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Abstract 

Multiparametric phenotypic screening of cells, for example assessing their responses to small molecules 

or knockdown/knockout of specific genes, is a powerful approach to understanding cellular systems 

and identifying potential new therapeutic strategies. However, automated tools for analyzing 

similarities and differences between a large number of tested conditions have not been readily available. 

Methods designed for clustering cells cannot identify differences between samples effectively. We 

introduce COMPARE for ultra-fast and robust analysis of multiparametric high-throughput screening. 

Applying a mass-aware gridding algorithm using hypercubes, COMPARE performs automatic and 

effective similarity comparison for hundreds to thousands of tests and provides information about the 

treatment effect. Particularly for screening data, COMPARE is equipped with modules to remove various 

sources of bias. 

Benchmarking tests show that COMPARE can circumvent batch effects and perform a similarity 

analysis substantially faster than conventional analysis tools. Applying COMPARE to high-throughput 

flow cytometry screening data, we were able to distinguish subtle phenotypic drug responses in a human 

sample and a genetically engineered mouse model with acute myeloid leukemia (AML). COMPARE 

revealed groups of drugs with similar responses even though their mechanisms are distinct from each 

other. In another screening, COMPARE effectively circumvented batch effects and grouped samples from 

AML and myelodysplastic syndrome (MDS) patients using clinical flow cytometry data. 

Introduction 

Technological development has accelerated the generation of multiparametric cellular screening data 

through methodologies such as high-content microscopy and high-throughput flow cytometry in a large 

scale1-3. However, analyzing massive multiparametric datasets to provide an overview of similarity and 

differences between samples is still a challenge1-3. This analytical challenge is further complicated by 

various sources of bias often existing in the data such as batch effects and signal drift within a plate1-3. 

There have been efforts to cluster samples from large-scale multidimensional screening data. 

A simple approach is to use a representative value for each cell marker such as median fluorescence 

intensity (MFI) for clustering samples4. However, a single representative value can easily lose the 

information about the biologically relevant variance within and between cell populations. Meta-

clustering approaches have been suggested to cluster samples based on the similarity of the centroids 

of subpopulations identified in the individual samples5-7. However, meta-clustering using centroids can 

be misleading when subclusters are not sufficiently distinct or the number of sub-clusters varies. The 

excessive computing cost also makes it hard for meta-clustering to be used for a large number of 

samples. Alternatively, predefined groups through manual gating or machine learning have been used 

to cluster samples8, 9. However, using prior knowledge is not suitable for de novo discoveries. 

Dimension reduction methods10-12 combined with the Jensen-Shannon divergence (JSD) metric have 

also been used to cluster multidimensional samples11. However, dimension reduction algorithms 

including factor analysis and principal component analysis still require excessive computing cost with 
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an inherent information loss. It is also important to note that none of the methodologies developed so 

far efficiently correct for the sources of bias in multiparametric screenings. 

To provide a useful tool for precise and effective interpretation of multiparametric screening 

data, we developed COMPARE. COMPARE measures the similarity between samples by dynamic 

gridding of the data. This mass-aware gridding increases the robustness of the algorithm to batch effect, 

signal drift and data size, while guaranteeing fast clustering performance as it does not require the 

computing costs for dimension reduction or subsampling. COMPARE has also modules for quality 

control and bias correction which effectively reveal and remove various sources of bias in the screening 

data. COMPARE provides various visualization tools that help with the interpretation of the results. 

We show that COMPARE can effectively circumvent batch effects in multidimensional 

screening data while showing remarkably fast clustering. Using COMPARE to analyze high-throughput 

flow cytometry screening of AML cells, we successfully removed various sources bias and grouped 

drugs based on their responses. COMPARE effectively revealed that groups of drugs showed similar 

responses even though their known mechanisms are different from each other. COMPARE was sensitive 

enough to capture subtle changes in drug responses. We further applied COMPARE to 25 clinical flow 

cytometry data sets representing AML and MDS patients. Without prior knowledge, COMPARE could 

effectively group the samples based on the disease with indications that the grouping also linked to 

clinical outcome. Thus, we conclude that COMPARE is a useful tool for exploring complex 

multiparametric datasets and to help interpretation of drug responses. 

