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ABSTRACT  18 

Endurance exercise has a dramatic impact on the functionality of mitochondria and on the 19 

composition of the intestinal microbiome, but the mechanisms regulating the crosstalk 20 

between these two components are still largely unknown. Here, we sampled 20 elite horses 21 

before and after an endurance race and used blood transcriptome, blood metabolome and 22 

fecal microbiome to describe the gut-mitochondria crosstalk. A subset of mitochondria-23 

related differentially expressed genes involved in pathways such as energy metabolism, 24 

oxidative stress and inflammation was discovered and then shown to be associated with 25 
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 2 

butyrate-producing bacteria of the Lachnospiraceae family, especially Eubacterium. The 26 

mechanisms involved were not fully understood, but through the action of their metabolites 27 

likely acted on PPARγ, the FRX-CREB axis and their downstream targets to delay the onset 28 

of hypoglycemia, inflammation and extend running time. Our results also suggested that 29 

circulating free fatty acids may act not merely as fuel but drive mitochondrial inflammatory 30 

responses triggered by the translocation of gut bacterial polysaccharides following endurance. 31 

Targeting the gut-mitochondria axis therefore appears to be a potential strategy to enhance 32 

athletic performance. 33 

Keywords: endurance/ holobiont/ horse/ microbiota/ mitochondria 34 

 35 

INTRODUCTION 36 

To keep up with energy demand and to maintain homeostasis, endurance exercise modifies 37 

multiple systems, ranging from the whole-body level to the molecular level (Mach & Fuster-38 

Botella, 2017; Clark & Mach, 2017). In recent years, our understanding of the role played by 39 

mitochondria during this kind of challenge has expanded far beyond its bioenergetic capacity, 40 

which is represented by well characterized pathways such as oxidative phosphorylation 41 

(OXPHOS), fatty acid β-oxidation (FAO) and the tricarboxylic acid (TCA) cycle (Pfanner et 42 

al, 2019). Indeed, it is now widely accepted that mitochondria regulate cytosolic calcium 43 

homeostasis and cellular redox status, that they generate much of the cell reactive oxygen 44 

species (ROS), and that they are involved in steroid and heme biosynthesis, urea degradation, 45 

apoptosis and initiation of inflammation through inflammasomes (Vezza et al, 2020; Jackson 46 

& Theiss, 2020; Wong et al, 2016; Chinnery & Hudson, 2013).  47 

It has also been established that the mitochondrial genome (mtDNA) and the nuclear genome 48 

are constantly communicating with each other to regulate the aforementioned pathways. For 49 

example, most of the proteins involved in OXPHOS and mitochondrial functions like 50 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425889


 3 

mtDNA replication and expression, mtDNA repair, redox and energy regulation are encoded 51 

by the nuclear genome and require specific targeting signals to be directed from the cytosol to 52 

mitochondrial surface receptors and then to the proper mitochondrial sub-compartments 53 

(Pfanner et al, 2019). The transcriptional programs of mitochondria comprise over 1,600 54 

nuclear-encoded mitochondrial proteins (Pagliarini et al, 2008; Richter-Dennerlein et al, 55 

2016). Any alteration in the OXPHOS and FAO processes, in mitochondrial membrane 56 

potential (ΔΨm), mitochondrial biogenesis, ROS production and inflammation can have a 57 

deep impact on the response to endurance exercise. For instance, increased mitochondrial 58 

biogenesis improves muscle endurance performance due to higher rates of OXPHOS and 59 

FAO (Hood et al, 2011). On the contrary, lower metabolic rates, increased ROS production 60 

and acidosis during prolonged exercise are associated with fatigue and inability to maintain 61 

speed (Rapoport, 2010). Endurance or long exercise and mitochondrial functions are strictly 62 

intertwined and influence each other. 63 

 64 

The gut microbiota is considered a central organ because of its direct and indirect roles in 65 

host physiology, including improved metabolic health and athletic performance (Keohane et 66 

al, 2019; Barton et al, 2017; Scheiman et al, 2019). A healthy ecosystem in horse includes 67 

numerous, highly dominant taxa along with a multitude of minor players with lower 68 

representation, but important metabolic activity (Mach et al, 2020; Costa & Weese, 2018; 69 

Kauter et al, 2019).  70 

 71 

The interdependence of gut microbiota and mitochondria is being increasingly recognized, 72 

with many diseases originating from mitochondrial dysfunctions linked to well-described 73 

changes in gut microbiota (Cardoso & Empadinhas, 2018; Bajpai et al, 2018; Karlsson et al, 74 

