1	Artemisia annua L. extracts prevent in vitro replication of SARS-CoV-2
2	Nair ¹ , M.S., Huang ¹ , Y., Fidock ^{2,3} , D.A., Polyak ⁴ , S.J., Wagoner ⁴ , J., Towler ⁵ , M.J., Weathers ^{5#} , P.J.
3	¹ Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and
4	Surgeons, New York, NY, USA.
5	² Department of Microbiology and Immunology, Department of Medicine, Columbia University
6	Irving Medical Center, New York, NY 10032, USA.
7	³ Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical
8	Center, New York, NY 10032, USA.
9	⁴ Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104
10	⁵ Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA
11	01609, USA.
12	
13	<u># Corresponding author:</u>
14	Pamela Weathers
15	Department of Biology and Biotechnology
16	Worcester Polytechnic Institute
17	100 Institute Rd
18	Worcester, MA 01609 USA
19	Email: weathers@wpi.edu
20	Phone: 508-831-5196
21	FAX: 508-831-6362
22	
23	

24 ABSTRACT:

25	SARS-CoV-2 (Covid-19) globally has infected and killed millions of people. Besides remdesivir, there
26	are no approved small molecule-based therapeutics. Here we show that extracts of the medicinal
27	plant, Artemisia annua L., which produces the antimalarial drug artemisinin, prevents SARS-CoV-2
28	replication in vitro. We measured antiviral activity of dried leaf extracts of seven cultivars of A.
29	annua sourced from four continents. Hot-water leaf extracts based on artemisinin, total
30	flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 μ M, 0.01-0.14 μ g,
31	and 23.4-57.4 μ g, respectively. One sample was >12 years old, but still active. While all hot water
32	extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-
33	fold in the extracts and antiviral efficacy was inversely correlated to artemisinin and total flavonoid
34	contents. Artemisinin alone showed an estimated IC $_{50}$ of about 70 μ M, and antimalarial
35	artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or
36	cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine
37	had an IC ₅₀ = 5.8 μ M. The extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a
38	reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an
39	order of magnitude of the antiviral IC $_{90}$ values. Results suggest the active component in the
40	extracts is likely something besides artemisinin or is a combination of components acting
41	synergistically to block post-entry viral infection. Further studies will determine in vivo efficacy to
42	assess whether <i>A. annua</i> might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.
43	
44	KEY WORDS: Artemisia annua, artemisinin, SARS-Cov-2, Covid-19, artesunate, artemether,
45	amodiaquine, dihydroartemisinin

2

47 **INTRODUCTION:**

48	The global pandemic of SARS-CoV-2 (the etiologic agent of COVID-19) has infected over 80 million
49	people and killed nearly 1.8 million as of December 29, 2020 (<u>https://coronavirus.jhu.edu/</u>). There
50	is an intense effort to distribute the registered Pfizer/BioNTech and Moderna vaccines, but to our
51	knowledge, there is no approved therapeutic and global infections keep rising with the sporadic
52	advent of new variants.
53	
54	The medicinal plant Artemisia annua L. produces the antimalarial therapeutic artemisinin, a
55	sesquiterpene lactone produced and stored in the glandular trichomes located on the shoots and
56	especially the leaves and flowers of the plant. Both the plant and artemisinin have been used
57	safely for over 2,000 years to treat a variety of ailments, especially malaria. Artemisinin derivatives
58	(Figure 1) are front-line therapeutics for treating malaria and are delivered with a second
59	antimalarial drug, such as lumefantrine or amodiaquine, which are formulated as artemisinin-
60	based combination therapies (Blasco et al. 2017). Artemisinins also have some antiviral activity
61	(Efferth 2018). Extracts of <i>A. annua</i> showed anti-SARS-CoV-1 activity, suggesting that they may be
62	active against SARS-CoV-2 (Li et al. 2005).
63	
64	Artemisinin delivered per os from A. annua consumption is highly bioavailable and distributes
65	through peripheral blood and into a plethora of organs including lungs, liver, heart, and brain
66	(Desrosiers et al. 2020). Furthermore, both artemisinins and the plant A. annua reduce levels of

67 inflammatory cytokines including IL-6 and TNF-α *in vivo* (Desrosiers et al. 2020; Hunt et al. 2015;

68 Shi et al. 2015). These effector molecules can be problematic during the "cytokine storm" suffered

69 by many SARS-CoV-2 patients (Schett et al. 2020). Artemisinin also blunts fibrosis (Larson et al.

70	2019; Dolivo et al. 2020), another problem experienced by SARS-CoV-2 survivors that causes more
71	lasting damage to organs (Lechowicz et al. 2020; Liu et al. 2020a). A recent report showed that a
72	number of artemisinin-related compounds have some anti-SARS-CoV-2 activity, with
73	dihydroartemisinin, artesunate, and arteannuin B having IC $_{50}$ values <30 μM (Cao et al. 2020), and
74	dihydroartemisinin ACTs with 1-10 μ M IC ₅₀ s (Bae et al. 2020). Artesunate was reported to have
75	IC_{50} values against SARS-CoV-2 of 7-12 $\mu\text{g/mL}$ (0.7-1.2 μM ; Gilmore et al. 2020) and 2.6 μM (Bae et
76	al. 2020). Knowing that artemisinin is much more bioavailable <i>per os</i> when delivered via A. annua
77	(Weathers et al. 2011; Weathers et al. 2014; Desrosiers et al. 2020), we posited that encapsulated
78	powdered dried leaves of <i>A. annua</i> may be a safe, cost-effective therapeutic to combat SARS-CoV-
79	2 infections. Here we report in vitro results from testing extracts of a diversity of A. annua cultivars
80	against SARS-CoV-2 propagated in Vero E6 cells, with correlation analyses of antiviral efficacy to
81	artemisinin and total flavonoid contents.
82	
83	METHODS:

Plant material, extract preparations, and artemisinin and total flavonoid analyses: Batches of 84 dried leaves of various cultivars of Artemisia annua L. with source, age, and voucher identity when 85 known are shown in Table 1. Hot-water extracts (tea infusions) were prepared as follows: dried 86 leaves at 10 g/L were added to boiling water on a stir plate and boiled for 10 min, then poured 87 through a 2 mm stainless steel sieve to retain most solids. Extracts were then cooled and sterile-88 filtered (0.22 µm) prior to being stored at -20°C. Dichloromethane (DCM) extracts of dried leaves 89 90 were also prepared by extraction of 25 mg in 4 mL DCM for 30 min in a sonicating water bath (Fischer Scientific FS60, 130 W), separating solvent from solids with Pasteur pipets, drying under 91 92 nitrogen flow, and storing at -20°C until analyzing for artemisinin using gas chromatography / mass

