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Abstract
To analyse large corpora using machine learning and
other Natural Language Processing (NLP) algorithms,
the corpora need to be standardised. The BioC format
is a community-driven simple data structure for sharing
text and annotations, however there is limited access
to biomedical literature in BioC format and a lack of
bioinformatics tools to convert online publication HTML
formats to BioC. We present Auto-CORPus (Automated
pipeline for Consistent Outputs from Research Publi-
cations), a novel NLP tool for the standardisation and
conversion of publication HTML and table image files
to three convenient machine-interpretable outputs to
support biomedical text analytics. Firstly, Auto-CORPus
can be configured to convert HTML from various pub-
lication sources to BioC. To standardise the description
of heterogenous publication sections, the Information
Artifact Ontology is used to annotate each section within
the BioC output. Secondly, Auto-CORPus transforms
publication tables to a JSON format to store, exchange
and annotate table data between text analytics systems.
The BioC specification does not include a data structure
for representing publication table data, so we present a
JSON format for sharing table content and metadata.
Inline tables within full-text HTML files and linked
tables within separate HTML files are processed and
converted to machine-interpretable table JSON format.
Finally, Auto-CORPus extracts abbreviations declared
within publication text and provides an abbreviations
JSON output that relates an abbreviation with the
full definition. This abbreviation collection supports
text mining tasks such as named entity recognition by
including abbreviations unique to individual publications
that are not contained within standard bio-ontologies
and dictionaries.
Availability: The Auto-CORPus package is freely
available with detailed instructions from Github at
https://github.com/omicsNLP/Auto-CORPus/.
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Introduction

Natural language processing (NLP) is a branch of artificial
intelligence that uses computers to process, understand and
use human language. NLP is applied in many different fields
including language modelling, speech recognition, text min-
ing and translation systems. In the biomedical realm NLP
has been applied to extract, for example, medication data
from electronic health records and patient clinical history
from free-text (unstructured) clinical notes, to significantly
speed up processes that would otherwise be extracted manu-
ally by experts (1, 2). Biomedical research publications, al-
though semi-structured, pose similar challenges with regards
to extracting and integrating relevant information (3). The
full-text of biomedical literature is predominately made avail-
able online in the accessible and reusable Hypertext Markup
Language (HTML) format, however, some publications are
only available as Portable Document Format (PDF) docu-
ments which are more difficult to reuse. Efforts to resolve
the problem of publication text accessibility across science in
general includes work by the Semantic Scholar search engine
to convert PDF documents to HTML formats (4). Whichever
process is used to obtain a suitable HTML file, before the
text can be processed using NLP, heterogeneously structured
HTML requires standardisation and optimisation. BioC is a
simple JSON (and XML) format for sharing and reusing text
data that has been developed by the text mining community
to improve system interoperability (5). The BioC data model
consists of collections of documents divided into data ele-
ments such as publication sections and associated entity and
relation annotations. PubMed Central (PMC) makes full-text
articles from its Open Access and Author Manuscript collec-
tions available in BioC format (6). To our knowledge there
are no services available to convert PMC publications that are
not part of these collections to BioC. Additionally, there is a
gap in available software to convert publishers’ publication
HTML to BioC, creating a bottleneck in many biomedical
literature text mining workflows caused by having to process
documents in heterogenous formats. To bridge this gap, we
have developed an Automated pipeline for Consistent Out-
puts from Research Publications (Auto-CORPus) that can be

Beck et al. | bioRχiv | November 18, 2021 | 1–18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.01.08.425887doi: bioRxiv preprint 

https://github.com/omicsNLP/Auto-CORPus/
timbeck@leicester.ac.uk
jmp111@ic.ac.uk
https://doi.org/10.1101/2021.01.08.425887
http://creativecommons.org/licenses/by-nc-nd/4.0/


configured to process any HTML publication structure and
transform the corresponding publications to BioC format.

During information extraction, the publication section con-
text of an entity will assist with entity prioritisation. For
example, an entity identified in the results section may be
regarded as a higher priority novel finding than one identi-
fied in the introduction section. However, the naming and
the sequential order of sections within research articles differ
between publications. A methods section, for example, may
be found at different locations relative to other sections and
identified using a range of synonyms such as experimental
section, experimental procedures and methodology. The In-
formation Artifact Ontology (IAO) was created to serve as a
domain-neutral resource for the representation of types of in-
formation content entities such as documents, databases, and
digital images (7). Auto-CORPus applies IAO annotations
to BioC file outputs to standardise the description of sections
across all processed publications.

Vast amounts of biomedical data are contained in publication
tables which can be large and multi-dimensional where in-
formation beyond a standard two-dimensional matrix is con-
veyed to a human reader. For example, a table may have
subsections or entirely new column headers to merge multi-
ple tables into a single structure. Milosevic and colleagues
developed a methodology to analyse complex tables that are
represented in XML format and perform a semantic analysis
to classify the data types used within a table (8). The out-
puts from the table analysis are stored in esoteric XML or
database models. The communal BioC format on the other
hand has limited support for tables, for example the PMC
BioC JSON output includes table data in PMC XML format,
introducing file parsing complexity. In addition to variations
in how tables are structured, there is variability amongst table
filetypes. Whereas publication full-text is contained within a
single HTML file, tables may be contained within that full-
text file (inline tables), or individual tables may be contained
in separate HTML files (linked tables). We have defined a
dedicated table JSON format for representing table data from
both formats of table. The contents of individual cells are
unambiguously identified and thus can be used in entity and
relation annotations. In developing the Auto-CORPus table
JSON format, we adopted a similar goal to the BioC com-
munity, namely, a simple format to maximise interoperabil-
ity and reuse of table documents and annotations. The ta-
ble JSON reuses the BioC data model for entity and relation
annotations, ensuing that table and full-text annotations can
share the same BioC syntax. Auto-CORPus transforms both
inline and linked HTML tables to the machine interpretable
table JSON format.

Abbreviations and acronyms are widely used in publication
text to reduce space and avoid prolix. Abbreviations and their
definitions are useful in text mining to identify lexical vari-
ations of words describing identical entities. However, the
frequent use of novel abbreviations in texts presents a chal-
lenge for the curators of biomedical lexical ontologies to en-
sure they are continually updated. Several algorithms have
been developed to extract abbreviations and their definitions

from biomedical text (9–11). Abbreviations within publica-
tions can be defined when they are declared within the full-
text, and in some publications, are included in a dedicated
abbreviations section. Auto-CORPus adapts an abbreviation
detecting methodology (12) and couples it with IAO section
detection to comprehensively extract abbreviations declared
in the full-text and in the abbreviations section. For each pub-
lication, Auto-CORPus generates an abbreviations dictionary
JSON file.
The aim of this paper is to describe the open Auto-CORPus
python package and the text mining use cases that make it
a simple user-friendly application to create machine inter-
pretable biomedical literature files, from a single publication
to a large corpus. The following sections describe the tech-
nical details about the algorithms developed and the bench-
marking undertaken to assess the quality of the three Auto-
CORPus files generated for each publication: BioC full-text,
Auto-CORPus tables and abbreviations JSONs.