2013; Yardeni et al, 2019; Franco-Obregón & Gilbert, 2017; Saint-Georges-Chaumet et al, 75 
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2015; Mottawea et al, 2016; Saint-Georges-Chaumet & Edeas, 2018). This complex interplay 76 

occurs principally through endocrine, immune and humoral signalling (Mottawea et al, 77 

2016). Enteric short-chain fatty acids (SCFAs), the major class of metabolites produced from 78 

bacterial fermentation of non-digestible carbohydrates, are widely thought to mediate the 79 

relationship between the gut microbiota and the mitochondria in different tissues. Branched-80 

chain amino acids (BCAAs), secondary bile acids, ROS, nitric oxide (NO), and hydrogen 81 

sulfide (H2S) are also thought to play at least a partial role in this molecular interchange 82 

(Clark & Mach, 2017).  83 

 84 

While formal proof is missing in horse athletes, a prevailing hypothesis is that the gut 85 

microbiota and its metabolites regulate crucial transcription factors and coactivators involved 86 

in mitochondrial functions that underpin endurance performance (Hawley et al, 2018). In 87 

mice models, gut microbiota depletion via broad-spectrum antibiotics showed reduced 88 

production of SCFAs, lower bioavailability of serum glucose, decreased endurance capacity 89 

and impairment of the ex vivo skeletal muscle contractile function (Nay et al, 2019). In close 90 

agreement, gut microbiota depletion also triggered a reduction of both faecal SCFA content 91 

and circulating concentration of SCFAs coupled to a drop in running capacity in mice 92 

(Okamoto et al, 2019). In contrast, mice with Veillonella in their intestinal ecosystem showed 93 

significantly increased submaximal treadmill run time to exhaustion (Scheiman et al, 2019), 94 

prompting the authors to speculate that the lactate generated during sustained bouts of 95 

exercise could be accessible to the microbiota and converted into SCFAs that ultimately 96 

enhanced energetic resilience and stamina. Alternatively, there may be other mechanisms 97 

through which gut microbiota and its metabolites relate to mitochondria, including but not 98 

limited to the regulation of mitochondrial oxidative stress (Jones & Neish, 2014; Franco-99 

Obregón & Gilbert, 2017), as well as the activation of the inflammasome and the production 100 
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of inflammatory cytokines, all of which are key players in the adaptation to endurance 101 

exercise (Clark & Mach, 2017; Mach & Fuster-Botella, 2017).  102 

 103 

We recently presented a three-pronged association study, connecting horse gut microbiota 104 

with untargeted serum metabolome data and measures of host physiology and performance in 105 

the context of endurance (Plancade et al, 2019). We found no significant associations 106 

between the gut ecosystem and serum metabolites, especially those relying heavily on 107 

mitochondrial OXPHOS, FAO, TCA and gluconeogenesis. The number of annotated 108 

metabolites in the study was likely insufficient to reliably encompass the given mitochondrial 109 

functions. To further advance our knowledge of the molecular basis for the gut-mitochondria 110 

crosstalk that support the adaptation to long exercise, in this work we tethered whole blood 111 

transcriptome profiling to our previous metabolome and metagenome data. In doing so, we 112 

sought to identify the ways in which mitochondrial and nuclear transcriptomes coordinate 113 

with each other, and how gut microbiota and circulating metabolites can dynamically 114 

modulate this process. By jointly characterizing the whole blood transcriptome, metabolome, 115 

fecal microbiota and SCFAs of 20 elite horses competing in an endurance race, we aim to 116 

provide a functional readout of microbial activity and improve our understanding of the gut 117 

microbiota-mitochondria axis during long exercise.  118 

 119 

RESULTS 120 

To elucidate how mitochondria and gut microbiota are linked during endurance exercise, we 121 

studied 20 healthy endurance horses selected from the cohort already described by Plancade 122 

et al. (2019) and Le Moyec et al. (2019) (Fig 1). All of the animals were of similar age and 123 

performance level (Table EV1). They performed a long exercise during about 8 hours at an 124 

average speed of 17.1 ± 1.67 km/h with some rest periods every 30-40 km.  125 
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 126 

Whole transcriptome profiles, proton nuclear magnetic resonance (
1
H NMR) metabolome 127 

profiles and biochemical assay data were obtained from blood samples collected at both T0 128 