93	spectrometry, as detailed in Martini et al. (2020). For artemisinin analysis of tea infusions, two-
94	phase overnight aliquots extracted in DCM in a 1:1 ratio were separated by using Pasteur pipets,
95	dried under nitrogen flow, and stored at -20°C until analysis as previously noted (Martini et al.
96	2020). Total flavonoids were analyzed in DCM extracts via the aluminum chloride method of
97	Arvouet-Grand et al. (1994) and were quantified as quercetin equivalents. Artemisinin and total
98	flavonoid contents of tea infusions are shown in Table 2. The DCM extract of <i>A. annua</i> (cv SAM)
99	contained a total of 34 mg of artemisinin. After solubilizing in PEG400 containing 5% DMSO0 the
100	concentration was 8.95 mg/mL.
101	
102	Viral culture and analyses: Vero E6 cells, obtained from the American Type Culture collection
103	(ATCC CRL-1586), were cultured in Minimal Essential Eagle Medium (EMEM) containing penicillin-
104	streptomycin (1x 100 U/mL) and 10% fetal calf serum. SARS-CoV-2 isolate USA/WA1 was from BEI
105	Resources (<u>www.beiresources.org</u>). We infected Vero E6 cells with the USA/WA1 isolate according
106	to Liu et al. (2020b). Briefly, infected cells were incubated in flasks until a viral cytopathic effect
107	was observed. The supernatant was then harvested and titered for its tissue culture infective dose
108	(TCID) using an end point dilution method. TCID was calculated using the Reed Muench
109	proportional distance method (Reed and Muench 1938). Viral aliquots were frozen, then later
110	thawed and used for infection experiments at their desired infectivity (multiplicity of infection
111	(MOI).
112	
113	Assays for determining drug inhibition of SARS-CoV-2: Except for tea infusions that were diluted
114	in water and used directly, amodiaquine, artesunate, artemether, artemisinin, deoxyartemisinin,

and dihydroartemisinin compounds were solubilized and diluted in 5% DMSO in PEG400 or 5%

116	DMSO in EMEM enriched with fetal calf serum at a final concentration of 7.5%, prior to testing for
117	efficacy against SARS-CoV-2. Indicated dilutions of the drug were incubated for 1 h in wells of 96
118	well tissue culture plates containing a monolayer of Vero E6 cells seeded the day before at 20,000
119	cells/well. Post incubation of the drug with the cells, SARS-CoV-2 USA/WA1 virus was added to
120	each well at a multiplicity of infection of 0.1. Cells were cultured for 3 days at 37° C in 5% CO $_2$ and
121	scored for cytopathic effects as detailed in Liu et al. (2020b). Vesicular Stomatitis Virus (VSV)-spike
122	pseudoviruses were generated as described (Hoffmann et al. 2020; Whitt 2010), using the spike
123	gene from SARS-CoV-2 containing the D614G mutation (Korber et al. 2020). The construct also
124	contains a deletion of 18 amino acids from the C-terminus, which facilitates loading onto
125	pseudovirus particles. The construct (Δ 18 D614G) was kindly provided by Markus Hoffmann and
126	Stefan Pöhlmann (Leibniz-Institut für Primatenforschung, Germany). The day prior to infection,
127	Vero E6 and Calu-3 cells (ATCC HTB-55) were plated in black, clear-bottomed plates at 10,000 and
128	30,000 cells/well, respectively, in a final volume of 90 μ l. Cells were then treated with 10 μ l of
129	serially diluted Artemisia extract in water and incubated for 1 h prior to infection with 100 μ l of
130	VSV-spike Δ 18 D614G pseudovirus. At 22 h post-infection, PrestoBlue was added 2 h before the
131	end of assay, so that cell viability in parallel non-infected, drug-treated wells could be measured.
132	Virus-produced Renilla luciferase activity was measured by Renilla-Glo assay at 24 h post-infection.
133	Results were converted into percent of control. Drug concentrations were log transformed and the
134	concentration of drug(s) that inhibited virus by 50% (<i>i.e.</i> , IC ₅₀), and the concentration of drug(s)
135	that killed 50% of cells (<i>i.e.</i> , CC ₅₀), were determined via nonlinear logistic regressions of
136	log(inhibitor) versus response-variable dose-response functions (four parameters) constrained to a
137	zero-bottom asymptote by statistical analysis using GraphPad Prism 9 (GraphPad Software, Inc.) as
138	described by Hulseberg et al. (2019).

139

140	Cell viability assay: To determine the viability of Vero E6 cells post drug treatment, cells were
141	exposed to indicated doses of tea infusions diluted in EMEM containing fetal calf serum at a final
142	concentration of 7.5%, and incubated at 37°C in 5% CO $_2$ for 24 h. Cells were then washed and
143	treated with 100 μ L XTT reagent premixed with activation agent, followed by incubation for
144	another 2 h at 37°C in 5% CO $_2$. Culture medium was removed, and absorbance measured at 450
145	nm. The absorbance ratio of treated to untreated cells was plotted as percent viability. Imatinib,
146	an FDA-approved apoptosis inducer and tyrosine kinase inhibitor, was used as a positive control.
147	
148	Chemicals and reagents: Unless otherwise stated all reagents were from Sigma-Aldrich (St. Louis,
149	MO) DCM was from ThermoFisher (Waltham, MA, USA); artemisinin was from Cayman Chemical
150	(Ann Arbor, MI, USA); artemether, artesunate, and dihydroartemisinin were gifts from Prof. J.
151	Plaizier-Vercammen (Brussels, Belgium); deoxyartemisinin was from Toronto Research Chemicals
152	(North York, ON, Canada), amodiaquine HCl hydrate (Cat #: 562290) and imanitib (Cat # 100956)
153	were from Medkoo Biosciences Inc. (Morrisville, NC, USA); EMEM (Cat # 30-2003) and XTT reagent
154	(Cat # 30-1011k) were from ATCC; PrestoBlue was from Life Technologies (Cat #P50201); Renilla-
155	Glo was from Promega (E2720).
156	
157	Statistical analyses: All in vitro anti-SARS-CoV-2 analyses were done at least in triplicate. Plant
158	extract analyses had n≥6 independent assays. $ C_{50}$ and $ C_{90}$ values were calculated using GraphPad
159	Prism V8.0. Correlations between antiviral activity and artemisinin or total flavonoids used
160	Spearman's Rho analysis (Spearman 1904).