Results 

COMPARE is a tool for clustering and visualizing multiparametric screening data 

COMPARE is designed to analyze multiparametric screening data from small screenings of just a few 

samples to high-throughput screenings of hundreds of samples. At the core of COMPARE is a module 

for measuring similarity between samples using dynamic gridding (Figure 1, Online Methods). Given 

two samples, the dynamic gridding algorithm divides a high-dimensional space (formed by for example 

fluorescence markers) of each sample into a number of spatial units called hypercubes. The proportion 

of data points for the corresponding hypercubes of each sample is used to obtain the similarity. In this 

setting, COMPARE becomes robust to the difference in the data size, presence of batch effect and signal 

drift. 

Besides its core module, COMPARE comprises several modules for quality control, bias 

correction, clustering and visualization. Figure 1 shows the modules for a high-throughput flow 

cytometry drug screening of mouse AML cells. During quality control, several sources of bias in 

screening data such as autofluorescence, bioluminescence, carryover effect, edge effect, signal drift and 

the drift in the number of live cells (cell viability drift) are identified. Samples and even an entire 

microtiter plate which are worst affected by like autofluorescence and carryover effect can be discarded 
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at this point. The bias correction modules effectively correct for signal and cell viability drifts, the two 

main sources of bias, using regression analysis (Figure 1, Online Methods). Based on similarity, 

COMPARE performs clustering using a graphical algorithm (Figure 1, Online Methods). Initially, all 

nodes (samples) are connected forming a complete weighted graph wherein weights represent similarity 

values. The graph is then pruned to remove potential false positive edges using a threshold inferred 

from negative controls. After constructing a linked graph, clustering is tantamount to finding maximal 

cliques (complete subgraphs that cannot be extended) each containing similar samples like drugs with 

similar responses. 

COMPARE carries out the analysis using parallel computing. Modules can also run 

independently of each other. The similarity and clustering modules of COMPARE can be applied to any 

other tabular datasets. 

Clustering

Bias correctionQC

Similarity calculationVisualization in GUI

Figure 1: COMPARE is a comprehensive suite for multiparametric screening data. High-throughput 

flow cytometry generates massive multidimensional data from hundreds of samples. COMPARE’s 

quality control (QC) module reveals several sources of bias in the assay such as signal (intensity 

difference between the top left and bottom right corners) and cell viability drifts. These two are 

corrected for in the bias correction modules within and between the plates. COMPARE performs a 

pairwise similarity calculation between the samples using dynamic gridding and forming hypercubes 

(represented by distinct colors). The portions of the data within individual hypercubes are used to 

calculate similarity. Clustering is performed based on the similarity. The graphical user interface 

(GUI) provides various ways to thoroughly explore and visualize the read-outs. 
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COMPARE’s similarity comparison is ultra-fast and robust to batch effect 

To evaluate the performance of COMPARE’s similarity module, we tested COMPARE, JSD with UMAP 

and meta-clustering with PhenoGraph6 on a set of mass cytometry data containing phenotypically 

heterogeneous (AML patients) and homogeneous (healthy donors) bone marrow aspirates6. The set 

included 21 samples labeled with 16 surface markers collected from 16 pediatric AML patients and 5 

healthy adult donors. We introduced random noise with Gaussian distribution to the 16 parameters of 

each sample to simulate batch effect. In this setting, although the added noise undermines the 

similarities, the overall cell population morphology is not altered, and the simulated samples will still 

have the highest similarity with their original counterparts. 

Even with the added noise, COMPARE precisely retrieved the original counterparts as the most 

similar ones (Figure 2a). However, the batch effect seriously compromised the performance of meta-

clustering and JSD, showing a number of maximum similarities other than the originals (Figure 2b-c). 

These results demonstrate the advantages of using dynamic gridding for the comparison between 

samples with batch effect. 

