computational
resources.

In comparison, for the published phylogenetic tools designed for single-cell DNA, data sets ranged
from 47 cells and 40 SNVs (Jahn et al. 2016) to 370 cells and 50 SNVs (Singer et al. 2018) or in
an extreme case 18 cells and 50, 000 SNVs (Singer et al. 2018) with at most 58% of missing data
across these data sets.

To help alleviate these issues, we have employed a stepwise filtering algorithm to find the densest
subset of a data set. By iteratively cutting out cells and genes/SNVs with the smallest number of
known values, we increase the data density until a local maximum or desired density is reached.
This is equivalent to the gene/cell quality filtering during the scRNA-seq post-processing pipeline,
such as the Seurat’s standard pre-processing workflow described in the methodology section. The
advantage of this method is that a desired density can be reached with the least amount of data
removed.

To test the effect of unknown data, the categorized expression values were filtered using the above
method to get categorized expression data sets containing 20%, 50%, and 90% of known values.

Filtering scRNA-seq expression and SNV data sets. The expression data set filtered to
20% density contained 1,627 cells and 16,187 genes. Cells were mainly represented by T1 and T3
samples which form over 92% of the data set. In contrast, other samples (T2, CTC1, CTC2) were
significantly underrepresented despite their larger amount of cells in an unfiltered data set. In
filtering to 50% density, the numbers decreased to 1,454 cells and 1,634 genes. The sample diversity
also decreased, with T2 dropping out entirely. When filtered to 90% density, the data set was
reduced to 593 cells and 528 genes. The data diversity further decreased to T1, T3 and CTC2,
although the CTC2 sample was reduced to 2 cells.

When the SNV data set was filtered to 20% density, the numbers decreased significantly – to
1,498 cells and 1,297 SNVs. The sample composition was similar to the expression data set, with
the vast majority of retained cells belonging to the T1 and T3 samples. However, the T2 sample
was already missing. In subsequent filtering to both 50% and 90% data density, the CTC1 sample
has vanished.

Despite the difference in starting dimension between expression and SNV data sets, the dimension
of data set filtered to the same data density is similar, with the expression data having higher density
than SNVs. This suggests that in both cases, known values are concentrated at the same cell subsets
and the filtering algorithm can successfully localize them.

Maximum likelihood phylogeny from expression data. We inferred Maximum likelihood
trees of the expression data filtered to 20%, 50%, and 90% data density (Supplementary Figure 1).
In the reconstructed phylogeny at the 20% density filtering (Figure 1), individual tumor samples did
not form three separate clades, but a large number of smaller clades. These clades are distributed
along the central spine of the unrooted maximum likelihood tree and have little internal structure.
The T2, CTC1, and CTC2 samples form relatively compact clades, while the more represented T1
and T3 clades are generally intermixed. The MNT and MNTD test confirm this (Table 2), with
T2, CTC1, and CTC2 showing significant clustering signal.
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T1
T2
T3
CTC1
CTC2

Figure 1. Maximum likelihood tree from the expression data for 20% data density.
Terminal branches are colored according to cell’s sample of origin (T1, T2, T3,
CTC1, CTC2). For additional clarity, less represented samples are marked with
colored circles.

Table 2. Test of phylogenetic clustering on the Maximum Likelihood tree from the
expression data. Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance
(MNTD) calculated on the Maximum Likelihood trees from the expression data for
20%, 50%, and 90% data density. P-values for MPD and MNTD were calculated for
each sample (T1, T2, T3, CTC1, CTC2) and expected clustering for cells isolated
from a single individual (T1 with CTC1, and T2 with CTC2). Significant p-values
at α = 0.05 after correcting for multiple comparisons using the False Discovery Rate
method (Benjamini et al. 1995) are marked with an asterisk.

20% data density 50% data density 90% data density

Groups Cells MPD MNTD Cells MPD MNTD Cells MPD MNTD

T1 701 1.000 1.000 688 1.000 1.000 329 0.985 0.132
T2 11 ∗0.001 ∗0.001 0 – – 0 – –
T3 806 0.176 1.000 758 ∗0.001 ∗0.001 262 ∗0.001 ∗0.002
CTC1 58 ∗0.001 ∗0.001 3 0.174 0.134 0 – –
CTC2 51 ∗0.001 ∗0.001 5 1.000 1.000 2 0.999 0.998
T1 & CTC1 759 0.986 0.999 691 1.000 1.000 329 0.985 0.132
T2 & CTC2 62 ∗0.001 ∗0.001 5 1.000 1.000 2 0.999 0.998

∗ significant support
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Table 3. Mean and standard deviation for the non-parametric bootstrap support
values for the Maximum likelihood trees from the expression and SNVs data for 20%,
50%, and 90% data density.

Data density

20% 50% 90%

Expression 15 ± 24 4 ± 8 6 ± 10
SNV 0 ± 3 1 ± 2 4 ± 8

When the data is filtered to 50% and 90% data density (Supplementary Figure 3), the intermixing
between T1 and T3 is reduced, with many clades showing a sample-specific pattern in their internal
structure, and statistically significant MPD and MNTD tests support this for T3, but not T1 sample.
As data are filtered, CTC1 still forms a compact cluster, but the CTC2 cluster disappears as the
cells are being removed. The phylogenetic position of the remaining CTC2 cells is however stable
as sister cells to the T2 sample. In contrast to dataset with 20% data density, the clustering tests
for the T2, CTC1 and CTC2 are no longer significant. A possible explanation for this might be a
small number of cells remaining for these samples when the dataset is further filtered.

Bootstrap branch support scores are estimates of topology uncertainty for each branch of a tree,
with 0 signifying no support while 100 high support. Given a large number of branches in our trees,
displaying them directly on a tree is challenging. For this reason, we show a mean and a standard
deviation of bootstrap scores for each reconstructed Maximum likelihood tree (Table 3).

Overall, the tree support was very weak, with only 6% being statistically supported (bootstrap>
70). These were usually branches close to the tips of the tree.

Maximum likelihood phylogeny from the identified SNVs. Similarly to the phylogeny re-
constructed from the expression data, the tree reconstructed from the SNV data (Figure 2) consisted
of a large number of clades. In contrast to the expression phylogeny, the clades in the SNV trees
showed significantly more internal structure.

While T1 and T3 samples were still intermixed, sample-specific clades are present and this clus-
tering tendency was confirmed by phylogenetic clustering tests (Table 4). The clustering pattern
for T1 is different from the clustering pattern of T3 as only MNTD was significant for T1, and only
MPD was significant for T3. The CTC1 cells formed a compact clade but placed on a very long
branch, suggesting a long independent evolution of the CTC1 cells. CTC2 samples did not form a
clade but were placed as sister cells to the T1 sample. The general structure of the phylogeny did not
change when the data was further filtered to 50% and 90% data density (Supplementary Figure 2),
except for the clustering pattern of T1, which was no longer significant.

The topology of the SNV tree had very low bootstrap support. In fact, 85% of branches were not
found in any of the 100 bootstrap trees and thus had a zero bootstrap score. Despite this, when
explored with the MTD and MNTD, the bootstrap trees show a similar pattern of phylogenetic
clustering as the Maximum likelihood tree (Supplementary Table 1). Low bootstrap support in
both expression and SNV Maximum likelihood analyses can be explained by a combination of weak
phylogenetic signal and amplification errors, that is, bootstrap replicates simply oversample noise
and undersample signal. This shows the importance of phylogenetic analyses beyond point estimates
(when only one tree is reported). Indeed, as we have seen the Maximum likelihood approach
accompanied by the clustering analysis form a powerful tool that identifies major evolutionary
trends, despite the maximum likelihood tree being very uncertain.