161

162 **RESULTS**:

163	Artemisia annua hot water extracts have anti-SARS-CoV-2 activity. Hot water extracts of the A.
164	annua cultivars used in the study had considerably different artemisinin contents ranging from
165	20.1 \pm 0.8 to 149.4 \pm 4.4 $\mu g/mL$ (Table 2). Total flavonoid content of leaf material ranged from 7.3
166	\pm 0.2 to 37.2 \pm 0.7 $\mu g/mL$ (Table 2). All cultivars showed anti-SARS-CoV-2 activity (Figure 2; Table
167	2), and $ C_{50}$ values calculated on the basis of artemisinin or total flavonoid content ranged from
168	0.1-8.7 μ M, or 0.01-0.14 μ g/mL, respectively (Table 2). On the basis of leaf dry mass, IC ₅₀ values
169	ranged from 13.5-57.4 μg dry weight (DW). On a μg artemisinin/mL tea basis, the IC ₅₀ of the
170	samples ranged from 0.03 to 2.5 μ g/mL. Analysis of frozen (SAM -20C) extracts remained potent
171	upon thawing and reanalysis (Table 2, Figure 2). Leaf samples that were 12 years old were also
172	active with an IC $_{50}$ of 32.9 μg DW. Infection of Vero E6 or Calu-3 human lung cells by VSV-spike
173	pseudoviruses was minimally inhibited by the extract, except perhaps at the highest dose tested of
174	500 μg/mL (Figure 3). Indeed, GraphPad Prism-calculated IC ₅₀ /CC ₅₀ values were 545/3564 μg/mL
175	for Calu-3 and 410/810 μg/mL for Vero E6 cells.
176	
177	Activity of antimalarials. In a separate analysis, DCM and hot water extracts of A. annua were
178	compared, yielding IC $_{50}$ values of 12.0 and 11.8 μM , respectively (Figure 4). However, due to
179	solvent toxicity at higher concentrations of the drug on Vero E6 cells, the IC_{50} of the DCM extract
180	had to be estimated. Similar solvent toxicity was encountered with artemisinin that subsequently
181	was estimated to have an IC_{50} of 70 μ M (Figure 4). Artemether efficacy was estimated at 1.23 μ M
182	but was cytotoxic at concentrations slightly above that level (Figure 4). Artesunate and
183	dihydroartemisinin were inactive at <100 μ M. In contrast, amodiaquine showed efficacy at 5.8 μ M
184	(Figure 4).

186	Anti-SARS-CoV-2 activity of hot water extracts inversely correlated to artemisinin or total flavonoid
187	<i>content</i> . A Spearman's Rho analysis showed that neither IC_{50} nor IC_{90} values of the hot water
188	extracts correlated to either artemisinin or total flavonoid content (Figure 5). Results of IC $_{50}$ and
189	IC_{90} calculations based on dry leaf mass used to prepare the tea were tightly grouped (Figure 2).
190	Although cultivar IC ₅₀ ranking from most to least effective on dry weight basis was BUR, MED, A3,
191	#15, PEG01, SAM1, SAM2, and FLV5 (Table 2), the maximum differential was less than 44 μg DW of
192	dried leaves, or ~4.4 μL of tea infusion, an inconsequential difference.
193	
194	Hot water extracts are not cytotoxic. When cytotoxicity of the hot water extracts to the Vero E6
195	cells was measured, cell viability did not substantially decrease (Figure 6A) at 24 h post treatment.
196	In comparison, the apoptotic inducer imatinib showed a dose-dependent decrease in viability of
197	the cells by 90% (Figure 6B). At the higher concentrations of hot water extracts, there appeared to
198	be proliferation of Vero E6 cells (Figure 6A).
199	
200	Human bioavailability. To query the potential of using dried leaf A. annua (DLA) as a potential
201	therapeutic, we tracked artemisinin as a marker molecule post consumption of <i>per os</i> delivered
202	DLA in a human. One of us (PJW) consumed 3 g of encapsulated DLA of the SAM cultivar, had her
203	blood drawn at 2 and 5 h post consumption, and 7.04 and 0.16 μg artemisinin/mL serum,
204	respectively, were measured (See Supplemental Data). Thus, at 2 h post ingestion, 36% of the
205	original DLA-delivered artemisinin was detected in the serum, dropping to 0.8% at 5 h post
206	ingestion (See Supplemental data Table S1). This corresponded at 2 h to 2.35 μg artemisinin/mL
207	serum of DLA-delivered artemisinin per gram of DLA consumed.

208

209 **DISCUSSION:**

210	This is the first report of anti-SARS-CoV-2 efficacy of hot water extracts of a wide variety of
211	cultivars of A. annua sourced from four continents. These extracts had an IC_{50} corresponding to
212	<12 μ M artemisinin, with DCM extracts of <i>A. annua</i> showing similar efficacy. In contrast,
213	artemisinin alone had an estimated IC $_{50}$ about sixfold greater (~70 μ M), suggesting the plant
214	extracts were more potent against SARS-CoV-2. Furthermore, the anti-SARS-CoV-2 effect was
215	inversely correlated to the artemisinin content of the extracts that varied by one to nearly two
216	orders of magnitude for IC $_{50}$ and IC $_{90}$ values. Total flavonoid content also was inversely correlated
217	to antiviral activity. One of the cultivar samples was obtained in 2008 and was still active at a level
218	comparable to the most recently harvested cultivar samples, suggesting that the active principle is
219	ubiquitous to different A. annua cultivars and chemically stable during long-term room
220	temperature dry storage. None of the plant extracts were cytotoxic to Vero 6 or Calu-3 cells at
221	concentrations approaching the $ C_{50}$ or $ C_{90}$ values. Finally, the minimal antiviral effects against VSV
222	pseudoviruses containing the SARS-CoV-2 spike protein suggests that Artemisia inhibits SARS-CoV-
223	2 infection primarily by targeting a post-entry step.
224	

224

Although Cao et al. (2020) reported an EC₅₀ of 10.28 μM for arteannuin B, a metabolite that is
formed in a side branch of the artemisinin biosynthetic pathway and that is often present in *A*. *annua* extracts, only three of the tested tea extracts had any detectable arteannuin B with SAM
having 3.2 μg/mL. Arteannuin B in BUR and MED was barely detectable. Thus, arteannuin B was
eliminated as the principle active component, although if present in an extract, arteannuin B may
be providing some antiviral effect as part of the more complex plant extract mixture. Although

they can be present in substantial amounts in *A. annua* (Weathers and Towler 2014; Towler and
Weathers 2015; see supplemental Table S2), neither artemisinic acid nor deoxyartemisinin, also
metabolites in the artemisinin biosynthetic pathway, showed anti-SARS-CoV-2 activity in this
study.