Materials and Methods
Data for algorithm development. We used a set of 3,279
full-text HTML and 1,041 linked table files to develop and
test the algorithms described in this section. Files for
1,200 Open Access (OA) Genome-Wide Association Study
(GWAS) publications whose data exists in the GWAS Central
database (13) were downloaded from PMC in March 2020.
A further 1,241 OA PMC publications of Metabolome-Wide
Association Studies (MWAS) and metabolomics studies on
cancer, gastrointestinal diseases, metabolic syndrome, sepsis
and neurodegenerative, psychiatric, and brain illnesses were
also downloaded to ensure the methods are not biased to-
wards one domain, more information is available in the Sup-
plementary Materials. This formed a collection of 2,441 pub-
lications that will be referred to as the “OA dataset”. We also
downloaded publisher-specific full-text files, and linked table
data where available, for publications whose data exists in the
GWAS Central database. This collection of 838 full-text and
1,041 table HTML files will be referred to as the “publisher
dataset”. Table 1 lists the publishers and journals included
in the publisher dataset and the number of publications that
overlap with the OA dataset.

PubMed Central (PMC) search terms. There exists no
equivalent to the GWAS Central database (13) for
MWAS/metabolomics studies, therefore a best effort was
made to create a collection of publications that span multiple
publishers, journals and focus on a variety of disease traits.
We searched PMC in March 2020 for OA publications using
the following search terms to appear in the title or abstract
for the field (metabolomics, metabolome, metabolomic,
metabolome-wide, metabonomics, metabonome, metabo-
nomic, metabonome-wide, lipidomics, lipidome, lipidomic,
lipidome-wide, metabolites, metabolite, metabolic profil-
ing, metabolic phenotyping), type of samples (urine, uri-
nary, blood, serum, plasma, faecal, faeces, cerebrospinal
fluid, CSF, biofluid, stool, feces, fecal), type of technol-
ogy (nmr spectroscopy, nuclear magnetic resonance, NMR,
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Publisher Journal(s) Number of
full-text files

Overlap with
OA dataset Table type Number of

table files

American Heart
Association

Circulation
Cardiovascular Genetics 52 39 Inline -

American Society of
Hematology Blood 31 25 Inline -

American Thoracic
Society

American Journal of
Respiratory and Critical

Care Medicine
20 18 Inline -

BioMed Central BMC Medical Genetics 43 43 Linked HTML 160

Cell Press American Journal of
Human Genetics 5 5 Inline -

Elsevier Biological Psychiatry 5 5 Inline -

Elsevier Gastroenterology 5 2 Inline -

Frontiers Frontiers in Genetics 20 20 Linked images n/a

Massachusetts Medical
Society

The New England
Journal of Medicine 20 12 Linked images n/a

Mosby
The Journal of Allergy

and Clinical
Immunology

5 3 Inline -

Nature Portfolio European Journal of
Human Genetics 50 50 Linked HTML 123

Nature Portfolio Journal of Human
Genetics 37 3 Linked HTML 90

Nature Portfolio Molecular Psychiatry 103 78 Linked HTML 262

Nature Portfolio Scientific Reports 80 80 Linked HTML 190

Nature Portfolio The Pharmacogenomics
Journal 37 16 Linked HTML 116

Nature Portfolio Translational Psychiatry 41 41 Linked HTML 87

Oxford University Press Human Molecular
Genetics 254 186 Inline -

PLOS PLOS One 20 20 Linked images n/a

Springer Human Genetics 5 2 Linked HTML 13

Wiley-Blackwell American Journal of
Medical Genetics 5 0 Inline -

Total 838 648 1041

Table 1. Publishers and journals included in the publisher dataset. The full-text files were downloaded in HTML format and the linked table files were downloaded when
available in HTML formats. The full-text files that overlap with the OA dataset were used to assess the consistency of outputs generated from different sources.
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mass spectrometry, LCMS, GCMS, UPLCMS, LC-MS, GC-
MS, UPLC-MS, CEMS, CE-MS), human studies (human,
patients, subjects, participants) – all using an ‘AND’ state-
ment – and exclude terms (using a ‘NOT’ statement) out-
side the scope (mouse, mice, rat, rats, dog, dogs, animal, cell
culture, dose, review, proteomics, diet, proteomic, proteome,
transcriptomics, transcriptomic, transcriptome).
These search terms were combined with either search
terms targeting specific journals that commonly publish
MWAS/metabolomics studies (Analytical Chemistry, Journal
of Proteome Research, Analytica Chimica Acta, Journal of
Chromatography A, Metabolites, Scientific Reports, PLOS
One, Analytical and Bioanalytical Chemistry, Metabolomics,
Proceedings of the National Academy of Sciences of the
United States of America) or with specific disease trait terms
in the title/abstract. For example, for cancer the additional
search terms consist of: cancer, tumor, tumour, cancerous,
carcinogen, carcinogenic, carcinoma, leukaemia, leukemia,
leukaemic, leukemic, lymphoma, malignancy, premalig-
nancy, pre-malignancy, melanoma, metastasis, sarcoma, ad-
juvant, neoadjuvant, chemotherapy, chemo therapy, chemo-
therapy, malignant, premalignant, pre-malignant, precancer-
ous, pre-cancerous, adenocarcinoma, metastatic. The same
approach was used for publications relating to gastrointesti-
nal diseases, metabolic syndrome, sepsis and, neurodegener-
ative, psychiatric, and brain illnesses.
The full-text OA publications were downloaded in HTML
format after duplicates (e.g. a ‘cancer’ study from one of
the targeted journals) were removed. This resulted in a to-
tal of 1,241 unique publications that are included in the OA
dataset.

Algorithms for processing publication full-text HTML.
An Auto-CORPus configuration file is set by the user to
define the heading and paragraph HTML elements used in
the publication files to be processed. Regular expressions
can be used within the configuration file allowing a group
of publications with a similar but not an identical struc-
ture to be defined by a single configuration file, for exam-
ple when processing publications from journals by the same
publisher. The heading elements are used to delineate the
content of the publication sections and the BioC data struc-
ture is populated with publication text. All HTML tags
including text formatting (e.g., emphasised words, super-
script and subscript) are removed from the publication text.
Each section is automatically annotated using IAO (see be-
low) and the BioC data structure is output in JSON format.
The BioC specification requires “key files” to accompany
BioC data files to specify how the data files should be in-
terpreted (5). We provide key files to define the data ele-
ments in the Auto-CORPus JSON output files for full-text, ta-
bles, and abbreviations (https://github.com/omicsNLP/Auto-
CORPus/tree/main/keyFiles). Figure 1 gives an example of
the BioC JSON output and the abbreviations and tables out-
puts are described below.
Abbreviations in the full-text are found using an adaptation
of a previously published methodology and implementation
(12). The method finds all brackets within a publication and

if there are two or more non-digit characters within brackets
it considers if the string in the brackets could be an abbrevi-
ation. It searches for the characters present in the brackets in
the text on either side of the brackets one by one. The first
character of one of these words must contain the first char-
acter within the bracket, and the other characters within that
bracket must be contained by other words that follow the first
word whose first character is the same as the first character in
that bracket. An example of the Auto-CORPus abbreviations
JSON is given in Figure 2 which shows that the output from
this algorithm is stored along with the abbreviations defined
in the publication abbreviations section (if present).