Alternative filtering approach. The filtering used above was designed to remove the least
amount of data possible. While this is generally a positive behavior, it might be problematic if
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T1
T3
CTC1
CTC2

Figure 2. Maximum likelihood tree from the SNV data for 20% data density. Ter-
minal branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1,
CTC2). Long branch with CTC1 cells is shortened and drawn as a dashed line. Less
represented samples are marked with colored circles.

Table 4. Test of phylogenetic clustering on the Maximum Likelihood tree from
the SNV data. Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance
(MNTD) calculated on the Maximum Likelihood trees from the SNV data for 20%,
50%, and 90% data density. P-values for MPD and MNTD were calculated for each
sample (T1, T2, T3, CTC1, CTC2) and expected clustering for cells isolated from
a single individual (T1 with CTC1, and T2 with CTC2). Significant p-values at
α = 0.05 after correcting for multiple comparisons using the False Discovery Rate
method (Benjamini et al. 1995) are marked with an asterisk.

20% data density 50% data density 90% data density

Groups Cells MPD MNTD Cells MPD MNTD Cells MPD MNTD

T1 693 0.082 0.198 343 0.589 0.917 40 0.467 0.092
T2 0 – – 0 – – 0 – –
T3 795 ∗0.004 0.725 490 0.382 0.287 150 0.515 0.963
CTC1 4 ∗0.001 ∗0.001 0 – – 0 – –
CTC2 6 0.896 0.904 4 0.796 0.920 1 – –
T1 & CTC1 697 0.992 0.160 343 0.589 0.917 40 0.467 0.092
T2 & CTC2 6 0.896 0.904 4 0.796 0.920 1 – –

∗ significant support

the amount of missing data varies between individual samples as we are dependent on the presence
of all samples for the assessment of the performance of the phylogenetic reconstruction.

To ameliorate this, we employ an alternative filtering strategy and select cells with the least
amount of missing data as the best representation of each data set. In this reduced data set, genes
that were not present in any of the cells or present only in a single cell, are removed. The data set
is then filtered to a desired data density using the method described above, but to retain the same
sample size, only genes were removed this way. Given the smaller size, the full data set, and data
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sets filtered to 50% and 90% of data density were then analyzed using Maximum Likelihood and
Bayesian method to further explore the topological uncertainty.

A total of 58 cells were retained: 20 cells for T1 and T3 samples and six cells for T2, CTC1, and
CTC2 samples.

The full expression data set contained 30% of known data distributed across 7,520 genes. This
was further reduced to 3,261 and 219 genes when filtered to 50% and 90% data density.

The full SNV data set contained 12% of known data distributed across 3,980 SNVs. When further
filtered, this decreased to 433 SNVs at 50% data density and to 29 SNVs at 90% data density.

Phylogenetic reconstruction from expression data. The Maximum likelihood tree reconstructed from
the reduced expression data set showed significant clustering of all samples (Figure 3). This is
confirmed by the phylogenetic clustering tests where all but CTC2 cells had a significant MPD
p-value (Table 5).

Four out of six CTC2 cells clustered together, but on the opposite side of the tree with phylo-
genetic proximity to the T1 cells. This close phylogenetic relationship suggests that T1 and CTC1
were isolated from a single individual. This pattern is further reinforced as T2 cells clustered in
a single compact clade with phylogenetic proximity to the CTC1 sample. A similar pattern has
been observed already in the density filtering method used above, although this was complicated
as a majority of cells that did not belong to T1 or T3 samples were filtered out due to their low
data density. Given the strong signal in the data, the simplest explanation is that samples were
mislabeled and T2 and CTC1 come from the same individual (although this explanation cannot be
ruled out, we were unable to isolate an event in the experiment when the mislabeling could have
happen). When this relationship was tested with phylogenetic clustering methods, both MPD and
MNTD confirmed the strong clustering signal between T2 and CTC1. The same tests were not
significant for the T1-CTC2 grouping likely due to the presence of two non-clustering CTC2 cells.
This phylogenetic structure remains stable for subsequent filtering to 50% and 90% data density
(Supplementary Figure 3).

The phylogenies reconstructed from the same data using the Bayesian inference show a similar
pattern of clustering (Figure 4, Table 6), although neither CTC1 nor CTC2 formed a compact
cluster. According to the MNTD, only a single relationship is significant, compared to four for
the MPD. However, the MNTD’s 95% credible intervals are wider compared to the MPD’s. For
example, the MNTD’s credible interval for the T1 clustering covers almost the whole range of
possible p-values (0.001 − −0.931). This is likely caused by the higher sensitivity of MNTD to a
clustering pattern closer to the tips of the tree and their unstable position in the posterior tree
sample. With posterior clade support for major bifurcations being weak, only the phylogenetic
relationship between T2 and CTC1 was well supported across expression trees build from different
data density (Supplementary Table 2a).

Phylogenetic reconstruction from the SNV data. The Maximum likelihood tree reconstructed from
the reduced SNV data set (Figure 5) displayed many similar patterns to the previously analyzed
SNV tree (Figure 2). As T2 cells were not filtered, they are now placed together with the CTC1
cells on a long branch suggesting a long shared evolutionary history. Alternatively, this could
be a methodological artifact called Long Branch Attraction (Felsenstein 1978; Huelsenbeck 1997),
where unrelated taxa with a large amount of accumulated changes are grouped into a single clade,
although given the evidence from the expression data, this is unlikely. The phylogenetic clustering
tests confirm the grouping of all samples except the CTC1 sample, which is dispersed around the
tree. Clustering of samples from a single individual could not be confirmed. Instead, the alternative
hypothesis about possible mislabeling between CTC1 and CTC2 samples is supported, with a strong
signal for clustering of T1 with CTC2, and T2 with CTC1.

A similar, but substantially weaker pattern of sample clustering can be observed on the Bayesian
phylogeny reconstructed from the same data (Figure 6). T2 and CTC1 do not form a well-supported
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T1
T2
T3
CTC1
CTC2

Figure 3. Maximum likelihood tree from the expression data for 20% data density.
Terminal branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1,
CTC2). Less represented samples are marked with colored circles.