236	There is some discrepancy among IC $_{50}$ molar values in this and other studies for anti-SARS-CoV-2
237	efficacy (Table 3). In contrast to Bae, Cao, and Gilmore, we did not observe any anti-SARS-CoV-2
238	activity for artesunate or dihydroartemisinin. Artemether in our study had an IC_{50} of 1.23 μ M,
239	while Cao et al. (2020) reported an EC $_{50}$ of 73.8 μM but with less toxicity than we observed. In
240	particular, we noted cytotoxicity of artemether. The contrasts are likely the result of differences in
241	how we conducted our viral challenge experiments or solvents used to challenge the virus in Vero
242	E6 cells. For example, our study solubilized our pure artemisinin and other antimalarial
243	compounds in 5% DMSO in PEG400, while the other two studies solubilized compounds in DMSO.
244	Our preliminary experiments indicated that solubilizing in pure DMSO was too toxic to Vero cells
245	to achieve dosing of drug concentrations needed to obtain an IC_{50} value. In addition, Cao et al. also
246	had a different viral assay system. We used an endpoint assay to measure the cytopathic effect of
247	the replicating virus at 72 h and estimate the $ C_{50}$ values while they collected supernatants to assay
248	the total RNA levels at 24 h post infection using RT-PCR. We recognize that such inherent
249	variations in the biological assays would offset the calculated values. Gilmore et al. (2020) also
250	tested a hot water extract of <i>A. annua</i> and observed EC_{50} values ranging from 260-390 µg/mL.
251	However, our hot water extracts are not directly comparable to those of Gilmore et al. because we
252	did not dry, concentrate, and then weigh our extracts. Furthermore, we extracted for 10 min in
253	boiling water, while they extracted for 200 min in boiling water. At present it is not possible to

compare our hot water extracts directly. In addition, different viruses were used in our study
versus that of Gilmore et al., which could affect the inherent replication kinetics of the assay and in
turn affect the specific IC₅₀ numbers.

257

258	We and others noted there was anti-SARS-Cov-2 activity by other non-artemisinin antimalarial
259	drugs including amodiaquine at an IC $_{50}$ = 5.8 μM (this study), tafenoquine at an IC50 of 2.6 μM
260	(Dow et al. 2020), and lumefantrine at a reported IC_{50} = 23.2 μM (Cao et al. 2020). Gendrot et al.
261	(2020) also reported anti-SARS-CoV-2 activity of various ACTs drugs at doses used for treating
262	malaria with mefloquine-artesunate (550 mg + 250 mg, respectively) providing the maximum
263	inhibition, namely 72% of viral replication at serum C_{max} . Other combinations were less effective.

264

The high bioavailability of artemisinin after oral consumption of dried-leaf A. annua (DLA) was not 265 surprising considering that a series of earlier studies in rodents showed the drug is >40 fold more 266 bioavailable when delivered via the plant than in purified form (Weathers et al. 2011; Weathers et 267 al. 2014). The increased bioavailability is mainly the result of three mechanisms: essential oils in 268 the plant material improving the solubility of artemisinin, improved passage across the intestinal 269 wall, and especially the inhibition of liver cytochrome P450s, 2B6, and 3A4 that are critical in first-270 pass metabolism (Desrosiers and Weathers 2016, 2018; Desrosiers et al. 2020). The anti-SARS-CoV-271 2 IC₉₀ of the SAM1 and SAM2 cultivar samples ranged from 12.3-18.8 μM, equal to 1.7-2.6 μg/mL, 272 so 1 g of the SAM cultivar delivered per os yielded 2.6 µg/mL in a patient's serum. Thus, 1 g of DLA 273 274 could deliver enough artemisinin/DLA to achieve the IC₂₀ of the hot water extract. While clearly 275 human trials are required, these hypothetical estimations suggest that reasonable amounts of DLA 276 consumed *per os* may be able to provide a cost-effective anti-SARS-CoV-2 treatment. Indeed, the

277	broad scale use of both artemisinin and non-artemisinin compound antimalarials including A.
278	annua tea infusions across Africa may help in part explain why despite having anti-SARS-CoV-2
279	antibodies, Africans have not to date suffered the clinical scourge of SARS-CoV-2 like the rest of
280	the world (Uyoga et al. 2020).
281	
282	CONCLUSIONS:
283	This is a first report of the in vitro anti-SARS-CoV-2 activity of hot water extracts of A. annua
284	wherein there was no cytotoxicity and where we showed reasonable levels of orally consumed
285	plant material. If subsequent clinical trials are successful, A. annua could potentially serve as a safe
286	therapeutic that could be provided globally at reasonable cost and offer an alternative to vaccines.
287	
288	ACKNOWLEDGEMENTS:
289	Gratitude is extended to Tim Urekew (TJU Associates, NY, NY) and Scott Rudge (RMC
290	Pharmaceutical Solutions, Inc, Longmont, CO), for their early advice and collaboration linkages.
291	Prof. David Ho is gratefully acknowledged for supporting the live virus work in his lab. Award
292	Number NIH-2R15AT008277-02 to PJW from the National Center for Complementary and
293	Integrative Health funded phytochemical analyses of the plant material used in this study. The
294	content is solely the responsibility of the authors and does not necessarily represent the official
295	views of the National Center for Complementary and Integrative Health or the National Institutes
296	of Health. SJP is partially supported by a Washington Research Foundation Technology
297	Commercialization Phase 1 grant and NIH grant 3U41AT008718-07S1 from the National Center for
298	Complementary and Integrative Health.