Additionally, we investigated the run time of the three methods (on a computer server with 2.30 

GHz CPU and 256 GB DDR4 memory) by comparing each sample to itself (Figure 2d). The running 

time increased steeply for meta-clustering and JSD as the sample size increased. Compared with meta-

clustering and JSD, the increase of computing time for COMPARE is almost unnoticeable. Applied to all 

of the 21 samples, COMPARE took only 25 min to finish the analysis for the 210 pairwise comparisons 

(this is without subsampling or dimension reduction of the data and the risk of losing rare 

subpopulations), while meta-clustering and JSD took 39 h and 10 h respectively. For the feasibility of 

JSD with UMAP, we subsampled each sample to 100,000 cells (default value suggested in11). When 

we fixed this limit to 60% of each sample, the computing time of JSD increased to 3 days. 

 

Identifying cell subtype-specific drug responses in high-throughput flow cytometry of mouse 

AML cells 

We applied COMPARE to high-throughput flow cytometry data to identify cell subtype-specific 

responses evoked by antineoplastic agents in leukemic spleen cells from an AML mouse model. Splenic 

cells were sorted for c-Kit cell surface expression, allowing for the enrichment of stem/progenitor-type 

leukemic cells. On ex vivo expansion, these cells differentiate and expand in a similar way as in vivo 

with a clear stem cell/progenitor population and partial differentiation towards CD11b/Gr-1 or 

CD16/CD32-expressing differentiated myeloid cells. After ex vivo expansion, the leukemic cells were 

plated onto multi-well plates containing a library of 116 antineoplastic agents including surface and 
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nuclear receptor inhibitors and activators, enzyme inhibitors and cytotoxic chemotherapy in a five-point 

concentration range as well as 20 negative control wells (Supplementary Table 1). After 72 h of drug 

exposure, we stained the cells with fluorescently labeled antibodies against three cell surface markers 

(CD16/32, Gr-1 and CD11b) and quantified cell surface marker expression using a high-throughput 

flow cytometer. 

COMPARE corrected the signal drift and sources of bias in cell numbers, as well as inter-plate 

sources of bias (Supplementary Figure 1). After clustering and clique analysis, we obtained 134 

cliques, each sharing similar drug responses (Supplementary Table 2). 

To get an overview of the assay, we generated a dispersion map of the clusters (Figure 3a-b 

and Online Methods). We identified a distinct response group characterized with decreased Gr-1 and 

concomitant increase of CD16/CD32 as compared to control (Group 1 in Figure 3a). Most of the 

cliques included in this response group consisted of drugs in high concentrations with 

cytotoxic/cytostatic effects. However, some drugs in this group had a milder effect on live cell numbers, 
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Figure 2: COMPARE robustly measures the similarity between samples in the presence of batch 

effect. Similarity matrix generated by COMPARE is shown in (a). Size and color of dots represent the 

level of similarity. Self-comparisons were removed. Noise was added (marked with *) to the original 

21 mass cytometry samples of bone marrow aspirates from 16 pediatric AML patients (S) and 5 healthy 

adult donors (H). Similarity matrices using JSD with UMAP and meta-clustering with PhenoGraph are 

shown in (b) and (c) respectively. (d) shows the run time of comparing each sample to itself. Samples 

were sorted based on their size. 
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and these were enriched for mitogen-activated protein kinase (MAPK) pathway-associated inhibitors 
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1. Nilotinib 1,000 nM
2. Cobimetinib 10 nM
3. SHP099 100 nM
4. Entospletinib 5,000 nM
5. Trametinib 2.5 nM
6. Ponatinib 100 nM
7. SCH772984 100 nM
8. Ralimetinib 1,000 nM
9. Ruxolitinib 100 nM
10. BRD7116 1,000 nM
11. Trametinib 25 nM
12. Dasatinib 100 nM
13. Celecoxib 10,000 nM
14. Dexamethasone 1,000 nM
15. Dexamethasone 10,000 nM
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(Figure 3c, Supplementary Table 3). For instance, trametinib (2.5 nM) in clique 23 (C23) showed 

marked decrease of Gr-1 and increase of CD16/CD32, further confirming the results of COMPARE 

(Figure 3d). The MAPK pathway is a regulator of diverse cellular processes such as proliferation, 

survival, differentiation and motility13. Our findings suggest that MAPK signaling controls the 

differentiation and/or proliferation towards Gr-1-/CD16+ cells. 