Table 5. Test of phylogenetic clustering on the Maximum Likelihood tree from the
reduced expression data. Mean Pairwise Distance (MPD) and Mean Nearest Taxon
Distance (MNTD) calculated on the Maximum Likelihood trees from the reduced
expression data for 20%, 50%, and 90% data density. P-values for MPD and MNTD
were calculated for each sample (T1, T2, T3, CTC1, CTC2) and expected clustering
for cells isolated from a single individual (T1 with CTC1, and T2 with CTC2).
Significant p-values at α = 0.05 after correcting for multiple comparisons using the
False Discovery Rate method (Benjamini et al. 1995) are marked with an asterisk.

full dataset 50% data density 90% data density

Groups Cells MPD MNTD MPD MNTD MPD MNTD

T1 20 ∗0.001 0.727 ∗0.001 0.855 ∗0.001 ∗0.001
T2 6 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001
T3 20 ∗0.001 0.442 ∗0.001 0.624 ∗0.001 0.610
CTC1 6 ∗0.001 ∗0.009 ∗0.001 ∗0.001 0.150 0.112
CTC2 6 1.000 0.989 1.000 0.998 0.999 0.978
T1 & CTC1 26 0.038 0.367 0.100 0.364 0.075 ∗0.001
T2 & CTC2 12 0.997 0.034 0.980 ∗0.021 0.995 0.513
T1 & CTC2 26 0.614 1.000 0.277 1.000 ∗0.007 0.896
T2 & CTC1 12 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.015 ∗0.004

∗ significant support

clusters (Table 8), but there is a strong support for a combined T2-CTC1 cluster. Additionally,
while many clustering patterns are still supported by the MPD, they are not confirmed by MNTD.
However the 95% intervals are large and contain a number of trees that do support respective
clustering. This is likely a case of the higher sensitivity of MNTD to one or two taxa that break
the pattern, especially when the number of taxa is low.

Biological zero or unknown value. To test the assumption if the zero expression values should
be treated as an unknown data rather than biological zeros, i.e., no expression of a particular
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Figure 4. Bayesian tree from the expression data for 20% data density. Terminal
branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1, CTC2).
Bayesian posterior values show the topology uncertainty.

Table 6. Test of phylogenetic clustering on the Bayesian tree from the reduced
expression data. Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance
(MNTD) calculated on the Bayesian tree reconstructed from the reduced expression
data for 20% data density. P-values for MPD and MNTD were calculated for each
sample (T1, T2, T3, CTC1, CTC2), expected clustering for cells isolated from a
single individual (T1 with CTC1, and T2 with CTC2) and to test a possible mis-
labeling between CTC1 and CTC2 samples (T1 with CTC2, and T2 with CTC1).
P-values were calculated for the sample of 1,000 trees and this distribution of p-
values is summarized with mean and 95% confidence interval. Significant p-values
at α = 0.05 after correcting for multiple comparisons using the False Discovery Rate
method (Benjamini et al. 1995) are marked with an asterisk.

mean (95% HPD)

Groups Cells MPD MNTD

T1 20 ∗0.002 (0.001–0.004) 0.210 (0.001–0.931)
T2 6 ∗0.001 (0.001–0.001) ∗0.003 (0.001–0.008)
T3 20 ∗0.001 (0.001–0.002) 0.155 (0.010–0.328)
CTC1 6 0.188 (0.106–0.362) 0.361 (0.225–0.464)
CTC2 6 0.908 (0.854–0.998) 0.799 (0.560–1.000)
T1 & CTC1 26 0.451 (0.339–0.584) 0.381 (0.028–0.803)
T2 & CTC2 12 0.803 (0.677–0.893) 0.488 (0.259–0.759)
T1 & CTC2 26 ∗0.012 (0.003–0.028) 0.811 (0.461–1.000)
T2 & CTC1 12 0.033 (0.009–0.110) 0.153 (0.017–0.339)

∗ significant support
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T1
T2
T3
CTC1
CTC2

Figure 5. Maximum likelihood tree from the SNV data for 20% data density. Ter-
minal branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1,
CTC2). Long branch with T2 and CTC1 cells is shortened and drawn as a dashed
line. Less represented samples are marked with colored circles.

Table 7. Test of phylogenetic clustering on the Maximum Likelihood tree from
the SNV data. Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance
(MNTD) calculated on the Maximum Likelihood trees from the reduced SNV data
for 20%, 50% and 90% data density. P-values for MPD and MNTD were calculated
for each sample (T1, T2, T3, CTC1, CTC2) and expected clustering for cells isolated
from a single individual (T1 with CTC1 and T2 with CTC2). Significant p-values
at α = 0.05 after correcting for multiple comparisons using the False Discovery Rate
method (Benjamini et al. 1995) are marked with an asterisk.

full dataset 50% data density 90% data density

Groups Cells MPD MNTD MPD MNTD MPD MNTD

T1 20 ∗0.001 0.773 ∗0.007 0.966 ∗0.001 0.279
T2 6 ∗0.002 ∗0.001 ∗0.001 ∗0.001 0.217 ∗0.003
T3 20 ∗0.001 0.888 ∗0.001 0.877 ∗0.001 0.169
CTC1 6 ∗0.001 ∗0.001 ∗0.001 ∗0.001 0.148 0.317
CTC2 6 0.216 0.582 0.236 0.572 0.231 0.471
T1 & CTC1 26 0.557 0.139 0.595 0.631 0.676 0.710
T2 & CTC2 12 1.000 0.552 0.997 0.149 1.000 0.512
T1 & CTC2 26 ∗0.002 0.990 ∗0.002 0.982 ∗0.003 0.540
T2 & CTC1 12 ∗0.001 ∗0.001 ∗0.001 ∗0.001 0.040 ∗0.001

∗ significant support

gene, we have reconstructed the phylogenies from the scRNA-seq expression by treating the zeros
in the dataset as biological zeros. Data was processed as per the standard methodology to get
the alignments, but instead of treating the zeros as an unknown position, they were treated as a
category 0 in addition to the 5 level ordinal scale. Phylogenies were then reconstructed using both
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Figure 6. Bayesian tree from the SNV data for 20% data density. Terminal
branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1, CTC2).
Bayesian posterior values show the topology uncertainty.

Table 8. Test of phylogenetic clustering on the Bayesian tree from the SNV data.
Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD) calcu-
lated for the Bayesian tree reconstructed from the reduced SNV data for 20% data
density. P-values for MPD and MNTD were calculated for each sample (T1, T2,
T3, CTC1, CTC2), expected clustering for cells isolated from a single individual (T1
with CTC1, and T2 with CTC2) and to test a possible mislabeling between CTC1
and CTC2 samples (T1 with CTC2, and T2 with CTC1). P-values were calculated
for the sample of 1000 trees and this distribution of p-values is summarized with
mean and 95% confidence interval. Significant p-values at α = 0.05 after correcting
for multiple comparisons using the False Discovery Rate method (Benjamini et al.
1995) are marked with an asterisk.

mean (95% HPD)

Groups Cells MPD MNTD

T1 20 ∗0.003 (0.001–0.006) 0.274 (0.001–0.683)
T2 6 0.060 (0.001–0.239) 0.050 (0.001–0.269)
T3 20 ∗0.002 (0.001–0.005) 0.298 (0.001–0.693)
CTC1 6 0.063 (0.001–0.236) 0.050 (0.001–0.245)
CTC2 6 0.164 (0.061–0.242) 0.309 (0.097–0.581)
T1 & CTC1 26 0.655 (0.541–0.756) 0.554 (0.108–0.992)
T2 & CTC2 12 0.996 (0.989–1.000) 0.427 (0.040–0.755)
T1 & CTC2 26 ∗0.001 (0.001–0.002) 0.250 (0.001–0.687)
T2 & CTC1 12 ∗0.011 (0.001–0.048) ∗0.011 (0.001–0.038)

∗ significant support
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Maximum Likelihood and Bayesian methods with sample clustering explored using the phylogenetic
clustering tests.