299

CONFLICT OF INTEREST STATEMENT:

301 Authors declare they have no competing conflicts of interest in the study.

302

AUTHOR CONTRIBUTIONS:

- 304 MSN conducted SARS-CoV-2 experiments, helped analyze the data, and contributed to the
- 305 manuscript.
- 306 YH conducted SARS-CoV-2 experiments, helped analyze the data, and contributed to the
- 307 manuscript.
- 308 DAF provided reagents, helped analyze the data, and edited the manuscript.
- 309 SJP helped plan and analyze pseudovirus data, and contributed to manuscript
- 310 JW conducted pseudovirus experiments, helped analyze data, and contributed to manuscript
- 311 MJT prepared and analyzed plant extracts and human samples, helped analyze the data, and
- 312 contributed to the manuscript.
- 313 PJW wrote manuscript, conducted the single human PK test, provided reagents, and helped
- 314 analyze the data.
- 315
- 316 **REFERENCES:**
- 317 Arvouet-Grand A, Vennat B, Pourrat A, Legret P. 1994. Standardization of propolis extract and
- identification of principal constituents. J Pharm Belg 49: 462-468.
- Bae JY, Lee GE, Park H, Cho J, Kim YE, Lee JY, Ju C, Kim WK, Kim JI, Park MS. 2020. Pyronaridine and
- 320 artesunate are potential antiviral drugs against COVID-19 and influenza. bioRxiv. doi:
- 321 <u>https://doi.org/10.1101/2020.07.28.225102</u>

- Blasco B, Leroy D, Fidock DA. 2017. Antimalarial drug resistance: linking *Plasmodium falciparum*
- 323 parasite biology to the clinic. Nat Med 23: 917-928.
- Cao R, Hu H, Li Y, Wang X, Xu M, Liu J, Zhang H, Yan Y, Zhao L, Li W, Zhang T. 2020. Anti-SARS-CoV-
- 2 potential of artemisinins in vitro. ACS Infect Dis 6: 2524-2531.
- 326 Desrosiers M, Weathers PJ. 2016. Effect of leaf digestion and artemisinin solubility for use in oral
- 327 consumption of dried *Artemisia annua* leaves to treat malaria. J Ethnopharmacol 190:313-318.
- 328 Desrosiers MR, Weathers PJ. 2018. Artemisinin permeability via Caco-2 cells increases after
- simulated digestion of *Artemisia annua* leaves. J Ethnopharmacol 210: 254-259.
- 330 Desrosiers MR, Mittelman A, Weathers PJ. 2020. Dried leaf Artemisia annua improves
- bioavailability of artemisinin via cytochrome P450 inhibition and enhances artemisinin efficacy
- downstream. Biomolecules 10:2:254.
- 333 Dolivo D, Weathers P, Dominko T. 2020. Artemisinin and artemisinin derivatives as antifibrotic
- therapeutics. Acta Pharm Sin B, In press. <u>https://doi.org/10.1016/j.apsb.2020.09.001</u>
- 335 Dow GS, Luttick A, Fenner J, Wesche D, Yeo KR, Rayner C. 2020. Tafenoquine inhibits replication of
- 336 SARS-Cov-2 at pharmacologically relevant concentrations in vitro. BioRxiv. doi:
- 337 https://doi.org/10.1101/2020.07.12.199059
- Efferth T. 2018. Beyond malaria: the inhibition of viruses by artemisinin-type compounds. Biotech
 Adv 36: 1730-1737.
- 340 Gendrot M, Duflot I, Boxberger M, Delandre O, Jardot P, Le Bideau M, Andreani J, Fonta I, Mosnier
- J, Rolland C, Hutter S. 2020. Antimalarial artemisinin-based combination therapies (ACT) and
- 342 COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int J
- 343 Inf Dis 99: 437-440.

344	Gilmore K, Zhou Y, Ramirez S, Pham LV, Fahnoe U, Feng S, Offersgaard A, Trimpert J, Bukh J,
345	Osterrieder K, Gottwein J. 2020. In vitro efficacy of artemisinin-based treatments against SARS-
346	CoV-2. bioRxiv. https://www.biorxiv.org/content/10.1101/2020.10.05.326637v1
347	Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler
348	G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. 2020 SARS-CoV-2 cell entry depends
349	on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271-
350	280.e8.
351	Hunt S, Yoshida M, Davis CE, Greenhill NS, Davis PF. 2015. An extract of the medicinal plant
352	Artemisia annua modulates production of inflammatory markers in activated neutrophils. J
353	Inflamm Res 8: 9-14.
354	Hulseberg CE, Fénéant L, Szymańska-de Wijs KM, Kessler NP, Nelson EA, Shoemaker CJ,
355	Schmaljohn CS, Polyak SJ, White JM. 2019. Arbidol and other low-molecular-weight drugs that
356	inhibit Lassa and Ebola viruses. J Virol Apr 3;93: e02185-18.
357	Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE,
358	Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de Silva
359	TI; Sheffield COVID-19 Genomics Group, McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan
360	SP, LaBranche CC, Saphire EO, Montefiori DC. 2020. Tracking Changes in SARS-CoV-2 Spike:
361	Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. Aug 20;182(4):812-
362	827.e19. doi: 10.1016/j.cell.2020.06.043. Epub 2020 Jul 3. PMID: 32697968; PMCID:
363	PMC7332439.
364	Larson SA, Dolivo DM, Dominko T. 2019. Artesunate inhibits myofibroblast formation via induction
365	of apoptosis and antagonism of pro-fibrotic gene expression in human dermal fibroblasts. Cell
366	Bio Int 43:1317-1322. 16
	TO

- 367 Lechowicz K, Drożdżal S, Machaj F, Rosik J, Szostak B, Zegan-Barańska M, Biernawska J, Dabrowski
- 368 W, Rotter I, Kotfis K. 2020. COVID-19: The potential treatment of pulmonary fibrosis associated
- with SARS-CoV-2 infection. J Clin Med 9:6:1917.
- Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS. 2005.
- 371 Identification of natural compounds with antiviral activities against SARS-associated
- 372 coronavirus. Antiviral Res 67: 18-23.
- Liu PP, Blet A, Smyth D, Li H. 2020a. The science underlying COVID-19: implications for the
- 374 cardiovascular system. Circulation 142: 68-78.
- Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JFW, Sahi V, Figueroa A, Guo XV. 2020b.
- 376 Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature
- 377 584:(7821):450-456.
- 378 Martini MC, Zhang T, Williams JT, Abramovitch RB, Weathers PJ, Shell SS. 2020. Artemisia annua
- 379 and Artemisia afra extracts exhibit strong bactericidal activity against Mycobacterium
- 380 *tuberculosis.* J Ethnopharmacol 262: 113191.
- Reed LJ, Muench H. 1938 A simple method of estimating fifty per cent endpoints. Am J Hyg
 27:493–497.
- 383 Schett G, Sticherling M, Neurath MF. 2020. COVID-19: risk for cytokine targeting in chronic
- inflammatory diseases? Nat Rev Immunol 20:271-272.
- 385 Shi C, Li H, Yang Y, Hou L. 2015. Anti-inflammatory and immunoregulatory functions of artemisinin
- and its derivatives. Mediators Inflamm 2015:435713.
- 387 Spearman, C. 1904. The proof and measurement of association between two things. Am J
- 388 Psychol 15: 72–101.