In high concentration, molibresib and birabresib, inhibitors of BET proteins BRD2, BRD3, and 

BRD4, caused a reduction in live cell counts but also a reduction of MFI in all the measured markers, 

which corresponds to the loss of differentiation marker positive cells (Gr-1+, CD11b+, CD16/CD32 

high) (Figure 3b: C100, C110, Figure 3d). The BRD2/3/4 proteins regulate transcription via 

recognition of acetylated lysines on histones and concomitant recruitment of other transcription and 

chromatin remodeling factors to enhance transcriptional activity14. The enrichment of seemingly highly 

undifferentiated cells could therefore be due to an early block in differentiation or that inhibition of 

BRD2/3/4 has led to a general decrease of cell surface protein transcription. 

In this cell model, the leukemic stem-like cells are expected to be present within the 

differentiation marker negative population. These cells are potential targets for the treatment against 

leukemia. We observed response group 2 (Figure 3a) had a higher MFI in marker Gr-1 as compared to 

control, which could indicate a higher proportion of marker positive cells and thus, a lower proportion 

of marker negative ones. For most treatments in group 2, the increase in Gr-1 MFI was very slight and 

seemed to be linked to toxic drug concentrations. However, three drugs, vincristine (C80), tazemetostat, 

and tretinoin clearly reduced the proportion of differentiation marker negative cells (Figure 3d). 

Interestingly, these three drugs have very different modes of action: vincristine is a microtubule 

polymerization inhibitor, tazemetostat inhibits the histone methyltransferase EZH2, and tretinoin is a 

retinoic acid receptor agonist (Supplementary Table 3). 

Taken together, COMPARE analysis of the high-throughput flow cytometry screening allowed 

rapid identification of several distinct phenotypic responses in this mouse AML model, as well as the 

cellular signals that drive them. 

 

Figure 3: COMPARE analysis identifies several distinct cell subtype-specific responses in a high-

throughput flow cytometry screening of mouse AML cells. (a) A UMAP plot of cliques identified 

by COMPARE. Cliques are colored by Gr-1 and CD16/CD32 MFIs. Group 1 is characterized with 

reduced Gr-1 and increased CD16/CD32 as compared with control. Group 2 has increased Gr-1 

expression compared with control. (b) Heatmap of marker MFIs. Values are normalized between 0 and 

1 per marker to make cross-comparisons possible. Cliques containing control, trametinib (2.5 nM) 

(C23), molibresib and birabresib (C100 and C110), and vincristine (C80) are marked. (c) Waterfall plot 

of compounds belonging to response group 1, showing live cell count as a percentage of control 

treatment (DMSO). (d) Density scatter plots for Control (DMSO), C23, C100, and C80. 
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Identifying a set of drugs that induce expansion of a distinct CD34+/CD38+ cell population in an 

AML patient 

We further applied COMPARE to the drug screening data from AML patient samples. Primary AML 

bone marrow mononuclear cells were dispensed into a 384-multiwell plate containing a library of 40 

drugs and drug combinations in 7-point concentration ranges (Supplementary Table 4). After 72 h of 

drug exposure, the cells were stained with fluorescently labeled antibodies against a panel of AML-

related cell surface markers (CD45, CD34, CD38, CD117, HLA-DR, CD45-RA, CD3 and a mix of 

myeloid differentiation-related markers). A high-throughput flow cytometer was used to quantify cell 

surface marker expression. 

COMPARE analysis identified several distinct response groups (Figure 4a, Supplementary 

Table 5). Response group 1 had notably higher MFIs in the CD34 and CD38 channels compared to 

controls. Interestingly, the increase in MFIs was due to a drug concentration-dependent appearance of 

a CD34+/CD38+ cell population that was barely detectable in the DMSO control samples (Figure 4b). 

The appearance of this CD34+/CD38+ population was also concomitant to a general increase in live 

cell count (Figure 4c). Altogether, seven different drugs had the same effect (Figure 4d), most of them 

being highly selective signal transduction inhibitors such as trametinib (MEK inhibitor), copanlisib 

(PI3K inhibitor) and PIM447 (PIM kinase inhibitor). 