For the full dataset, the pattern of clustering calculated on the Maximum Likelihood trees re-
constructed from the real-zero data was similar, if not a stronger, than when treating the zero as
unknown data (Supplementary Table 3a). When the phylogenies were reconstructed from the re-
duced sample of 58 cells, the clustering pattern was different, with T1 and T3 no longer supported
and the clustering of CTC2 was supported instead (Supplementary Table 3b). The clustering pat-
terns changed when the dataset was further filtered, i.e., when the number of zeros was reduced.
This suggests that the clustering is driven by the similarity of non-expression rather than by the ex-
pression levels themselves. However, the clustering calculated on the phylogeny using the Bayesian
method does not support this change of pattern. While the clustering pattern is markedly different
when zeros are treated as biological zeros rather than unknown data (Supplementary Table 3c), the
clustering pattern does not change when the data are further filtered.

These results do not provide a conclusive answer on which assumption should be preferred.
Assuming all zeros to be biological zeros will bias the model as many of those might be technical
zeros instead. At the same time, the pattern of expression and non-expression seems to carry
information. This information is lost when all zeros are assumed to be technical zeros and thus
unknown data.

Application to other datasets. We have reconstructed the phylogenetic relationship of cancer
cells from the expression data of two additional scRNA-seq datasets, a UMI-based dataset of small
intestinal neuroendocrine cancer (Rao et al. 2020a) and non-UMI based dataset of gastric cancer
(Wang et al. 2021).

Intestinal neuroendocrine cancer. The small intestinal neuroendocrine cancer dataset from Rao
et al. (2020a) consisted of a primary tumor and a paired liver metastatic sample. Both samples
contained a mixture of cancerous and non-cancerous cells (Fibroblasts, Endothelial cells and Immune
cells). The expression values for both samples from Rao et al. (2020a) were processed as per the
methodology section, with zeros recoded as unknown data. To obtain the SNVs, the raw reads were
mapped using the Cellranger v5 and processed as per the methodology section. Cells were labelled
according to their sample of origin (primary tumor and metastasis) and their cell type, which was
determined by replicating the analysis from Rao et al. (2020a). Two subsets for both data types
were then derived, a subset with all cell types and a subset with only cancer cells. To reduce the
computational burden, 1000 cells with the least amount of missing data were selected, 500 from the
primary tumor and 500 from the metastatic sample. To derive subsets from the SNVs, the cells
from the expression subsets were used. However, not all cells found in the expression subsets were
found in the SNV data. This is likely due to a different version of the Cellranger software used in
this work compared to the Rao et al. (2020a). Maximum likelihood trees were then reconstructed
and the relationship between cells of the same type and sample of origin were then tested using
the phylogenetic clustering test. In both derived subsets from the expression data, metastatic cells
showed a strong clustering tendency (p= 0.001) into several large clades (Figure 7).

This suggests a strong phylogenetic relationship with several well-preserved lineages. In addition,
in the derived subset containing all cell types, the cancer cells showed a significant clustering (MPD
p = 0.016 and MNTD p = 0.001), while other cell types showed the opposite tendency (Table 5).
This is consistent with our expectation as only the cancer cells evolve through the process of clonal
evolution that is assumed by the phylogenetic model. A similar albeit significantly weaker pattern
of cancer cell clustering can be observed on the trees derived from the SNV data (Figure 7, Table 5).
In both subsets derived from the SNV data, the primary and metastatic cells clustered together,
but in the subset with all cells, cancer cells no longer formed a compact cluster.
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Cell type:

Fibroblasts
Cancer cells
Endothelial cells
Immune cells

(a) Expression: All cells

Cell origin:

Primary
Metastasis

(b) Expression: Cancer cells only
Cell type:

Fibroblasts
Cancer cells
Endothelial cells
Immune cells

(c) SNV: All cells

Cell origin:

Primary
Metastasis

(d) SNV: Cancer cells only

Figure 7. Maximum likelihood trees constructed from the expression and SNV
data published by Rao et al. (2020a). Terminal branches are colored according to
cell’s type or sample of origin. In the tree reconstructed from expression data for
all cells (Figure 7a), the vast majority of cancer cells cluster in a single clade. The
tree reconstructed from expression data for cancer cells only (Figure 7b) shows a
strong clustering of primary and metastatic cells. While the metastatic cells are
not clustered in a single clade, multiple metastatic events are biologically plausible.
In the trees reconstructed from the SNV data (Figure 7c, Figure 7d), primary and
metastatic cells, as well as cells of different type, are relatively evenly distributed
without any apparent clustering.
Table 9. Test of phylogenetic clustering on the Maximum likelihood trees from Rao
et al. (2020a). Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance
(MNTD) calculated for the phylogeny reconstructed from the dataset containing
only cancer cells and from the dataset containing all cell types. P-values for MPD
and MNTD were calculated for the sample of origin and cell types where applicable.
Significant p-values at α = 0.05 after correcting for multiple comparisons using the
False Discovery Rate method (Benjamini et al. 1995) are marked with an asterisk.

Cancer only All cell types

Data Groups Cells MPD MNTD Cells MPD MNTD

Expression Cancer cells 1000 – – 670 ∗0.016 ∗0.001
Fibroblasts 0 – – 216 0.470 0.976
Endothelial cells 0 – – 72 0.824 0.922
Immune Cells 0 – – 0 – –
Metastasis 500 ∗0.001 ∗0.001 500 ∗0.001 ∗0.001
Primary 500 1.000 1.000 500 1.000 1.000

SNV Cancer cells 984 0.500 0.500 661 0.493 0.593
Fibroblasts 0 – – 192 0.340 0.116
Endothelial cells 0 – – 57 0.724 0.728
Immune Cells 0 – – 0 – –
Metastasis 500 1.000 ∗0.001 500 1.000 ∗0.001
Primary 484 ∗0.001 0.997 449 ∗0.001 0.855

∗ significant support

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.01.07.425804doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425804
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 J.MORAVEC, R. LANFEAR, D. SPECTOR, S. DIERMEIER, AND A. GAVRYUSHKIN

Tumour
Metastasis

(a) GC2 – ML Expression

Tumour
Metastasis

(b) GC2 – ML SNV

Figure 8. Maximum likelihood trees for the patient G2 constructed from the ex-
pression and SNV data published by Wang et al. (2021). Terminal branches are
colored according to cell’s sample of origin. Only the patient G2 shows a significant
clustering signal both on the trees from Expression and SNV data. For all trees, see
Supplementary Figure 12 and Supplementary Figure 13

Figure 9. Test of phylogenetic clustering on the Maximum likelihood and Bayesian
trees calculated from expression and SNV data published by Wang et al. (2021).
Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD) calcu-
lated for the Maximum likelihood and Bayesian trees reconstructed from the expres-
sion and the SNV data for patients GC1, GC2 and GC2. P-values for MPD and
MNTD were calculated for the sample of origin. Significant p-values at α = 0.05
after correcting for multiple comparisons using the False Discovery Rate method
(Benjamini et al. 1995) are marked with an asterisk.