Algorithms for classifying publication sections with
IAO terms. A total of 21,849 section headers were extracted
from the OA dataset and directed acyclic graphs (DAGs)
were created for each publication (Figure 3). The individ-
ual DAGs were then combined into a directed graph (di-
graph) and the extracted section headers were mapped to IAO
(v2020-06-10) document part terms using the Lexical OWL
Ontology Matcher (LOOM) method (16). Fuzzy matching
using the fuzzywuzzy python package (v0.17.0) was then
used to map headers to the preferred section header terms and
synonyms, with a similarity threshold of 0.8 (e.g., the typo-
graphical error ‘experemintal section’ in PMC4286171 (15)
is correctly mapped to methods section). This threshold was
evaluated by two independent researchers who confirmed all
matches for the OA dataset were accurate. Digraphs consist
of nodes (entities, headers) and edges (links between nodes)
and the weight of the nodes and edges is proportional to the
number of publications in which these are found. Here the
digraph consists of 372 unique nodes and 806 directed edges
(Figure 4).
However, after direct IAO mapping and fuzzy matching, un-
mapped headers still existed. To map these headings, we de-
veloped a new method using both the digraph and the indi-
vidual DAGs. The headers are not repeated within a docu-
ment/DAG, they are sequential and have a set order that can
be exploited. Unmapped headers are assigned a section based
on the digraph and the headers in the publication (DAG) that
could be mapped (anchor headers), an example is given in
Figure 5 where a header cannot be mapped to IAO terms.
Auto-CORPus uses the LOOM, fuzzy matching and digraph
prediction algorithms to annotate publication sections with
IAO terms in the BioC full-text file.

New IAO terms and synonyms. We used the IAO classifica-
tion algorithms to identify potential new IAO terms and syn-
onyms. 348 headings from the OA dataset were mapped to
IAO terms during the fuzzy matching or mapped based on
the digraph using the publication structure and anchor head-
ers. These headings were considered for inclusion in IAO as
term synonyms. We manually evaluated each heading and
Tables 2a and 2b list the 94 synonyms we identified for exist-
ing IAO terms.
Digraph nodes that were not mapped to IAO terms but formed
heavily weighted “ego-networks”, indicating the same head-
ing was found in many publications, were manually eval-
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Fig. 1. An extract of the Auto-CORPus BioC JSON created from the PMC3606015 (14) full-text HTML file. Each section is annotated with IAO terms. The “autocor-
pus_fulltext.key” file describes the contents of the full-text JSON file (https://github.com/omicsNLP/Auto-CORPus/blob/main/keyFiles/autocorpus_fulltext.key).

uated for inclusion in IAO as new terms. For example,
based on the digraph, we assigned data and data descrip-
tion to be synonyms of the materials section. The same pro-
cess was applied to ego-networks from other nodes linked
to existing IAO terms to add additional synonyms to sim-
plify the digraph. Figure 6 shows the ego-network for
abstract, and four main categories and one potential new
synonym (precis, in red) were identified. From the fur-
ther analysis of all ego-networks, four new potential terms
were identified: disclosure, graphical abstract, highlights
and participants – the latter is related to, but deemed dis-
tinct from, the existing patients section (IAO:0000635). Ta-
ble 3 details the proposed definition and synonyms for
these terms. The terms and synonyms described here will
be submitted to the IAO, with our initial submission of
one term and 59 synonyms accepted and included in IAO
previously (v2020-12-09) (https://github.com/information-
artifact-ontology/IAO/issues/234). Figure 7 shows the result-
ing digraph with only existing and newly proposed section
terms. A major unmapped node is associated data, which
is a header specific for PMC articles that appears at the be-
ginning of each article before the abstract. In addition, IAO
has separate definitions for materials (IAO:0000633), meth-

ods (IAO:0000317) and statistical methods (IAO:0000644)
sections, hence they are separate nodes in the graph. The in-
troduction is often followed by these headers to reflect the
methods section (and synonyms), however there is also a ma-
jor directed edge from introduction directly to results to ac-
count for materials and methods placed after the discussion
and/or conclusion sections in some publications.

Algorithms for processing tables.

Auto-CORPus table JSON design. The BioC format
does not specify how table content should be structured,
leaving this open to the interpretation of implementers.
For example, the PMC BioC JSON output describes
table content using PMC XML (see the “pmc.key”
file at https://ftp.ncbi.nlm.nih.gov/pub/wilbur/BioC-
PMC/pmc.key). Including markup language within JSON
objects presents data parsing challenges and interoperability
barriers with non-PMC table data representations. We
developed a simple table JSON format that is agnostic to the
publication table source, can store multi-dimensional table
content from complex table structures, and applies BioC
design principles (5) to enable the annotation of entities
and relations between entities. The table JSON stores table
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Category (IAO
identifier)

Existing synonyms (IAO
v2020-06-10) New synonyms identified a

abstract
(IAO:0000315) abstract precis

acknowledgements
(IAO:0000324)

acknowledgements,
acknowledgments

acknowledgement, acknowledgment, acknowledgments and
disclaimer

author contributions
(IAO:0000323)

author contributions, contributions by
the authors

authors’ contribution, authors’ contributions, authors’ roles,
contributorship, main authors by consortium and author

contributions

discussion
(IAO:0000319) discussion, discussion section discussions

footnote
(IAO:0000325) endnote, footnote footnotes

introduction
(IAO:0000316) background, introduction introductory paragraph

methods
(IAO:0000317)

experimental, experimental
procedures, experimental section,
materials and methods, methods

analytical methods, concise methods, experimental methods,
method, method validation, methodology, methods and design,
methods and procedures, methods and tools, methods/design,
online methods, star methods, study design, study design and

methods

references
(IAO:0000320)

bibliography, literature cited,
references

literature cited, reference, references, reference list, selected
references, web site references

supplementary
material

(IAO:0000326)

additional information, appendix,
supplemental information,

supplementary material, supporting
information

additional file, additional files, additional information and
declarations, additional points, electronic supplementary

material, electronic supplementary materials, online content,
supplemental data, supplemental material, supplementary

data, supplementary figures and tables, supplementary files,
supplementary information, supplementary materials,

supplementary materials figures, supplementary materials
figures and tables, supplementary materials table,

supplementary materials tables

Table 2a. Newly identified synonyms for existing IAO terms (00003xx) from the digraph mapping of publications. Elements in italics have previously been submitted by us for
inclusion into IAO and added in the v2020-12-09 release (18).

metadata of title, caption and footer. The table content is
stored as “column headers” and “data rows”. The format
supports the use of IAO to define the table metadata and
content sections, however additional IAO terms are required
to define table metadata document parts. Table 3 includes
the proposed definition and synonyms for these terms. To
compensate for currently absent IAO terms, we have defined
three section type labels: table title, table caption and table
footer. To support the text mining of tables, each column
header and data row cell has an identifier that can be used
to identify entities in annotations. Tables can be arranged
into subsections, thus the table JSON represents this and
includes subsection headings. Figure 8 gives an example of
table metadata and content stored in the Auto-CORPus table
JSON format. In addition to the Auto-CORPus key files, we
make a table JSON schema available for the validation of

table JSON files and to facilitate the use of the format in text
analytics software and pipelines.