Response group 2 consisted of two drugs: birabresib and lenalidomide in different 

concentrations. These induced a decrease in MFI in the CD45-RA and CD45 channels (Supplementary 

Figure 2a). In the case of lenalidomide this response was likely due to cell toxicity and/or growth 

inhibition (Supplementary Figure 2b). Interestingly, birabresib response was very pronounced 

without the loss of live cell numbers, (Supplementary Figure 2b) but with a decrease in MFI in the 

channel for the cell differentiation marker mix (Supplementary Figure 2c). COMPARE detected 

response group 3 was distinct from the controls. This group includes treatment with tretinoin (several 

concentrations), navitoclax, and mitoxantrone (low dose). 

Further validation showed the phenotypic response in group 3 is subtle but with a distinct 

increase in CD34+ cells (Supplementary Figure 2d). This result highlights that COMPARE analysis is 

sensitive enough to identify these subtle changes. 

Immunophenotypic similarities measured by COMPARE correlate with MDS and AML patients’ 

prognosis 

MDS is caused by dysplastic hematopoietic stem cell-like cells which suppress normal hematopoiesis 

and initially results in cytopenia, which later on presents with more severe symptoms due to clonal 

progression and the lack of a functional hematopoiesis. In addition, approximately one third of MDS 

cases progress to AML15, 16. MDS is typically assigned a risk level based on the number of immature 

blood cells in the bone marrow, level of cytopenia, and the presence of known poor prognosis 

cytogenetic alterations. MDS is incurable except for allogeneic bone marrow transplantation, which is 
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not an option in the majority of patients due to high age and comorbidities. Cases scored as low risk 

(LR-MDS) tend to progress slowly. Most cases of LR-MDS in the elderly are managed with growth 

factors and transfusions to maintain red blood cell counts. In contrast, high-risk MDS (HR-MDS) is 

likely to progress quickly or transform to AML and survival is expected to be short and more intensive 

b

c d
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12.34

10.93

9.52

a

Figure 4: Identification of drugs which induce expansion of CD34+/CD38+ cells in an AML 

patient. (a) UMAP of cliques identified by COMPARE. Cliques are colored by CD34 and CD38 MFI. 

Response groups of interest are indicated using a dashed line. (b) Example of response group 1: density 

scatter plot of markers CD34 and CD38 in different concentrations of PIM kinase inhibitor PIM447. 

(c) Count of live cells after 72 h exposure to different concentrations of PIM kinase inhibitor PIM447. 

(d) Table of drugs which induced expansion of the CD34+/CD38+ cell population. 
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treatment, including hypomethylating agents, is often applied. Therefore, it is important to weigh the 

benefits of treatment options against the possible risks and side effects. 

We analyzed the clinical flow cytometry data from bone marrow mononuclear cell samples 

taken at diagnosis for 12 LR-MDS patients, 4 HR-MDS patients (as determined by the revised 

international prognostic scoring system (IPSS) total risk score17) and 9 AML patients, collected between 

November 2015 and November 2018. The sample cohort was blindly analyzed with COMPARE using 

the data from a standardized clinical flow cytometry panel detecting 20 markers in 4 different separately 

stained tubes (Supplementary Table 6). Often, flow cytometry data are difficult to standardize between 

batches analyzed days or months apart, as the cytometer’s settings can change with time, or reagents 

may fade. The batch effect on this data set was inevitable due to a 3-year-time span of collection and 

analysis. However, since COMPARE is able to circumvent batch effect, we were able to apply it to assess 

similarity between the samples. 