GC1 GC2 GC3

Data Type Groups Cells MPD MNTD Cells MPD MNTD Cells MPD MNTD

Expression ML Primary tumor 19 0.186 0.111 27 ∗0.001 ∗0.001 19 0.805 0.824
Lymph node 4 0.809 0.888 13 0.998 1.000 12 0.167 0.105

BI Primary tumor 19 0.915 0.966 27 0.999 0.961 19 0.230 0.385
Lymph node 4 0.034 0.025 13 ∗0.001 ∗0.003 12 0.303 0.299

SNV ML Primary tumor 19 ∗0.005 0.465 27 ∗0.001 ∗0.001 19 0.995 0.415
Lymp node 4 0.078 0.085 13 1.000 0.989 12 0.023 0.134

BI Primary tumor 19 ∗0.004 0.177 27 ∗0.001 ∗0.001 19 0.847 0.384
Lymp node 4 0.189 0.086 13 0.994 0.792 12 0.129 0.455

∗ significant support

Gastric cancer. The gastric cancer dataset from Wang et al. (2021) consisted of 94 cells from a
primary tumor and a lymph node of three patients (GC1, GC2 and GC3). We would expect that
for each patient, the lymph node cells would from a monophyletic lineage derived from the primary
tumour cell, but due to the small number of cells, clustering of the primary tumour cells is also
interpreted as a success.

The expression values were split into patient-specific datasets and analysed separately as per
the methodology section and the discretized expression values were analysed using the Maximum
Likelihood and the Bayesian phylogenetic methods. To obtain the SNV values, the raw reads were
mapped using the STAR v2.7.9a (Dobin et al. 2013) and mapped reads were then processed as per
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the methodology section. The clustering of primary and lymph node cells was then explored using
the phylogenetic clustering test. For the expression data, only a single patient showed significant
clustering of lymph nodes (Figure 9).

In the datasets derived from the SNV data, the phylogenetic signal was stronger and in the pri-
mary tumours cells clustered in two patients (Figure 9). Poor separation of primary and lymh node
cells from the expression levels was pointed out in the original study (Wang et al. 2021). Addi-
tionally, non-UMI based methods suffer from an increased error rate through zero-count inflation
(Cao et al. 2021) and amplification variability (Townes et al. 2020). In the absence of a strong
phylogenetic signal shared by a large percentage of genes, this additional noise is making a phylo-
genetic reconstruction difficult, if not impossible. At the same time, the typically higher coverage
in the non-UMI based sequencing compared to the UMI improves the identification of SNVs and
decrease the misspecification error. This might suggest that different strategies for the phylogenetic
reconstruction should be applied to UMI and non-UMI based sequencing.

Discussion

Phylogenetic methods using scDNA-seq data are becoming increasingly common in tumor evolu-
tion studies. scRNA-seq is currently used for studying expression profiles of cancer cells and their
behavior. However, while clustering approaches to identify cells with similar expression profiles are
common and frequently used, scRNA-seq data are yet to be used in phylogenetic analyses to re-
construct the population history of somatic cells. To test if the scRNA-seq contains a phylogenetic
signal to reliably reconstruct the population history of cancer, we have performed an experiment
to produce a known history by infecting immunosuppressed mice with human cancer cells derived
from the same population. Then using two different forms of scRNA-seq data, expression values
and SNVs, we have reconstructed phylogenies using Maximum likelihood and Bayesian phylogenetic
methods. By comparing the reconstructed trees to the known population history, we have been able
to confirm that scRNA-seq contains sufficient phylogenetic signal to reconstruct the population his-
tory of cancer. Without an explicit error model to account for an increased uncertainty in the data
(Hicks et al. 2018), the phylogeny from the expression values describes the expected population
history better than the one reconstructed from SNV, despite requiring lower computational costs
to reconstruct. This highlights that scRNA-seq can be utilized to explore both the physiological
behavior of cancer cells and their population history using a single source of data.

Without any specialized phylogenetic or error models for the scRNA-seq data, conventional meth-
ods and software tools developed for systematic biology are able to reconstruct population history
from this data at low computational cost. This implies that more accurate inference will be possible
when and if specialized models and software are developed, and serious computational resources
are employed. For example, computationally more intensive standard non-parametric bootstrap or
Bayesian methods on the unfiltered data sets are certainly within the reach of modern computing
clusters. This is a future direction for research.

In this work, we tested for phylogenetic signal on three data sets, a new data set consisting of 5
tumor samples seeded using a population sample, and two previously published data sets consisting
of a primary tumor with a paired lymph node or a metastatic samples. Due to the nature of the
experiment and the amount of uncertainty in the scRNA-seq data, this barred us from a more
detailed exploration of the tree topology as only broad patterns, the phylogenetic clustering of cells
according to sample and individual of origin, could be considered. Our clustering analyses show
that the phylogenetic trees conform broadly to the expected shapes under different experimental
conditions, and thus that expression data and SNV data can both be used to infer phylogenetic trees
from SNV data. Nevertheless, our results also demonstrate that all such trees contain significant
uncertainty, so new datasets and methods will be required to extend this work.

The degree to which low and uneven gene expression plays a role in scRNA-seq requires special
attention, especially for non-UMI based data sets, as this causes not only a large proportion of
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missing data, but also burdens the known values with a significant error rate. Research should aim
at trying to quantify this expression-specific error rate and build specialized models to include the
uncertainty about the observed data in the phylogenetic reconstruction itself. This could potentially
include removing a large proportion of low-coverage data in favor of robust analysis and proper
uncertainty estimation of the inferred topology.

The estimation of the topological uncertainty, be it the Bootstrap branch support or the Bayesian
posterior clade probabilities, is a staple for phylogenetic analyses. Currently existing methods for
the phylogenetic analysis of scDNA-seq, such as SCITE (Jahn et al. 2016), SiFit (Zafar et al. 2017),
or SCIΦ (Singer et al. 2018), do not provide this uncertainty estimate. This makes interpretation
of the estimated topology difficult because a single topology can only be marginally more accurate
than a number of alternative topologies. Out of package we are aware of only CellPhy, through its
integration in the phylogenetic software RAxML-NG (Kozlov et al. 2019), provides an estimate of
topological uncertainty through the bootstrap method. Bayesian methods could be a solution as they
provide an uncertainty estimate through the posterior distribution. However, they are significantly
more computationally intensive than Maximum likelihood methods. Instead, as the size of single-
cell data sets will only increase, bootstrap approximations optimized for a large amount of missing
data need to be developed to provide a fast and accurate estimate of topological uncertainty.

An aspect of scRNA-seq expression data that was not considered here is correlated gene expression
(Wang et al. 2004; Bageritz et al. 2019). A single somatic mutation could thus induce a change of
expression of multiple genes. This might be problematic given that phylogenetic methods assume
that individual sites are independent and this would cause an overestimation of a mutation rate.
However, phylogenetic methods are generally rather robust to a wide range of model violations
(Huelsenbeck 1995a; Huelsenbeck 1995b; Song et al. 2010; Philippe et al. 2011). In addition, by
randomly sampling sites, the bootstrap analysis does explore solutions that would arise from this
model violation. An investigation of the effect of correlated gene expression on the estimated
phylogeny provides an interesting direction for further research.