Processing table HTML. Tables can used within HTML doc-
uments for formatting web page layouts and are distinct from
the data tables processed by Auto-CORPus. The configura-
tion file set by the user identifies the HTML elements used
to define data table containers, which include title, caption,
footer and table content. The files processed can either be a
full-text HTML file for inline tables and/or separate HTML
files for individual linked tables. The Auto-CORPus algo-
rithm for processing tables is based on the functional and
structural table analysis method described by Milosevic and
colleagues (8). The cells that contain navigational informa-
tion such as column headers and section headings are identi-
fied. If a column has header strings contained in cells span-
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Category (IAO
identifier)

Existing synonyms (IAO
v2020-06-10) New synonyms identified a

abbreviations
(IAO:0000606)

abbreviations, abbreviations list,
abbreviations used, list of

abbreviations, list of abbreviations
used

abbreviation and acronyms, abbreviation list, abbreviations
and acronyms, abbreviations used in this paper, definitions for

abbreviations, glossary, key abbreviations, non-standard
abbreviations, nonstandard abbreviations, nonstandard

abbreviations and acronyms

author information
(IAO:0000607)

author information, authors’
information biographies, contributor information

availability
(IAO:0000611)

availability, availability and
requirements

availability of data, availability of data and materials, data
archiving, data availability, data availability statement, data

sharing statement

conclusion
(IAO:0000615)

concluding remarks, conclusion,
conclusions, findings, summary conclusion and perspectives, summary and conclusion

conflict of interest
(IAO:0000616)

competing interests, conflict of
interest, conflict of interest statement,

declaration of competing interests,
disclosure of potential conflicts of

interest

authors’ disclosures of potential conflicts of interest,
competing financial interests, conflict of interests, conflicts of

interest, declaration of competing interest, declaration of
interest, declaration of interests, disclosure of conflict of

interest, duality of interest, statement of interest

consent
(IAO:0000618) consent informed consent

ethical approval
(IAO:0000620) ethical approval ethics approval and consent to participate, ethical

requirements, ethics, ethics statement

funding source
declaration

(IAO:0000623)

funding, funding information,
funding sources, funding statement,
funding/support, source of funding,

sources of funding

financial support, grants, role of the funding source, study
funding

future directions
(IAO:0000625)

future challenges, future
considerations, future developments,

future directions, future outlook,
future perspectives, future plans,
future prospects, future research,
future research directions, future

studies, future work

outlook

materials
(IAO:0000633) materials data, data description

statistical analysis
(IAO:0000644) statistical analysis statistical methods, statistical methods and analysis, statistics

study limitations
(IAO:0000631) limitations, study limitations strengths and limitations, study strengths and limitations

Table 2b. Newly identified synonyms for existing IAO terms (00006xx) from the digraph mapping of publications. Elements in italics have previously been submitted by us for
inclusion into IAO and added in the v2020-12-09 release (18).
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(a) Proposed
category Proposed definition Proposed synonyms a

disclosure
“A part of a document used to disclose any associations by authors
that might be perceived as to potentially interfere with or prevent

them from reporting research with complete objectivity.”

author disclosure statement,
declarations, disclosure, disclosure

statement, disclosures

graphical abstract
“An abstract that is a pictorial summary of the main findings

described in a document.”
central illustration, graphical

abstract, TOC image, visual abstract

highlights

“A short collection of key messages that describe the core findings
and essence of the article in concise form. It is distinct and
separate from the abstract and only conveys the results and

concept of a study. It is devoid of jargon, acronyms and
abbreviations and targeted at a broader, non-technical audience.”

author summary, editors’ summary,
highlights, key points, overview,
research in context, significance,

TOC

participants
“A section describing the recruitment of subjects into a research

study. This section is distinct from the ‘patients’ section and
mostly focusses on healthy volunteers.”

participants, sample

(b) Proposed
category Proposed definition Proposed synonyms

table title “A textual entity that names a table.”

table caption “A textual entity that describes a table.”

table footer

“A part of a table that provides additional information about a
specific other part of the table. Footers are spatially segregated

from the rest of the table and are usually indicated by a
superscripted number or letter, or a special typographic character

such as †.”

table key, table note, table notes

Table 3. (A) Proposed new IAO terms to define publication sections that were derived from analysing the sections of 2,441 publications. (B) Proposed new IAO terms to define
parts of a table section. a Elements in italics have previously been submitted by us for inclusion into IAO and added in the v2020-12-09 IAO release (18).

ning multiple rows, the strings are concatenated with a pipe
character separator to form a single column header string.
The “super row” is a single text string that spans a complete
row (multiple columns) within the table body. The “index
column” is a single text string in the first column (sometimes
known as a stub) within the table body when either only the
first column does not have a header, or the cell spans more
than one row. The presence of a super row or index column
indicates a table section division where the previous section
(if present) ends, and a new section starts. The super row
or index column text string provides the section name. A
nested array data structure of table content is built to relate
column headers to data rows, working from top to bottom and
left to right, with section headings occurring in between and
grouping data rows. The algorithm extracts the table meta-
data of title, footer and caption. Table content and metadata
are output in the table JSON format. The contents of table
cells can be either string or number data types (we consider
“true” and “false” booleans as strings) and are represented
in the output file using the respective JSON data type. Cells
that contain only scientific notation are converted to expo-
nential notation and stored as a JSON number data type. All
HTML text formatting is removed, however this distorts the
meaning of positive exponents in text strings, for example