389	Towler MJ, Weathers PJ. 2015. Variations in key artemisinic and other metabolites throughout
390	plant development in a clonal cultivar of Artemisia annua for possible therapeutic use. Ind Crop

- 391 Prod 67: 185-191.
- Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wanjiku P, Aman R, Mwangangi M, Amoth
- 393 P, Kasera K, Ng'ang'a W, Rombo C, Yegon C, Kithi K, Odhiambo E, Rotich T, Orgut I, Kihara S,
- Otiende M, Bottomley C, Mupe ZN, Kagucia EW, Gallagher KE, Etyang A, Voller S, Gitonga JN,
- 395 Mugo D, Agoti CN, Otieno E, Ndwiga L, Lambe T, Wright D, Barasa E, Tsofa B, Bejon P, Ochola-
- 396 Oyier Ll, Agweyu A, Scott JAG, Warimwe GM. 2020. Seroprevalence of anti-SARS-CoV-2 lgG
- 397 antibodies in Kenyan blood donors. Science 11 Nov 2020
- 398 http://dx.doi.org/10.1126/science.abe1916
- Weathers PJ, Arsenault PR, Covello P, McMickle A, Reed D, Teoh KH. 2011. Artemisinin production
- 400 in Artemisia annua studies in planta and results of a novel delivery method for treating
- 401 malaria and other neglected diseases. Phytochem Rev 10: 173-183.
- 402 Weathers PJ, Elfawal MA, Towler, MJ, Acquaah-Mensah G, Rich SM. 2014. Pharmacokinetics of
- 403 artemisinin delivered by oral consumption of *Artemisia annua* dried leaves (pACT) in healthy vs.
- 404 *Plasmodium chabaudi*-infected mice. J Ethnopharmacol 153: 732-736.
- 405 Weathers PJ, Towler MJ. 2014. Changes in key constituents of clonally propagated Artemisia
- 406 *annua* L. during preparation of compressed leaf tablets for possible therapeutic use. Ind Crop
- 407 **Prod 62:173-178**.
- 408 Whitt MA. 2010. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus
- 409 entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods
- 410 **169: 365-74**.

411

Cultivar	Voucher	Yr leaves	Country	Donor
code/ID		obtained	source	
SAM	MASS 00317314	2020	USA	WPI, originated from F2
				generation of PEG01; clonally
				propagated and grown by
				Atelier Temenos, Miami , FL
A3 (Anamed	None <i>per se</i> ;	2016	Ethiopia	Mary Vanderkooi, Soddo
A-3)	http://www.anamed-			Christian Hospital, Soddo
	edition.com			Walaita
PEG01 (PEG01,	None <i>per se</i> ; Process	2008	China	Chunzhao Liu, Chinese Acad
F2 generation)	Engineering Group 01			Science, Beijing
BUR	LG0019527	2016	Burundi	Ingo Vincens Burow, Savanor,
				Mutambara, Burundi
MED (Apollon	KL/015/6407	2019	Kenya	Jean Jacques Shul, IDAY,
Mediplant)				Belgium
FLV5	Artemisia 5🛛 CPMA-	2011	Brazil	Pedro Melillo de Magalhães,
	UNICAMP 1246			CPQBA-UNICAMP, Paulínia-SP
#15	MASS 00317313	Pooled	USA	WPI, originated from F2
		2013-		generation of PEG01
		2015		

	Artemisinin			Total Fl	Total Flavonoids			Dry A. annua Leaf Mass		
Sample ID	ART in tea	IC ₅₀	IC ₉₀	tFLV ^{**}	IC ₅₀	IC ₉₀	Leaves extracted	IC ₅₀	IC ₉₀	
	(µg/mL ± SE)	(µM ART)	(µM ART)	(μg/mL ± SE)	(µg)	(µg)	(g/L)	(µg DW)	(µg DW)	
SAM1*	149.4	0.7	10.0		0.42	0.20	10	24.0	75.0	
(-20C)	± 4.4	8.7	18.8	35.4 ± 0.2	0.13	0.28	10	34.9	75.2	
SAM2*	131.6	5.9	12.2	27.2 4 0 7	0.14	0.20	10	20.4	70.0	
(4C)	± 3.4		12.3	37.2 ± 0.7	0.14	0.29	10	38.4	79.0	
	42.5			27	105 1 0 0	0.02	0.00	10	20.0	540
A3	± 1.8	1.4	2.7	10.5 ± 0.3	0.03	0.06	10	28.9	54.9	
55004	82.7	2.2	12.0	17.6 ± 0.6	0.00	0.25	10	22.0	120.2	
PEG01	± 2.8	3.2	13.6	17.6 ± 0.6	0.06	0.25	10	32.9	139.3	

Table 2 Calculated IC and IC values for the 7.4 annua cultivare against Vero E6 cells infected with SARS CoV 2 USA (WA1 (MOLO 1)

FLV5	73.3	4.9	14.5	7.9 ± 0.1	0.07	0.21	10	57.4	167.8
FLVJ	± 2.5	4.5	14.5	7.9 ± 0.1	0.07	0.21	10	57.4	107.0
	47.8								
#15	± 2.5	1.8	5.4	10.7 ± 0.2	0.05	0.15	10	32.3	95.7
	± 2.3								
	20.1								
BUR	± 0.8	0.1	0.2	7.3 ± 0.2	0.01	0.03	10	13.5	37.7
	10.0								
	59.4								
MED		0.4	1.1	22.3 ± 0.5	0.05	0.13	10	23.4	58.7
	± 1.6								

415 * SAM1 and SAM2 are replicated hot water extracts from the same batch of *A. annua* leaves grown and processed from Atelier

416 Temenos; SAM1 was stored at -20C, thawed and reanalyzed at the same time as SAM2. Data are the average of ≥ 6 independently

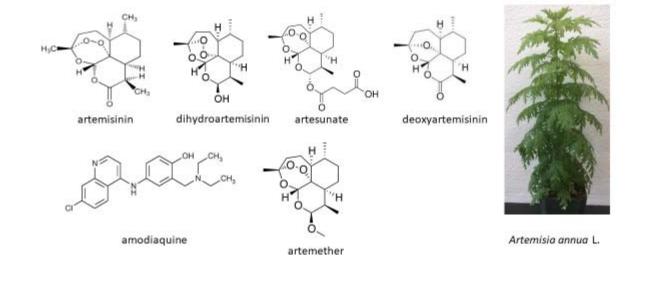
417 extracted leaf samples.