Multiomic approaches are increasingly popular as they integrate information from multiple bi-
ological layers (Bock et al. 2016; Hasin et al. 2017; Nam et al. 2020). While CNVs were ignored
in this paper, it is possible to detect large-scale CNVs from scRNA-seq data (Müller et al. 2018;
Kuipers et al. 2020; Harmanci et al. 2020b; Harmanci et al. 2020a; Gao et al. 2021). Combined
with the SNVs and expression data as analyzed in this paper, this enables a multiomic approach
using just a single scRNA-seq data source, without the additional cost of DNA sequencing.
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Supplementary materials
Tree figures.
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Supplementary Figure 1. Maximum likelihood trees from the expression data
for 20% (Figure 1a), 50% (Figure 1b), and 90% (Figure 1c) data density. Terminal
branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1, CTC2).
Less represented samples are marked with colored circles.
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Supplementary Figure 2. Maximum likelihood trees from the SNV data for 20%
(Figure 2a), 50% (Figure 2b), and 90% (Figure 2c) data density. Terminal branches
are colored according to cell’s sample of origin (T1, T2, T3, CTC1, CTC2). Less
represented samples are marked with colored circles.
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Supplementary Figure 3. Maximum likelihood trees from the reduced expression
data for 20% (Figure 3a), 50% (Figure 3b), and 90% (Figure 3c) data density. Ter-
minal branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1,
CTC2). Less represented samples are marked with colored circles.
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Supplementary Figure 4. Maximum likelihood trees from the reduced SNV data
for 20% (Figure 4a), 50% (Figure 4b), and 90% (Figure 4c) data density. Terminal
branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1, CTC2).
Long branch with T2 and CTC1 cells is shortened and drawn as a dashed line. Less
represented samples are marked with colored circles.
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Supplementary Figure 5. Bayesian trees from the reduced expression data for
20% (Figure 5a), 50% (Figure 5b), and 90% (Figure 5c) data density. Terminal
branches are colored according to cell’s sample of origin (T1, T2, T3, CTC1, CTC2).
Bayesian posterior values show the topology uncertainty.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.01.07.425804doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425804
http://creativecommons.org/licenses/by-nc-nd/4.0/


vi

T1
T2
T3
CTC1
CTC2

1

1

0.67

0.31

0.68

0.97
0.89

0.62

0.86
0.53

0.41

0.98
0.65

0.99

0.75
0.48

0.54

0.28

0.26
0.35

0.11
0.68

0.68

0.36
0.1

0.28
0.66
0.29

0.8

0.69

0.7
0.97

0.59

0.25

0.97

0.69

0.65

0.03
0.51

0.98

0.52

1
0.49

0.3
0.38

0.55

1

0.08

0.08

0.23
0.28
0.36

0.11

0.07
0.21

0.18
0.23

(a) 20% data density

T1
T2
T3
CTC1
CTC2

1

1

0.42

0.22

0.24
0.38
0.2

0.64
0.48

1

0.92
0.93

0.08

0.44

0.37

0.2

0.62
0.48

0.08
0.12

0.61

0.5

0.34

0.27
0.58

0.52

0.18
0.98

0.13

0.41

0.75
0.98

0.79
0.6

0.51

0.6

0.69

0.25
0.6
0.5

0.75

0.82

0.55
0.95

0.75

0.85

1

0.01

0.04
0.09

0.01

0.02
0.01
0.05

0.21
0.34

0.16

(b) 50% data density

T1
T2
T3
CTC1
CTC2

1

1

0.02

0.07

0.02

0.01

0

0.01

0
0.01
0.06

0

0.01
0.06

0
0

0.06

0.01
0.05

0.26
0.19

0.48

0.2
0.28

0.6

0.22

0.3
0.8

0.36
0.2

0.2

0.08

0.1

0.82
0.32

0.28
0.04
0.13

0.04
0.13

0.51

0.24
0.07
0.08
0.04

0.76

1

0
0.03

0.16

0.07

0

0.01
0.02
0.05

0.11

0.06

(c) 90% data density

Supplementary Figure 6. Bayesian trees from the reduced SNV data for 20%
(Figure 6a), 50% (Figure 6b), and 90% (Figure 6c) data density. Terminal branches
are colored according to cell’s sample of origin (T1, T2, T3, CTC1, CTC2). Bayesian
posterior values show the topology uncertainty.
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Tree figures – zeros are biological zeros.
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(c) 90% data density

Supplementary Figure 7. Maximum likelihood trees from the expression data
for 20% (Figure 7a), 50% (Figure 7b), and 90% (Figure 7c) data density when the
zeros are treated as biological zeros. Terminal branches are colored according to
cell’s sample of origin (T1, T2, T3, CTC1, CTC2). Less represented samples are
marked with colored circles.
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Supplementary Figure 8. Maximum likelihood trees from the reduced expression
data for 20% (Figure 8a), 50% (Figure 8b), and 90% (Figure 8c) data density when
the zeros are treated as biological zeros. Terminal branches are colored according
to cell’s sample of origin (T1, T2, T3, CTC1, CTC2). Less represented samples are
marked with colored circles.
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Supplementary Figure 9. Bayesian trees from the reduced expression data for
20% (Figure 9a), 50% (Figure 9b), and 90% (Figure 9c) data density when the zeros
are treated as biological zeros. Terminal branches are colored according to cell’s
sample of origin (T1, T2, T3, CTC1, CTC2). Bayesian posterior values show the
topology uncertainty.
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x

Phylogenetic clustering test for bootstrap replicates.

Supplementary Table 1. Test of phylogenetic clustering for the bootstrap repli-
cates from the Maximum likelihood analysis. Mean Pairwise Distance (MPD) and
Mean Nearest Taxon Distance (MNTD) calculated for the bootstrap replicates re-
constructed from the Expression and SNV datasets with 20% data density. P-values
for MPD and MNTD were calculated for each sample (T1, T2, CTC1, CTC2) for
each of the 100 bootstrap trees. This distribution of p-values is summarized with the
mean and 95% confidence interval. Significant p-values at α = 0.05 after correcting
for multiple comparisons using the False Discovery Rate method (Benjamini et al.
1995) are marked with an asterisk.

mean (95% HPD)

Groups Cells MPD MNTD

Expression T1 701 1.000 (1.000–1.000) 1.000 (1.000–1.000)
T2 11 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001)
T3 806 0.158 (0.123–0.187) 1.000 (1.000–1.000)
CTC1 58 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001)
CTC2 51 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001)

SNV T1 693 0.039 (0.001–0.086) 0.095 (0.001–0.332)
T2 – – –
T3 795 ∗0.023 (0.002–0.051) 0.617 (0.272–0.815)
CTC1 4 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001)
CTC2 6 0.845 (0.548–0.988) 0.758 (0.253–0.990)

∗ significant support

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2021. ; https://doi.org/10.1101/2021.01.07.425804doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425804
http://creativecommons.org/licenses/by-nc-nd/4.0/


xi

Phylogenetic clustering tests for Bayesian trees.

Supplementary Table 2. Test of phylogenetic clustering on the Bayesian tree
from the expression data and SNV data. Mean Pairwise Distance (MPD) and Mean
Nearest Taxon Distance (MNTD) calculated for the Bayesian trees reconstructed
from the reduced expression (Table 2a) and reduced SNV data (Table 2b) for 20%,
50% and 90% data density. P-values for MPD and MNTD were calculated for each
sample (T1, T2, T3, CTC1, CTC2), expected clustering for cells isolated from a sin-
gle individual (T1 with CTC1 and T2 with CTC2) and to test a possible mislabeling
between CTC1 and CTC2 samples (T1 with CTC2, and T2 with CTC1). P-values
were calculated for the sample of 1000 trees and this distribution of p-values is sum-
marized with mean and 95% confidence interval. Significant p-values at α = 0.05
after correcting for multiple comparisons using the False Discovery Rate method
(Benjamini et al. 1995) are marked with an asterisk.