n=103 is represented as n=103. To preserve the meaning of
exponents within text strings, superscript characters are iden-
tified using superscript HTML element markup, for example
n=10<sup>3</sup>.
Some publication tables contain content that could be rep-
resented in two or more separate tables. These multi-
dimensional tables use the same gridlines, but new column
headers are declared after initial column headers and data
rows have appeared in the table. New column headers are
identified by looking down columns and classifying each cell
as one of three types: numerical, textual, and a mix of num-
bers and texts. The type for a column is determined by the
dominant cell type of all rows in a column excluding super
rows. After the type of all columns are determined, the algo-
rithm loops through all rows except super rows, and if more
than half of cells in the row do not match with the columns’
types, the row is identified as a new header row, and the rows
that follow the new headers are then regarded as a sub-table.
Auto-CORPus represents sub-tables as distinct tables in the
table JSON, with identical metadata to the initial table. Ta-
bles are identified by the table number used in the publica-
tion, so since sub-tables will share their table number with
the initial table, a new identifier is created for sub-tables with
the initial table number, an underscore, then a sub-table num-
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Fig. 2. An extract from the Auto-CORPus abbreviations JSON created from the
PMC4068805 (15) full-text HTML file. For each abbreviation the correspond-
ing long form definition is given along with the algorithm(s) used to detect
the abbreviation. Most of the abbreviations shown were independently iden-
tified in both the full-text and in the abbreviations section of the publication.
A variation in the definition of “RP” was detected: in the abbreviations sec-
tion this was defined as “reverse phase”, however in the full-text this was de-
fined as “reversed phase”. The “autocorpus_abbreviations.key” file describes
the contents of the abbreviations JSON file (https://github.com/omicsNLP/Auto-
CORPus/blob/main/keyFiles/autocorpus_abbreviations.key).

ber such as “1_1”.

Processing table images - cell detection. Our current work
includes the development of a pipeline of image processing
operations to convert table images in JPG or PNG formats to
table JSON. The three stages of the pipeline are cell detec-
tion, text recognition and table structure analysis.
The OpenCV library (https://github.com/opencv/opencv/tree/4.5.3)
is used to preprocess images prior to cell detection. Image
binarization is used to remove background colours, font
colours and provide a high contrast between the target text
and the background. Line detection is used to remove all
grid lines from the table image, with the OpenCV minimum
line length parameter configured to distinguish between table
grid lines and short line characters such as “i”, capitalized
“I” or “l”. Mathematical morphology processing is then used
to identify cell text by conducting quantitative description
and analysis of geometric shapes and structures based on set
theory. Text blocks of interest are processed by thickening
the black texts and connecting the discontinuous parts close
to each other to blur black pixel regions, creating black
“smudges” that identify the location of each text block.
Rectangular boxes are drawn around each block to create
individual cells that overlap with the original table cells
and their spatial positions are indexed by the rectangle
boundary’s horizontal and vertical coordinates. Figure 9
illustrates the cell detection steps.

Processing table images - text recognition. Google’s
Tesseract optical character recognition (OCR) en-
gine is used through the Python-tesseract wrapper
(https://pypi.org/project/pytesseract/) to recognise and
extract text from the preprocessed table images. Tesseract
is based on Long Short-Term Memory (LSTM) neural
networks which enables users to train models aligned to
their use cases. PyTesseract provides more than 100 trained
libraries in different languages and we found that using the
PyTesseract English language “eng.traineddata” library, the
OCR engine correctly recognised 53.14% of cell text from
the images in the publisher dataset (33,273 cells). Cells
containing special characters such as superscripts, subscripts
and Greek characters were rarely recognised. We trained a
dataset using biomedical data to fine-tune the PyTesseract
model, resulting in the OCR engine correctly recognising
87.92% (median, interquartile range: 86.14-90.58%) of
cell text from the table images in the publisher dataset.
Superscript and subscript characters were present in most
cells not recognised.

Processing table images - table structure analysis. The text
from each cell is analysed to determine the cell function and
generate the structured table JSON output. The algorithm
reads all of the cells line by line, from top-left to bottom-
right, and creates a map of their relative positions. Spatial
positioning and regular expression rules are then used to iden-
tify the table identifier, title, caption, footer and column head-
ers. Super rows and index columns are identified and recog-
nised as table section divisions (the end of a previous section
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Fig. 3. Flow diagram demonstrating the process of classifying publication sections with IAO terms.

Fig. 4. Digraph generated from analyzing section headers from 2,441 Open Access
publications from PubMed Central. The digraph of the v2020-06-10 IAO model (17)
consists of 372 unique nodes, of which 24 could be directly mapped to section terms
(in orange) and the remainder are unmapped headers (in grey), and 806 directed
edges. Relative node sizes and edge widths are directly proportional to the number
of publications with these (subsequent) headers. Blue edges indicate the edge
with the highest weight from the source node, edges that exist in fewer than 1% of
publications are shown in light grey and the remainder in black.

and start of new section) and the cell text is included as the
section title in the table JSON.

Named-entity recognition on GWAS publications. To
demonstrate the potential applicability of Auto-CORPus for
text mining of the biomedical literature we used the GWAS
publications from the OA dataset. This subset contains
1,200 publications that are present in the GWAS Central
database (https://www.gwascentral.org/) which allows cross-
referencing with manually extracted entities. Assigned ran-
domly, 700 publications are used as a training set and 500 as
a test set.
Prior work on GWAS publications from ourselves (unpub-
lished), and from others (21), has shown phenotypes, P-
values and single nucleotide polymorphisms (SNPs) can be
extracted using regular expression matching. Here we fo-
cus on 5 different branches of important information that can
be extracted about each study: platform recognition (com-
pany names), total number of SNPs assayed (total SNPs), se-
quencing technology used (exact array/assays), how quality
control (QC) was performed (presence of QC, software ver-
sion number), and whether imputation was performed (im-
putation including possible negation). The training set was
created using data from GWAS Central which was manu-
ally curated (platform (list of strings), total SNPs passing QC
(numbers in different formats) and imputation (binary)) and
used for annotation, as well as a manually created list of en-
tities for each of the categories. The sequencing technology
(exact assay) was annotated by combining a search for the
platform name, specific words (array, chip, etc.) with a reg-
ular expression algorithm to look for combinations of letters
and numbers in sequence. For each of these branches, sen-
tences containing relevant entities for training were extracted
from the Auto-CORPus BioC JSON output to create a train-
ing set for each branch, for this we restricted ourselves to the
(statistical) methods/materials sections only (IAO:0000317,
IAO:0000633, and IAO:0000644).
SpaCy 3.0 (https://spacy.io/models/enen_core_web_lg) was
used to develop each of the algorithms using word embedding
and a multilayer convolution neural network (CNN) along
with residual connections (22) and models were optimized
for accuracy (over speed). The maximum batch size was set
to 1000 and the proprietary spaCy quickstart configuration
file was deployed for every single branch model, allowing
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Fig. 5. Pictographic example of using anchor nodes to map unmapped headers. Top panel illustrates the data structure of the individual directed acyclic graphs (DAGs)
extracted from the OA dataset including the header and Information Artefact Ontology (IAO) term they are mapped to. The bottom panel indicates how anchor headers
(nodes) are used to predict the IAO term of unmapped nodes based on the mapped digraph (see Figures 3 and 4) to find the shortest path between the mapped nodes and
assigning unmapped nodes to nodes in the graph. Paths in the digraph between anchor nodes that are shorter than the DAG are mapped to the first anchor node.