We could identify immunophenotypically similar patients and, as expected, MDS samples were 

overall more similar to each other than the AML samples, which showed a greater heterogeneity 

(Figure 5a). In comparing which samples showed greatest similarity to a given sample together with 

information about clinical outcome (Figure 5b, Supplementary Table 7), it appeared that samples 

from cases with a good clinical outcome most closely resembled other good outcome cases and poor 

a b

Figure 5: Immunophenotypic similarities measured by COMPARE correlate with prognosis of 

AML and MDS patients. (a) The similarity graph. MDS samples formed a dense community in the 

middle with AML patients around them. LR-MDS-5 and AML-7 showed low similarity with the rest 

of the samples. (b) The similarity table. For each row, similar samples were marked with the enlarged 

size and darker color of the dots. Values in each row were normalized to accentuate the dynamic range. 

The table legend shows the clinical conditions of patients at the time of writing. 
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outcome cases resembled other aggressive cases. For example, HR-MDS-1 and -2, where the diagnostic 

samples had very similar immunophenotypic profiles, both progressed to AML. Also, patient HR-MDS-

4 whose sample showed a high similarity to an AML patient’s sample progressed to AML. Conversely, 

patient AML-2, whose sample resembled an LrMDS profile upon data collection, went into remission 

with only one cycle of induction chemotherapy. For the AML samples, even though they were 

heterogeneous, the highest similarities were seen with cases with similar patient outcomes. Overall, 

these results show that COMPARE can be used to analyze similarities between complex sets of clinical 

flow cytometry data with batch effects and that the analysis could potentially be informative for 

prognostic purposes, which however will require analyses of larger cohorts of uniformly treated 

patients. 

Discussion 

Technological developments in phenotypic screening have enabled testing thousands of conditions in 

parallel. Algorithmic development is essential to group the samples based on the cell population change. 

We developed COMPARE to analyze this type of multidimensional phenotypic screening data. COMPARE 

is unique in many ways compared to previous analysis methods. COMPARE utilizes a dynamic gridding 

algorithm, which substantially reduces the computing costs and provides robustness to batch effects 

and signal drift in the input data. Compared with it, meta-clustering and JSD requires a considerable 

amount of time for clustering or obtaining probability distribution. 

We tested the effectiveness of dynamic gridding by checking the similarity after adding noise. 

COMPARE effectively circumvented the batch effect and found the best match with the original 

counterparts while JSD and meta-clustering (with PhenoGraph) analysis suffered from the batch effect. 

The poor accuracy of meta-clustering demonstrates the drawbacks of using the centroids for similarity 

comparison across samples. It is of note that COMPARE did not have to subsample the data and ran more 

than 20 times faster than JSD for analyzing mass cytometry data from 21 patients. Likewise, strategies 

to cluster a handful of multi-dimensional data such as CyTOFmerge18 cannot be applied for large-scale 

screening data. Our results indicate that approaches such as meta-clustering cannot be applied to 

multiparametric screening that generates data from hundreds to thousands of conditions. It was indeed 

impossible for us to benchmark COMPARE to other meta-clustering approaches with screening data due 

to their exhaustive computing cost. 

COMPARE is equipped with several modules for quality control, bias correction and 

visualization. COMPARE has an option to correct for signal and cell viability drifts when needed making 

it suitable to analyze long run screening data. In our explored datasets, signal drift was obviously 

associated with the order in which wells were read. It was caused by the time differences in antibody 

incubation across the plate as the flow cytometer requires more than one hour to sample all wells in a 

384-well plate. For high-density assay plate formats with a large number of wells, this can cause gradual 

incremental influences in intensity and cell viability. Therefore, when aligning wells along the order 
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that the flow cytometer sampled the wells, we found a linear trend in MFIs. We benefited from 

regression analysis to remove the effect of signal drift. 

COMPARE provides guidance in interpreting drug responses with its visualization tools. We 

identified similar responses evoked by different doses of antineoplastic agents in high-throughput flow 

cytometry screening of an AML mouse model and an AML human patient. In the mouse screening, the 

results allowed us to identify key signals in the cells that control different steps of differentiation. We 

also identified drugs with different mechanisms exhibiting similar responses, which may suggest 

crosstalk between different signaling pathways. Importantly, we could also identify subtle but distinct 

phenotypic drug-induced changes. During the analysis, COMPARE made it easy to explore a very 

complex dataset and was able to identify multiple cell-subtype-specific drug responses in a substantially 

reduced timeline. 