(a) Expression data

full dataset 50% data density 90% data density

Groups Cells MPD MNTD MPD MNTD MPD MNTD

T1 20 ∗0.001 (0.001–0.001) ∗0.014 (0.001–0.040) ∗0.001 (0.001–0.001) ∗0.043 (0.004–0.100) ∗0.002 (0.001–0.004) 0.210 (0.001–0.931)
T2 6 ∗0.002 (0.001–0.003) ∗0.004 (0.001–0.014) ∗0.001 (0.001–0.001) ∗0.002 (0.001–0.004) ∗0.001 (0.001–0.001) ∗0.003 (0.001–0.008)
T3 20 ∗0.001 (0.001–0.002) ∗0.048 (0.006–0.104) ∗0.001 (0.001–0.002) 0.097 (0.011–0.203) ∗0.001 (0.001–0.002) 0.155 (0.010–0.328)
CTC1 6 0.989 (0.974–0.999) 0.472 (0.297–0.616) 0.176 (0.151–0.197) 0.311 (0.151–0.437) 0.188 (0.106–0.362) 0.361 (0.225–0.464)
CTC2 6 0.697 (0.635–0.745) 0.926 (0.758–1.000) 0.834 (0.748–0.888) 0.554 (0.456–0.627) 0.908 (0.854–0.998) 0.799 (0.560–1.000)
T1 & CTC1 26 0.152 (0.117–0.185) 0.382 (0.136–0.645) 0.342 (0.312–0.376) 0.397 (0.136–0.663) 0.451 (0.339–0.584) 0.381 (0.028–0.803)
T2 & CTC2 12 0.946 (0.907–0.975) 0.113 (0.001–0.278) 0.718 (0.665–0.783) 0.108 (0.004–0.259) 0.803 (0.677–0.893) 0.488 (0.259–0.759)
T1 & CTC2 26 ∗0.005 (0.001–0.009) 0.919 (0.783–0.994) ∗0.009 (0.003–0.014) 0.892 (0.747–0.996) ∗0.012 (0.003–0.028) 0.811 (0.461–1.000)
T2 & CTC1 12 0.650 (0.541–0.747) 0.051 (0.001–0.156) ∗0.024 (0.016–0.033) ∗0.011 (0.001–0.046) ∗0.033 (0.009–0.110) 0.153 (0.017–0.339)

∗ significant support

(b) SNV data

full dataset 50% data density 90% data density

Groups Cells MPD MNTD MPD MNTD MPD MNTD

T1 20 ∗0.001 (0.001–0.002) 0.419 (0.205–0.663) ∗0.002 (0.001–0.005) 0.870 (0.643–0.979) ∗0.003 (0.001–0.006) 0.274 (0.001–0.683)
T2 6 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) 0.060 (0.001–0.239) 0.050 (0.001–0.269)
T3 20 ∗0.001 (0.001–0.002) 0.412 (0.192–0.626) ∗0.001 (0.001–0.003) 0.669 (0.345–0.960) ∗0.002 (0.001–0.005) 0.298 (0.001–0.693)
CTC1 6 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) 0.063 (0.001–0.236) 0.050 (0.001–0.245)
CTC2 6 0.233 (0.206–0.259) 0.698 (0.560–0.853) 0.124 (0.003–0.205) 0.460 (0.254–0.597) 0.164 (0.061–0.242) 0.309 (0.097–0.581)
T1 & CTC1 26 0.516 (0.436–0.571) 0.132 (0.023–0.266) 0.630 (0.541–0.741) 0.455 (0.099–0.814) 0.655 (0.541–0.756) 0.554 (0.108–0.992)
T2 & CTC2 12 0.993 (0.979–1.000) 0.611 (0.342–0.789) 0.989 (0.958–1.000) 0.058 (0.001–0.167) 0.996 (0.989–1.000) 0.427 (0.040–0.755)
T1 & CTC2 26 ∗0.001 (0.001–0.002) 0.985 (0.954–1.000) ∗0.001 (0.001–0.002) 0.811 (0.422–0.999) ∗0.001 (0.001–0.002) 0.250 (0.001–0.687)
T2 & CTC1 12 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.011 (0.001–0.048) ∗0.011 (0.001–0.038)

∗ significant support
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xii

Phylogenetic clustering tests for phylogenies when zeros are treated as biological zeros.

Supplementary Table 3. Test of phylogenetic clustering on the Maximum Like-
lihood and Bayesian tree from the expression data when the zeros (no expression)
are treated as biological zeros instead of unknown data. Mean Pairwise Distance
(MPD) and Mean Nearest Taxon Distance (MNTD) calculated on the Maximum
Likelihood and Bayesian trees from the expression data for 20%, 50%, and 90% data
density. P-values for MPD and MNTD were calculated for each sample (T1, T2, T3,
CTC1, CTC2) and expected clustering for cells isolated from a single individual (T1
with CTC1, and T2 with CTC2). Significant p-values at α = 0.05 after correcting
for multiple comparisons using the False Discovery Rate method (Benjamini et al.
1995) are marked with an asterisk.

(a) Full dataset

20% data density 50% data density 90% data density

Groups Cells MPD MNTD Cells MPD MNTD Cells MPD MNTD

T1 701 1.000 1.000 688 1.000 0.996 329 ∗0.001 ∗0.001
T2 11 ∗0.001 ∗0.001 0 – – 0 – –
T3 806 ∗0.005 0.082 758 ∗0.001 ∗0.001 262 1.000 1.000
CTC1 58 ∗0.001 ∗0.001 3 ∗0.002 ∗0.001 0 – –
CTC2 51 ∗0.001 ∗0.001 5 0.987 0.941 2 0.972 0.960
T1 & CTC1 759 1.000 1.000 691 1.000 0.991 329 ∗0.001 ∗0.001
T2 & CTC2 62 ∗0.001 ∗0.001 5 0.987 0.941 2 0.972 0.960

∗ significant support
(b) Reduced dataset – ML

full dataset 20% data density 50% data density 90% data density

Groups Cells MPD MNTD MPD MNTD MPD MNTD MPD MNTD

T1 20 0.996 1.000 0.998 1.000 ∗0.006 0.994 ∗0.001 ∗0.001
T2 6 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 0.146 0.362
T3 20 0.507 0.993 0.496 0.996 ∗0.003 0.999 ∗0.001 ∗0.001
CTC1 6 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 0.519 0.553
CTC2 6 ∗0.005 ∗0.012 ∗0.002 ∗0.013 ∗0.003 0.033 0.997 1.000
T1 & CTC1 26 0.993 0.925 0.990 0.921 0.979 0.548 0.075 0.039
T2 & CTC2 12 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 1.000 0.996
T1 & CTC2 26 0.996 0.995 0.998 0.993 0.916 0.951 ∗0.018 0.997
T2 & CTC1 12 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 ∗0.001 0.411 0.816