Fig. 6. Unmapped nodes in the digraph (Figure 4) connected to ‘abstract’ as ego
node, excluding corpus specific nodes, grouped into different categories. Unlabeled
nodes are titles of paragraphs in the main text.

for unlimited epochs until the model scoring plateaus.

Comparative analysis of outputs. The correspondence
between PMC BioC and Auto-CORPus BioC outputs were
compared to evaluate whether all information present in the
PMC BioC output also appears in the Auto-CORPus BioC
output. This was done by analysing the number of characters
in the PMC BioC JSON that appear in the same order in the
Auto-CORPus BioC JSON using the longest common sub-
sequence method. With this method, overlapping sequences
of characters that vary in length are extracted from the PMC
BioC string to find a matching sequence in the Auto-CORPus
string. With this method it can occur that a subsequence
from the PMC BioC matches to multiple parts of the Auto-
CORPus BioC string (e.g. repeated words). This is mitigated
by evaluating matches of overlapping/adjacent subsequences
which should all be close to each other as they appear in the

PMC BioC text.
This longest common subsequence method was applied to
each individual paragraph of the PMC BioC input and com-
pared with the Auto-CORPus BioC paragraphs. This method
was chosen over other string metric algorithms, such as the
Levenshtein distance or cosine-similarity, due to it being
non-symmetric/unidirectional (the Auto-CORPus BioC out-
put strings contain more information (e.g., figure/table links,
references) than the PMC BioC output) and ability to directly
extract different characters.

Results
Data for the evaluation of algorithms. We attempted to
download PMC BioC JSON format for all 1,200 GWAS PMC
publications in our OA dataset, but only 766 were avail-
able as BioC from the NCBI server. We refer to this as the
“PMC BioC dataset”. For the 766 PMC articles we could
obtain a NCBI BioC file for, we processed the equivalent
PMC HTML files using Auto-CORPus. We used only the
BioC output files and refer to this as the “Auto-CORPus BioC
dataset”. To compare the Auto-CORPus BioC and table out-
puts for PMC and publisher-specific versions, we accessed
163 Nature Communication and 5 Nature Genetics articles
that overlap with the OA dataset and were not present in the
publisher dataset, so they were unseen data. These journals
have linked tables, so full-text and all linked table HTML
files were accessed (367 linked table files). Auto-CORPus
configuration files were setup for the journals to process the
publisher-specific files and the BioC and table JSON output
files were collated into what we refer to as the “linked ta-
ble dataset”. The equivalent PMC HTML files from the OA
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Fig. 7. Final digraph model used in Auto-CORPus to classify paragraphs after fuzzy matching to IAO terms (v2020-06-10 (17)). This model includes new (proposed) section
terms and each section contains new synonyms identified in this analysis. ‘Associated Data’ is included as this is a PMC-specific header found before abstracts and can be
used to indicate the start of most articles, all IAO terms are indicated in orange.
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Fig. 8. Extracts of the Auto-CORPus table JSON file generated to store metadata and content for an example table. (A) The parts of a table stored in table JSON. The section
titles are underlined. The table shown is the PMC version (PMC4245044) of Table 1 from (19). (B) The title and caption table metadata stored in table JSON. (C) Each column
heading in the table content is split between two rows, so the strings from both cells are concatenated with a pipe symbol in the table JSON. Headers that span multiple
columns of sub-headers are replicated in each header cell as here with the pipe symbol. (D) The table content for the first row from the first section is shown in table JSON.
Superscript characters are identified using HTML markup. (E) The footer table metadata stored in table JSON. The “autocorpus_tables.key” file describes the contents of the
tables JSON file (https://github.com/omicsNLP/Auto-CORPus/blob/main/keyFiles/autocorpus_tables.key).

dataset were also processed by Auto-CORPus and the BioC
and table JSON files form the “inline table dataset”.

Performance of Auto-CORPus full-text processing. The
proportion of characters from 3,195 full-text paragraphs in
the PMC BioC dataset that also appear in the Auto-CORPus
BioC dataset in the same order in the paragraph string were
evaluated using the longest common subsequence method.
The median and interquartile range of the (left-skewed) sim-
ilarity are 100% and 100-100%, respectively. Differences
between the Auto-CORPus and PMC outputs are shown in
Table 4 and relate to how display items, abbreviations and
links are stored, and different character encodings. A struc-
tural difference between the two outputs is in how section
titles are associated to passage text. In PMC BioC the sec-
tion titles (and subtitles) are distinct from the passages they

describe as both are treated as equivalent text. The section
title occurs once in the file and the passage(s) it refers to fol-
lows it. In Auto-CORPus BioC the (first level) section titles
(and subtitles) are linked directly with the passage text they
refer to, and are included for each paragraph. Auto-CORPus
uses IAO to classify text sections so, for example, the intro-
duction title and text are grouped into a section annotated as
introduction, rather than splitting these into two subsections
(introduction title and introduction text as separate entities
in the PMC BioC output) which would not fit with the IAO
structure.

The Auto-CORPus BioC output includes the figure captions
where they appear in the text and a separate table JSON file to
store the table data, whereas the PMC BioC adds these data
at the end of the JSON document and provides table content
as a block of XML. Abbreviation sections are not included
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Fig. 9. The image processing steps involved in cell detection. Binarization removes colour shading from table images to represent tables with black and white pixels only. Line
detection is followed by the removal of horizontal and vertical grid lines in the image to reduce noise that could affect the morphology process. Text blocks are represented as
blackened “smudges” to aid recognition, and finally, all cells containing text are identified and framed. The table is reproduced here under a Creative Common license from
(20).

in the Auto-CORPus BioC output since Auto-CORPus pro-
vides a dedicated abbreviations JSON output. In the PMC
BioC format the abbreviations and definitions are not related,
whereas in the Auto-CORPus abbreviations JSON output the
two elements are related. If an abbreviation does not contain
a definition in the abbreviations section (perhaps due to an
editorial error), PMC BioC will include the undefined thus
meaningless abbreviation string, whereas Auto-CORPus will
ignore it. Link anchor text to figures, tables, references and
URLs are retained in the Auto-CORPus output but removed
in the PMC BioC output. The most common differences be-
tween the two BioC versions is the encodings/strings used to
reflect different whitespace characters and other special char-
acters, with the remaining content being identical.
Last, the proportion of characters from 9,468 full-text para-
graphs in the publisher dataset that also appear in the Auto-
CORPus PMC BioC dataset in the same order in the para-
graph string were evaluated. The median and interquartile
range of the (left-skewed) similarity is also 100% and 100-
100%, respectively, and differences between the PMC and
publisher-versions also relate to the same as reported in Ta-
ble 4.