418 ****** Quercetin equivalents.

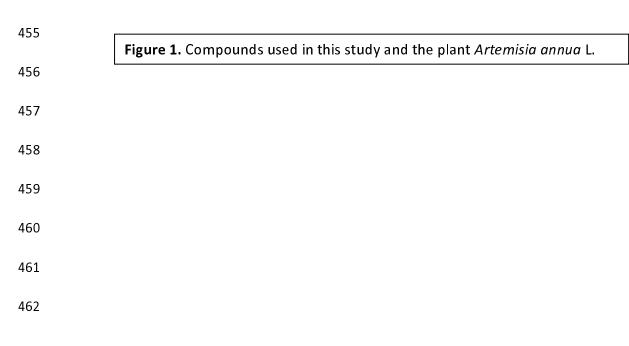
419

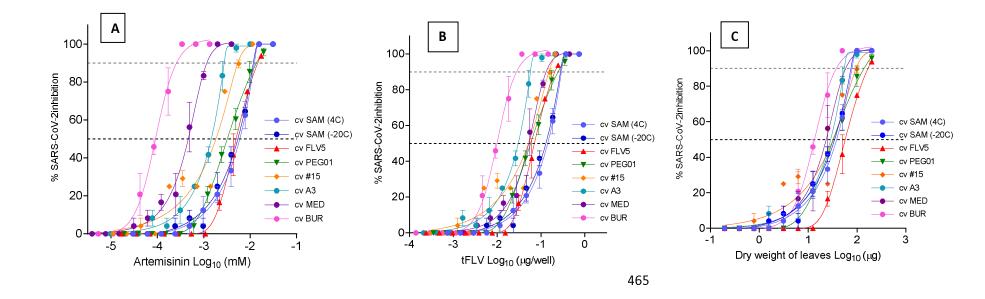
420

421

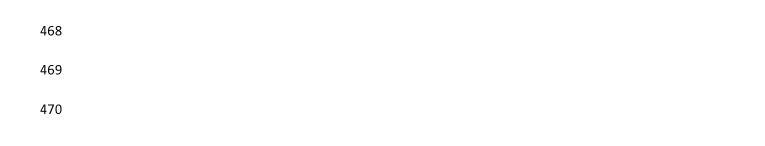

Table 3. Comparative	e IC/EC50s for artemis	sinin derivatives a	nd partner drug antir	malarials.
	Cao et al. (2020)	Gilford et al.	Bae et al.	This report
Compound		(2020)	(2020)	
		μ	M	
Artemisinin	64.5	534.8	NM	70
Arteannuin B	10.3	NM	NM	NM
Artemisinic acid	>100	NM	NM	NM
Deoxyartemisinin	NM	NM	NM	>100
Dihydroartemisinin	13.3	NM	NM	>100
Artesunate	13.0	18.2	53, 1.8	>100
			(Vero E6, Calu-	
			3)	
Arteether	31.9	NM	NM	NM
Artemisone	49.6	NM	NM	NM
Amodiaquine	NM	NM	NM	5.8
Lumefantrine	23.2	NM	NM	NM

423 NM = not measured


424


426 **FIGURE LEGENDS**

- 427 Figure 1. Compounds used in this study and the plant Artemisia annua L.
- 428 Figure. 2. Inhibition plots of extracts for efficacy against Vero E6 cells infected with SARS-CoV-2
- 429 USA/WA1 (MOI 0.1) based on: artemisinin (A); total flavonoids (tFLV) (B); or dry mass of A. annua
- 430 leaves (C) used in the experiments. Data are plotted from an average of three replicates with ± SE.
- 431 Figure 3. VSV spike pseudovirus in Calu-3 and Vero E6 cells and their viability in response to
- 432 increasing hot water Artemisia extracts as percent of solvent controls. Artemisia concentration
- 433 refers to dry leaf mass extracted with hot water. Data plotted using nonlinear regression curve
- 434 fitting using GraphPad Prism. Data are averages of triplicate samples per condition and error bars
- 435 are ± SD. Data are a representative experiment that was repeated twice.
- 436 Figure 4. Comparison of *A. annua* SAM extracts and other antimalarial and artemisinin compounds
- 437 against Vero E6 cells infected with SARS-CoV-2 USA/WA1 (MOI 0.1). A full concentration series for
- 438 all samples except for the A. annua tea could not be fully tested due to solvent toxicity, which was
- 439 also observed for *A. annua* in dichloromethane (DCM) at higher concentrations. Data are plotted
- 440 from an average of three replicates with ± SE.
- 441 Figure 5. Spearman's correlation scatter plots between artemisinin concentration or total
- 442 flavonoid levels vs. calculated IC_{50} and IC_{90} for the hot water extract of each cultivar from data in
- 443 Table 2.
- Figure 6. Cytotoxicity of Vero 6 cells in response to imatinib (A) and A. annua hot water extracts
- (B). Data are plotted from an average of three replicates with ± SE
- 446
- 447
- 448



466

467

Figure. 2. Inhibition plots of extracts for efficacy against Vero E6 cells infected with SARS-CoV-2 USA/WA1 (MOI 0.1) based on: artemisinin (A); total flavonoids (tFLV) (B); or dry mass of *A*. *annua* leaves (C) used in the experiments.

464

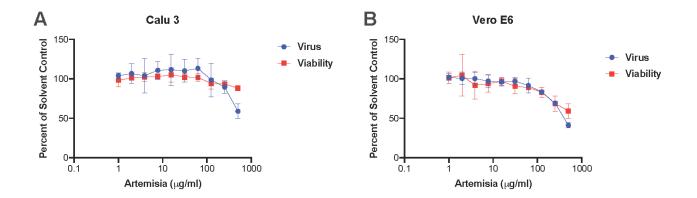
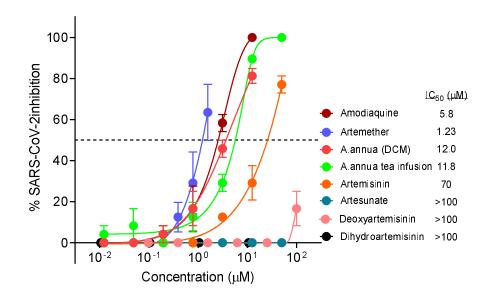
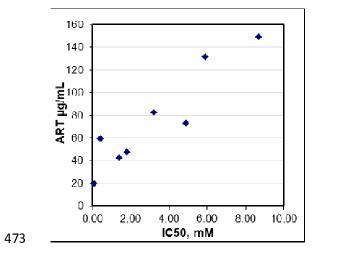
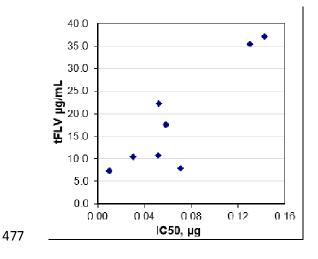