Using COMPARE, we evaluated the immunophenotypic similarity of 25 AML and MDS patient 

samples in a clinical flow cytometry data set collected upon diagnosis. It is encouraging that this pilot 

analysis indicates COMPARE can generate clinically relevant information. The assessment of COMPARE 

similarity analysis in relation to clinical outcome showed that AML patients whose immunophenotypic 

profiles resembled profiles of non-aggressive MDS cases were associated with a good outcome. 

Conversely, MDS samples, showing similarity with aggressive AML profiles, were associated with a 

poor outcome, including transformation into AML. We speculate that analysis of clinical flow data by 

COMPARE could potentially be a prognostic tool in hematological malignancies, either as an alternative 

or a supplement to conventional risk assessments. 

COMPARE can entirely run through the command-line interface on computer servers or the 

graphical user interface (GUI) on desktops. The GUI provides the investigator with numerous 

interactive visualization tools including cell staining, graphical representation and gating. In sum, 

COMPARE provides a total package for fast, accurate and readily interpretable multiparametric screening 

data analysis. 

Online Methods 

Mass cytometry of healthy and pediatric AML bone marrow aspirates. Mass cytometry dataset for 

21 samples labeled with 16 surface markers collected from 16 pediatric AML patients obtained at 

diagnosis and 5 healthy adult donors6 were downloaded from Cytobank with the experiment ID 44185. 

There are 378 FCS files in this experiment with one FCS file for each of 21 patients for each of 17 

conditions (2 basal replicates and 16 perturbations). All FCS files from a single patient had been pooled 

then clustered with the PhenoGraph algorithm. Each file includes a column named PhenoGraph that 

specifies the PhenoGraph cluster to which each event was assigned as an integer. A value of 0 indicates 

no cluster was assigned because the cells were identified as outliers during some stage of analysis. 

Using the PhenoGraph column, we determined centroids of cell clusters, and used PhenoGraph to meta-

cluster them as described in Lavine et al6. To generate the similarity matrix, we adapted an approach 
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similar to that of COMPARE so that each meta-cluster as a spatial unit was treated like a hypercube. We 

set COMPARE’s 𝑛 to 4 for this data set (Online Methods and Supplementary Notes). 

 

High-throughput flow cytometry of AML mouse model. AML primary splenic cells from Npm1+/cA; 

Flt3+/ITD; Dnmt3a+/-; Mx1-Cre+ moribund mice were sorted for c-Kit positivity and expanded ex vivo. 

AML cells were treated with a library of 116 chemotherapy and immunotherapy antineoplastic agents 

in a five-point concentration range (Supplementary Table 1). Treated samples were stained with three 

informative cell surface antibodies (Supplementary Table 8) and fluorescence was detected using a 

high-throughput flow cytometer iQue Screener Plus (Intellicyt). We set COMPARE’s 𝑛 to 5 for this 

assay. 

 

High-throughput flow cytometry of an AML human patient sample. Mononuclear cells were 

isolated from a donated human bone marrow aspirate from an AML patient (Danish National Ethical 

committee/National Videnskabsetisk Komité permit 1705391). The cells were treated with a library of 

40 chemotherapy and immunotherapy antineoplastic agents in a seven-point concentration range 

(Supplementary Table 4) for 72 h. Cells were subsequently incubated with fluorescently labeled 

antibodies targeting 11 informative cell surface proteins in 8 fluorescence channels (Supplementary 

Table 9). Samples were read using a high-throughput flow cytometer (iQue Screener Plus, Intellicyt). 

We set COMPARE’s 𝑛 to 3 for this assay. 

 

Flow cytometry of AML and MDS patients. Clinical flow cytometry data using a slightly modified 

AML panel as described by the Euroflow Consortium19 from 25 bone marrow aspirates from MDS and 

AML patients from Rigshospitalet (Copenhagen, DK) were used for analysis. Each sample was 

analyzed using a total of four tubes (Euroflow AML panel tubes 1-4) with eight antibodies in each tube 

(Supplementary Table 6). Acquisition of data was performed on a FACS Canto (Becton Dickinson 

Immunocytometry Systems) and data analysis was done in the Infinicyt software (Cytognos, 

Salamanca, Spain). We set COMPARE’s 𝑛 to 5 for this assay. 