Performance of Auto-CORPus table processing. We assessed
the accuracy of the table JSON output generated from non-
PMC linked tables compared with table JSON output gener-

ated from the equivalent PMC HTML with inline tables. The
comparative analysis method described above was used for
comparing BioC output from the linked table and inline table
datasets, except here it was applied to both strings (bidirec-
tional, taking the maximum value of both outcomes). This
is equivalent to the Levenshtein similarity applied to trans-
form the larger string into the smaller string, with the ex-
ception that the different characters for both comparisons are
retained for identifying the differences. The correspondence
between table JSON files in the linked table and inline table
datasets was calculated as the number of characters correctly
represented in the publishers table JSON output relative to the
PMC versions (also using the (symmetric) longest common
subsequence method). Both the text and table similarity are
represented as the median (inter-quartile range) to account for
non-normal distributions of the data. Any differences iden-
tified during these analyses were at the paragraph or table
row level, enabling manual investigation of these sections in
a side-by-side comparison of the files.

The proportion of characters from 367 tables in the linked ta-
ble dataset that also appear in the inline table dataset in the
same order in the cell or text string were evaluated. The me-
dian and interquartile range of the (left-skewed) similarity is
100% and 99.79-100.00%, respectively. We found that there
were structural differences between some of the output files

14 | bioRχiv Beck et al. | Auto-CORPus

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.01.08.425887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425887
http://creativecommons.org/licenses/by-nc-nd/4.0/


Difference Auto-CORPus PMC

Section titles Section titles, subtitles, subsubtitles (and so on) are linked to the
passage text they apply to

Section titles, subtitles, subsubtitles
(and so on) precede the passage text

they apply to

Section types Section types are annotated using IAO terms Section types are described using
custom labels

Offset counts Offset increased by 1 for every character (including whitespace)
in a passage

Offset increased by the number of
bytes in the text of a passage plus one

space

Table and figure
sections

Structured table data are stored in table JSON. Figure captions are
included in the BioC JSON in the sequential order in which they

occur within paragraphs.

Table data and figure captions occur
at the end of the JSON document.
Table content is given as XML.

Abbreviations
section

Abbreviations section stored in abbreviations JSON. Abbreviation
and definition components are related. Incomplete/one-sided

definitions are not stored.

Abbreviations and definitions from
the abbreviations section are stored
separately as text with no relations

between the two components.
Incomplete/one-sided definitions are

stored.

Link anchor text Link anchor text retained (HTML element tags removed) Link anchor text removed

Character
encoding UTF-8 used for outputs Available in Unicode and ASCII

Table 4. Differences between the Auto-CORPus BioC and PMC BioC JSON outputs.

where additional data rows were present in the JSON files
generated from the publisher’s files. This occurred because
cell value strings in tables from the publisher’s files were split
across two rows, however in the PMC version the string was
formatted (wrapped) to be contained within a single row. The
use of different table structures to contain the same data re-
sulted in accurate but differing table JSON outputs. Most
of the differences between table content and metadata val-
ues pertain to the character encoding used in the different
table versions. For example, we have found different uses
of hyphen/em dash/en dash/minus symbols between differ-
ent versions, and Greek letters were represented differently
in the different table versions. Other differences are related
to how numbers are represented in scientific notation. If a
cell contains a number only, then it is represented as a JSON
number data type in the output. However, if the cell contains
nonnumeric characters, then there is no standardisation of the
cell text and the notation used (e.g., the × symbol or E nota-
tion) will be reproduced in the JSON output. When there is
variation in notation between sources, the JSON outputs will
differ. Other editorial differences include whether thousands
are represented with or without commas and how whitespace
characters are used. Despite these variations there was no
information loss between processed inline and linked tables.

Application of NER on GWAS publications. We used the
BioC JSON output from Auto-CORPus to filter out sentences
in the methods sections that contain information on the plat-

forms, assays, total number of genetic variants, quality con-
trol and imputation that were used (Supplementary Methods).
We trained five separate algorithms for named-entity recog-
nition (NER) using 700 GWAS publications and evaluated
these on 500 GWAS publications of the test set. The F1-
scores for the five tasks are between 0.82-1.00 (Table 5) with
examples of the pipeline output (after merging output for
each branch) for different sentences from the test set given
in Figure 10. The branches with the best performance were
the platform, quality control and imputation entities (all F1-
scores over 0.95). The least successful was the algorithm to
recognise the exact assays used with an F1-score of 0.82.

Discussion

Strengths and Limitations. We have shown that Auto-
CORPus brings together and bolsters several disjointed stan-
dards (BioC and IAO) and algorithmic components (for pro-
cessing tables and abbreviations) of scientific literature an-
alytics into a convenient and reliable tool for standardising
full-text and tables. The BioC format is a useful but not ubiq-
uitous standard for representing text and annotations. Auto-
CORPus enables the transformation of the widely available
HTML format into BioC JSON following the setup of a con-
figuration file associated with the structure of the HTML doc-
uments. The use of the configuration file drives the flexi-
bility of the package, but also restricts use to users who are
confident exploring HTML document structures. We make
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Branch (entity tags) F1-score

Platform technology (platform) 1.00
Total number of SNPs (Total SNPs) 0.89

Assay name (Illumina assay, Affymetrix assay, Perlegen assay) 0.82
QC (quality control, negation, version number) 0.98

Imputation (imputation, negation, no imputation) a 0.95

Table 5. F1-score for each of the 5 branches of GWAS NER evaluated on 500 publications from the test set. a The ‘no imputation’ tag is distinct from negation and focuses on
words such as ‘unimputed’ and ‘non-imputed’, whereas negation focuses on entities such as ‘did not perform’ and ‘was not used’ that suggests ambiguity (i.e. relationship to
concepts needs to be inferred). These tags are given as output of our pipeline (also see Figure 10).

Fig. 10. Example sentences from the GWAS publications test set (n=500) with recognized entities tagged. These examples combine the output from each branch for the
individual NER tasks. (A) Details recognised platforms (platform), sequencing technology used (Affymetrix assay, Illumina assay), and presence of quality control (quality
control). The latter 4 entities recognized were found as a ‘single’ Illumina assay but split after post-processing and combining with the platform NER algorithm output. (B)
Details recognised platforms (platform) and sequencing technology used (Affymetrix assay, Illumina assay). (C) Details total number of SNPs (Total SNPs), whether imputation
was used (imputation), and presence of quality control (quality control). (D) Details presence of quality control (quality control, version number). (E) Details whether imputation
was used (imputation, negation). Note: software programs for quality control and imputation were labelled as the main category (quality control, imputation).

available the configuration files used in the evaluations de-
scribed in this paper. To process additional sources, an up-
front time investment is required from the user to explore
the HTML structure and set the configuration file. We will
be increasing the number of configuration files available for
larger publishers, and we help non-technical users by pro-
viding documentation to explain how to setup configuration
files. We welcome configuration files submitted by users and
the documentation describes the process for users to submit
files. Configuration files contain a section for tracking contri-
butions made to the file, so the names of authors and editors
can be logged. Once a configuration file has been submitted
and tested, the file will be included within the Auto-CORPus
package and the user credited (should they wish) with author-
ship of the file.