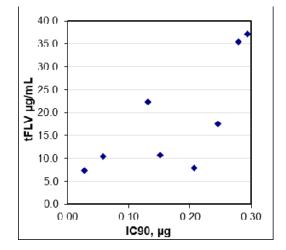
Figure 3. VSV spike pseudovirus in Calu-3 and Vero E6 cells and their viability in response to increasing hot water *Artemisia* extracts as percent of solvent controls. *Artemisia* concentration refers to dry leaf mass extracted with hot water. Data plotted using nonlinear regression curve fitting using GraphPad Prism. Data are averages of triplicate samples per condition and error bars are ± SD. Data are a representative experiment that was repeated twice.

Figure 4. Comparison of *A. annua* SAM extracts and other antimalarial and artemisinin compounds against Vero E6 cells infected with SARS-CoV-2 USA/WA1 (MOI 0.1). A full concentration series for all samples except for the *A. annua* tea could not be fully tested due to solvent toxicity, which was also observed for *A. annua* in dichloromethane (DCM) at higher concentrations.

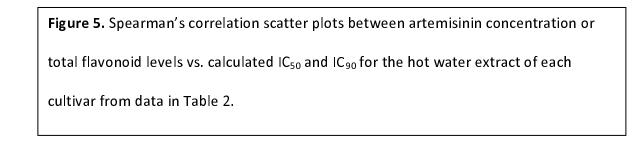
472 ARTEMISININ CORRELATIONS

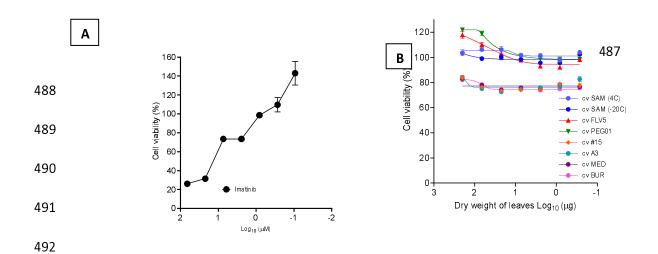

474 Spearman's Rho=0.90, P=0.002

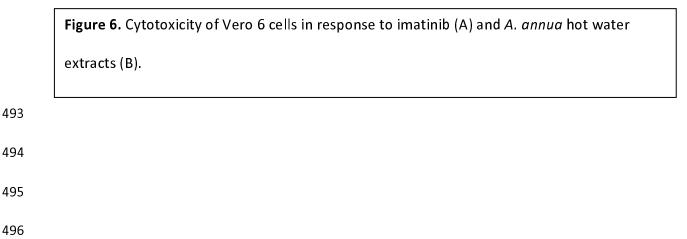
160 140 120 **L** 100 **L** 100 **L** 100 **L** 100 **L** 100 **L** 100 100 15.00 20.00 **L** 100 **L** 15.00 20.00 **L** 15.00 **L** 15.0


Spearman's Rho=0.83, P=0.010

475


476 TOTAL FLAVONOID CORRELATIONS




478 Spearman's Rho=0.74, P=0.037

Spearman's Rho=0.76, P=0.028

499	
500	
501	
502	
503	
504	Supplemental Data:
505	Bioavailability of artemisinin from per os consumption of dried leaf Artemisia annua in a human
506	subject.
507	NB: PJW verified with the WPI IRB that no IRB approval is required for self-
508	experimentation. One of the authors, PJW, age 71, 140 lb [63.6 kg]) consumed 3 g powdered,
509	encapsulated dried <i>A. annua</i> SAM (2018 garden crop) and had 3 total blood draws: just prior to
510	consumption; at 2 h post consumption, and a few weeks later, subject took another 3 g dose and
511	blood was drawn 5 h post consumption. Serum was isolated from the blood and analyzed for
512	artemisinin using gas chromatography mass spectrometry (GCMS) per Martini et al. 2020.
513	Artemisinin (MW = 282.33) amount in the encapsulated material was 1.5% (15 mg/g), so amount
514	consumed (delivered) was 45 mg artemisinin. Estimating 100% bioavailability, and that this human
515	subject had a total volume of about 4.13 L blood
516	(<u>https://reference.medscape.com/calculator/estimated-blood-volume</u>), the amount of delivered
517	artemisinin/mL blood could not exceed 10.90 mg/L, or 10.90 μ g/mL. Human blood is 55% serum
518	(or 2.3 L for this human subject), so the highest serum concentration of artemisinin would actually
519	be about 20 mg/L or 20 μg/mL.

Table S1. Human pharmacokinetics of ART delivered from <i>p.o. Artemisia ann</i> စ်ခြ ¹							
Time (h)	ART in serum (μg/mL)	% of <i>A. annua</i> -ART con	sumed ⁵²²				
0	0.0	0	523				
2	7.04	36	524				
5	0.16	0.8	525				
			526				

^a Consumed 3 g powdered dried leaf *A. annua* containing 10.90 mg ART *in toto;* maximum possible

528 serum concentration at *p.o.* delivery = 19.62 μg ART/mL.

529

Table S2. Examples of comparative amounts of artemisinin metabolites in various cultivars of A.						
annua.						
Compound	LUX	BUR	SAM1, ¹			
	MNHNL17732	LG0019527	MASS 00317314			
		mg/g dry weight leaves	t leaves			
Artemisinin	1.34	1.70	10.94 ² ,15.90 ¹			
Arteannuin B	0.93	ND	0.09 ² , 2.32 ¹			
Artemisinic acid	0.86	ND	ND ² , 0.37 ¹			
Deoxyartemisinin	0.32	0.39	0.83 ² , NM ¹			

530 ND, not detected; NM, not measured.

532 in the dried leaves.

¹ Data from Weathers and Towler (2014) Ind Crop Prod 62:173-178; artemisinic acid is detectable

- ² Data estimated from fresh leaf analysis using dry weight/fresh weight ratio = 0.26 from Table 1 in
- 534 Towler and Weathers (2015) Ind Crop Prod 67:185-191.

535