∗ significant support
(c) Reduced dataset – BI

full dataset 20% data density 50% data density 90% data density

Groups Cells MPD MNTD MPD MNTD MPD MNTD MPD MNTD

T1 20 0.997 (0.993–1.000) 0.995 (0.989–0.999) 0.997 (0.993–1.000) 0.995 (0.990–0.999) 0.997 (0.993–1.000) 0.995 (0.989–0.999) 0.997 (0.993–1.000) 0.995 (0.988–0.999)
T2 6 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001)
T3 20 0.775 (0.730–0.817) 0.997 (0.994–1.000) 0.774 (0.732–0.815) 0.997 (0.994–1.000) 0.775 (0.728–0.816) 0.997 (0.994–1.000) 0.775 (0.733–0.820) 0.997 (0.994–1.000)
CTC1 6 ∗0.001 (0.001–0.002) ∗0.001 (0.001–0.002) ∗0.001 (0.001–0.002) ∗0.001 (0.001–0.002) ∗0.001 (0.001–0.002) ∗0.001 (0.001–0.002) ∗0.001 (0.001–0.002) ∗0.001 (0.001–0.002)
CTC2 6 ∗0.002 (0.001–0.004) ∗0.009 (0.004–0.015) ∗0.002 (0.001–0.004) ∗0.010 (0.004–0.015) ∗0.002 (0.001–0.004) ∗0.010 (0.004–0.015) ∗0.002 (0.001–0.004) ∗0.010 (0.004–0.015)
T1 & CTC1 26 0.969 (0.954–0.981) 0.572 (0.475–0.648) 0.969 (0.954–0.981) 0.571 (0.481–0.660) 0.969 (0.955–0.983) 0.571 (0.485–0.663) 0.969 (0.955–0.982) 0.572 (0.475–0.647)
T2 & CTC2 12 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001)
T1 & CTC2 26 0.991 (0.984–0.996) 0.894 (0.848–0.935) 0.991 (0.984–0.997) 0.894 (0.850–0.936) 0.991 (0.983–0.996) 0.894 (0.846–0.933) 0.991 (0.983–0.996) 0.894 (0.845–0.931)
T2 & CTC1 12 ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001) ∗0.001 (0.001–0.001)

∗ significant support
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xiii

Overview of phylogenetic support for reduced datasets.

Supplementary Table 4. Overview of tree support from reduced data sets. Mean
and standard deviation of non-parametric bootstrap scores and posterior probabili-
ties for the Maximum Likelihood and Bayesian trees respectively.

Data density

full 50% 90%

Bootstrap
Expression 33 ± 31 31 ± 29 22 ± 26
SNV 9 ± 16 9 ± 15 13 ± 18

Posterior
Expression 75 ± 19 62 ± 27 28 ± 32
SNV 53 ± 30 48 ± 32 20 ± 28
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xiv

Rao et al. (2020).

Cell origin:

Primary
Metastasis

(a) Cancer cells only
Cell type:

Fibroblasts
Cancer cells
Endothelial cells
Immune cells

(b) All cells – type

Cell origin:

Primary
Metastasis

(c) All cells – origin

Supplementary Figure 10. Maximum likelihood trees constructed from the ex-
pression data published by Rao et al. (2020a). Terminal branches are colored ac-
cording to cell’s type or sample of origin.
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xv

Cell origin:

Primary
Metastasis

(a) Cancer cells only

Cell type:

Fibroblasts
Cancer cells
Endothelial cells
Immune cells

(b) All cells – type

Cell origin:

Primary
Metastasis

(c) All cells – origin

Supplementary Figure 11. Maximum likelihood trees constructed from the SNV
data published by Rao et al. (2020a). Terminal branches are colored according to
cell’s type or sample of origin.
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xvi

Supplementary Table 5. Test of phylogenetic clustering on the Maximum like-
lihood trees from Rao et al. (2020a). Mean Pairwise Distance (MPD) and Mean
Nearest Taxon Distance (MNTD) calculated for the phylogeny reconstructed from
the dataset containing only cancer cells and from the dataset containing all cell types.
P-values for MPD and MNTD were calculated for the sample of origin and cell types
where applicable. Significant p-values at α = 0.05 after correcting for multiple com-
parisons using the False Discovery Rate method (Benjamini et al. 1995) are marked
with an asterisk.

Cancer only All cell types

Data Groups Cells MPD MNTD Cells MPD MNTD

Expression Cancer cells 1000 – – 670 ∗0.016 ∗0.001
Fibroblasts 0 – – 216 0.470 0.976
Endothelial cells 0 – – 72 0.824 0.922
Immune Cells 0 – – 0 – –
Metastasis 500 ∗0.001 ∗0.001 500 ∗0.001 ∗0.001
Primary 500 1.000 1.000 500 1.000 1.000

SNV Cancer cells 984 0.500 0.500 661 0.493 0.593
Fibroblasts 0 – – 192 0.340 0.116
Endothelial cells 0 – – 57 0.724 0.728
Immune Cells 0 – – 0 – –
Metastasis 500 1.000 ∗0.001 500 1.000 ∗0.001
Primary 484 ∗0.001 0.997 449 ∗0.001 0.855

∗ significant support

Wang et al. (2021).
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xvii

Tumour
Metastasis

(a) GC1 – ML

Tumour
Metastasis

(b) GC1 – BI

Tumour
Metastasis

(c) GC2 – ML

Tumour
Metastasis

(d) GC2 – BI

Tumour
Metastasis

(e) GC3 – ML

Tumour
Metastasis

(f) GC3 – BI

Supplementary Figure 12. Maximum likelihood Bayesian trees constructed from
the expression data published by Wang et al. (2021). Terminal branches are colored
according to cell’s sample of origin.
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Tumour
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(f) GC3 – BI

Supplementary Figure 13. Maximum likelihood Bayesian trees constructed from
the SNV data published by Wang et al. (2021). Terminal branches are colored
according to cell’s sample of origin.
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xix

Supplementary Table 6. Test of phylogenetic clustering on the Maximum like-
lihood and Bayesian trees calculated from expression and SNV data published by
Wang et al. (2021). Mean Pairwise Distance (MPD) and Mean Nearest Taxon Dis-
tance (MNTD) calculated for the Maximum likelihood and Bayesian trees recon-
structed from the expression and the SNV data for patients GC1, GC2 and GC2.
P-values for MPD and MNTD were calculated for the sample of origin. Signifi-
cant p-values at α = 0.05 after correcting for multiple comparisons using the False
Discovery Rate method (Benjamini et al. 1995) are marked with an asterisk.

GC1 GC2 GC3

Data Type Groups Cells MPD MNTD Cells MPD MNTD Cells MPD MNTD

Expression ML Primary tumor 19 0.186 0.111 27 ∗0.001 ∗0.001 19 0.805 0.824
Lymph node 4 0.809 0.888 13 0.998 1.000 12 0.167 0.105

BI Primary tumor 19 0.915 0.966 27 0.999 0.961 19 0.230 0.385
Lymph node 4 0.034 0.025 13 ∗0.001 ∗0.003 12 0.303 0.299

SNV ML Primary tumor 19 ∗0.005 0.465 27 ∗0.001 ∗0.001 19 0.995 0.415
Lymp node 4 0.078 0.085 13 1.000 0.989 12 0.023 0.134

BI Primary tumor 19 ∗0.004 0.177 27 ∗0.001 ∗0.001 19 0.847 0.384
Lymp node 4 0.189 0.086 13 0.994 0.792 12 0.129 0.455

∗ significant support
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