The inclusion of IAO terms within the Auto-CORPus BioC

output standardises the description of publication sections
across all processed sources. The digraph that is used to as-
sign unmapped paragraph headers to standard IAO terms was
constructed using both GWAS and MWAS literature to avoid
training it to be used for a single domain only. We have tested
the algorithms on PMC articles from three different physics
(Frontiers in Physics, Nature Physics, Physical Review Let-
ters) and three psychology (Frontiers in Psychology, Psycho-
logical Bulletin, Psychological Science) journals to confirm
the BioC JSON output and IAO term recognition extend be-
yond only biomedical literature. The header terms from these
articles were mapped to relevant IAO terms. Since ontologies
are stable but not static, any resource or service that relies on
one ontology structure could become outdated or redundant
as the ontology is updated. We will rerun the fuzzy matching
of headers to IAO terms and regenerate the digraph as new

16 | bioRχiv Beck et al. | Auto-CORPus

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2021. ; https://doi.org/10.1101/2021.01.08.425887doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425887
http://creativecommons.org/licenses/by-nc-nd/4.0/


terms are introduced to the document part branch of IAO. We
have experience of this when our first group of term sugges-
tions based on the digraph were included into the IAO.
The BioC output of abbreviations contains the abbreviation,
definition and the algorithm(s) by which each pair was iden-
tified. One limitation of the current full-text abbreviation al-
gorithm is that it searches for abbreviations in brackets and
therefore will not find abbreviations for which the definition
is in brackets, or abbreviations that are defined without use
of brackets. The current structure of the abbreviation JSON
allows additional methods to be included to the two methods
we currently use. Adding further algorithms to find different
types of abbreviation in the full-text is considered as part of
future work.
Auto-CORPus implements a method for extracting table
structures and data that was developed to extract table in-
formation from XML formatted tables (8). The use of the
configuration file for identifying table containers enables the
table processing to be focused on relevant data tables and
exclude other tables associated with web page formatting.
Auto-CORPus is distinct from other work in this field that
uses machine learning methods to classify the types of infor-
mation within tables (23). Auto-CORPus table processing is
agnostic to the extracted variables, with the only distinction
made between numbers and strings for the pragmatic reason
of correctly formatting the JSON data type. The table JSON
files could be used in downstream analysis (and annotation)
of cell information types, but the intention of Auto-CORPus
is to provide the capability to generate a faithful standardised
output from any HTML source file. We have shown high ac-
curacy (>99%) for the tables we have processed with a con-
figuration file and the machine learning method was shown
to recover data from 86% of tables (23). Accurate extraction
is possible across more data sources with the Auto-CORPus
rule-based approach, but a greater investment in setup time is
required.
Auto-CORPus focusses on HTML versions of articles as
these are readily and widely available within the biomedical
domain. Currently the processing of PDF documents is not
supported, but the work by the Semantic Scholar group to
convert PDF documents to HTML is encouraging as they ob-
served that 87% of PDF documents processed showed little to
no readability issues (4). The ability to leverage reliable doc-
ument transformation will have implications for processing
supplementary information files and broader scientific litera-
ture sources which are sometimes only available in PDF for-
mat, and therefore will require conversion to the accessible
and reusable HTML format.

Future Research and Conclusions. We found that the ta-
bles for some publications are made available as images, so
could not be processed by Auto-CORPus. To overcome this
gap in publication table standardisation, we are refining a plu-
gin for Auto-CORPus that provides an algorithm for process-
ing images of tables. The table image processing pipeline
leverages Google’s Tesseract optical character recognition
engine to extract text from preprocessed table images. During
our preliminary evaluation of the plugin, it achieved an accu-

racy of 88% when processing a collection of 200 JPG and
PNG table images taken from 23 different journals. Although
encouraging, there are caveats in that the image formats must
be of high resolution, the algorithm performs better on tables
with gridlines than tables without gridlines, special charac-
ters are rarely interpreted correctly, and cell text formatting is
lost. We are fine-tuning the Tesseract model by training new
datasets on biomedical data. An alpha release of the table
image processing plugin is available with the Auto-CORPus
package.

The authors are involved in omics health data NLP projects
that use Auto-CORPus within text mining pipelines to stan-
dardise and optimise biomedical literature ahead of entity
and relation annotations and have given examples in the Sup-
plementary Materials of how the Auto-CORPus output was
used to train these algorithms. The BioC format supports
the stand-off annotation of linguistic features such as tokens,
part-of-speech tags and noun phrases, as well as the anno-
tation of relations between these elements (5). We are de-
veloping machine learning methods to automatically extract
genome-wide association study (GWAS) data from peer-
reviewed literature and have given an example here of some
of the tools that are being developed. High quality annotated
datasets are required to develop and train NLP algorithms and
validate the outputs. We are developing a GWAS corpus that
can be used for this purpose using a semi-automated annota-
tion method. The GWAS Central database is a comprehen-
sive collection of summary-level GWAS findings imported
from published research papers or submitted by study authors
(13). For GWAS Central studies, we used Auto-CORPus to
standardise the full-text publication text and tables. In an
automatic annotation step, for each publication, all GWAS
Central association data was retrieved. Association data con-
sists of three related entities: a phenotype/disease descrip-
tion, genetic marker and an association P-value. A named
entity recognition algorithm identifies the database entities in
the Auto-CORPus BioC and table JSON files. The database
entities and relations are mapped back onto the text, by ex-
pressing the annotations in BioC format and appending these
to the relevant BioC element in the JSON files. The automatic
annotations are then manually evaluated using the TeamTat
text annotation tool which provides a user-friendly interface
for annotating entities and relations (24). We use TeamTat
to manually inspect the automatic annotations and modify or
remove incorrect annotations, in addition to including new
annotations that were not automatically generated. TeamTat
accepts BioC input files and outputs in BioC format, thus the
Auto-CORPus files that have been automatically annotated
are suitable for importing into TeamTat. Work to create the
GWAS corpus is ongoing, but the convenient semi-automatic
process for creating high-quality annotations from biomedi-
cal literature HTML files described here could be adapted for
creating other gold-standard corpora.

In related work, we are developing a corpus for MWAS for
metabolite named-entity recognition to enable the develop-
ment of new NLP tools to speed up literature review. As part
of this, the active development focuses on extending Auto-
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CORPus to analyse preprint literature and supplementary ma-
terials, improving the abbreviation detection, and develop-
ment of more configuration files. Our preliminary work on
preprint literature has shown we can map paragraphs in Rxiv
versions to paragraphs in the peer-reviewed manuscript with
the high accuracy (average similarity of paragraphs >95%).
The flexibility of the Auto-CORPus configuration file enables
researchers to use Auto-CORPus to process publications and
data from a broad variety of sources to create reusable cor-
pora for many use cases in biomedical literature and other
scientific fields.
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