 

Quality control (QC). Microplate heatmaps of medians come in handy in QC to reveal possible issues 

such as signal and cell viability drifts occurring during screening. However, as a typical heatmap has 

an equally spaced color palette, small but significant differences between wells are obscured and 

probably not visible. Therefore, we normalized the color palette by the distribution of the medians. 

Also, before clustering, we removed outliers in the negative controls that were different from the others 

in terms of similarity values measured by COMPARE. 

 

Correcting signal and cell viability drifts. Depending on the protocol by which wells are processed, 

time may become a major concern so that some specific wells may have lower or higher values than 

expected. To correct for these sources of bias, we employed a two-step correction: intra-plate drift 
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correction and inter-plate drift (batch effect) correction. For a given plate, we first fit a linear regression 

model and then vertically translate points (well values) with respect to the learned line as it rotates to 

the slope zero. After correcting for the intra-plate bias, the inter-plate bias is corrected by aligning 

medians of the plates, that is, translating to a common baseline. 

 

Similarity calculation using dynamic gridding. To measure the similarity between two datasets, 

COMPARE divides each dimension into 𝑛 subsets for each dataset individually so that a dataset with 𝑑 

dimensions (markers) will be gridded into at most 𝑛𝑑 spatial units called hypercubes. COMPARE grids 

only the part of the space encompassing data points, avoiding empty regions. It then measures the 

proportion of data points for either dataset within each of the corresponding hypercubes. The difference 

between the two proportions is indicative of the similarity within that relative spatial position 

represented by each hypercube. The similarity in the exclusive hypercubes is considered 0. Averaging 

these differences across all the hypercubes indicates the amount of similarity between the two datasets. 

COMPARE captures the morphology of data enabling it to measure similarity even without 

correcting for signal drift or batch effect (Supplementary Notes). This way, two technical replicates 

analyzed by two different instruments or configurations suffering from signal shift will still have the 

highest similarity. To generate a similarity matrix of multiple input samples, COMPARE runs in parallel. 

The similarity matrix could then be used for identifying clusters of samples such as drugs with similar 

dose responses. 

 

Graphical clustering of samples. To cluster samples, we developed a graphical clustering algorithm 

in which initially all nodes (samples) are connected forming a weighted complete graph wherein edges 

represent similarity between nodes. This graph is then pruned to remove potential false positive edges 

for a given cutoff inferred from negative controls. The optimal cutoff turns out to be the minimum 

weight in the maximum spanning tree of negative control nodes. After pruning, some samples may end 

up being connected to the negative controls (biologically inactive agents) and some disconnected (active 

agents). After constructing this graph, clustering is tantamount to finding maximal cliques among potent 

agents. In addition to maximal cliques, it also reports communities (a clique is actually a subset of a 

community). Communities can be seen as loose clusters. In a community, unlike a clique, similarity is 

not necessarily transitive meaning that if A is similar to B and B is similar to C, A is not necessarily 

similar to C. If these were three drugs within a community, concluding they had an equal response was 

not necessarily right unless they would form a clique. 

 

Dispersion graph and Dispersion map. COMPARE visualizes the similarity of samples in the form of 

a dispersion graph by constructing their maximum spanning tree (Supplementary Notes). COMPARE 

also uses UMAP to represent a dispersion map of clusters. The map is constructed using the centroid 

(median) of each clique. An informative map shows different groups by coloring the centroids 

according to their value. These groups are mostly the identified communities the cliques come from. 
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Data Availability 

Human AML high-throughput flow cytometry data have been deposited in FLOWRepository with the 

repository ID FR-FCM-Z3DP. Mouse AML high-throughput flow cytometry data have been deposited 

in FLOWRepository with the repository ID FR-FCM-Z357. 

Code Availability 

Acquisition, installation and more technical details are available in the COMPARE’s online tutorial on 

GitHub. Similarity measurement and clustering modules as stand-alone tools have been merged into a 

separate R package and are available for download at GitHub. 
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