(pre-ride) and T1 (post-ride), while SCFAs measurements, 16S rRNA data and the 129 

concentration of bacteria, anaerobic fungi and ciliate protozoa were generated from fecal 130 

samples at T0 alone. 131 

 132 

Blood transcriptome profiles and mitochondrial related genes 133 

To gather information about the global structure of the blood transcriptome, a scaled principal 134 

component analysis (PCA) was carried out on the expressed genes (n =11,232). The first 135 

component accounted for 43% of the total variability and revealed a marked separation of the 136 

two time points (Fig 2A). We then carried out a standard differential analysis between the 137 

two time points. After Bonferroni correction of the raw p-values, a total of 6,021 138 

differentially expressed genes (DEGs) was obtained at an adjusted p  < 0.05, of which 2,658 139 

were upregulated and 3,363 downregulated at T1 respect to T0 (Table EV2; Fig 2B).  140 

These results were then complemented using a weighted gene co-expression network analysis 141 

(WGCNA) (Langfelder & Horvath, 2008) on the expressed genes. WGCNA identified three 142 

gene modules, corresponding to 7,914 genes, that were correlated to the 
1
H NMR and 143 

biochemical assay metabolites (Table EV3). These genes strongly overlapped with the set of 144 

DEGs, 91.1% of which (i.e., 5,486 out of 6,021 genes) were included among them. The 145 

metabolites which showed the highest levels of correlation with the gene modules were 146 

bilirubin, non-esterified fatty acids (NEFAs), tyrosine, lactate and, to a lesser extent, β-147 

hydroxybutyrate (BHB) (see next paragraph, Fig EV1). 148 

Because we were especially interested in understanding the role played by mitochondria in 149 

our biological system, we then decided to study in more detail the features related to these 150 
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organelles. To this end, we used a literature-based meta-analytic approach to build a non-151 

redundant consensus list of 2,082 genes related to mitochondria, based on the information 152 

available in the Integrated Mitochondrial Protein Index (IMPI) (Smith & Robinson, 2019), 153 

the Mitocarta Inventory (Calvo et al, 2016) and the literature (Expanded View Information 154 

and Table EV4). This consensus list was also descriptively annotated to gain global insight 155 

into the main biological functions represented within it. A total of 80 third-level KEGG 156 

hierarchies were identified, with a strong representation of pathways related to carbohydrate 157 

and lipid metabolism (8 and 9 ontology terms, respectively). Eight pathways were associated 158 

with amino acid metabolism, while five were linked to the apoptosis process (Fig EV2). This 159 

subset was crossed with each of the DEG and WGCNA module gene lists. In the case of the 160 

DEG list, the intersection with this subset yielded a total of 801 genes (Table EV5 and Fig 161 

2C). Both the Fisher’s exact test and the hypergeometric test showed strong levels of over-162 

representation, with p-values of 1.0 x 10
-5

 and 9.02 x 10
-7

, respectively. In the case of the 163 

WGCNA gene modules, the intersection included 1,011 genes (Fig 2C). Again, both 164 

statistical tests indicated strong enrichment, with p-values of 1.0 x 10
-5

 and 1.07 x 10
-5

, 165 

respectively. 166 

 167 

The set of 801 genes in the intersection of the mitochondrial consensus and DEG list, which 168 

will be referred to hereafter simply as “mt-related genes”, was selected for the downstream 169 

steps of analysis. All of the mt-related genes were encoded by the nuclear genome except for 170 

MT-ND6 (MT-NADH dehydrogenase, subunit 6), which was encoded by the antisense strand 171 

of the mt-DNA (Fig 2D). These mt-related genes were further characterized to gather 172 

information about their molecular function.
 
The functional analysis showed that roughly 75 % 173 

of these genes were directly involved in energy metabolism (i.e., pathways such as OXPHOS 174 

and FAO) and metabolite synthesis and degradation (Fig EV3). For instance, we observed an 175 
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enrichment of genes related to nutrient transport across the mitochondrial inner membrane 176 

(TOM/TIM units, VDAC, MPC1, ACAA1, members of the mitochondrial carrier family 177 

SLC25 and of the pyruvate dehydrogenase kinase isozyme), fatty acid metabolism (ELOVL7, 178 

SIRT5, and ACAD members), lipogenesis (FASN and PPARγ), and fatty acid channelling into 179 

oxidation (CPT1B, ACADVL, ACOT9, ACOX1, ACSL1, ACSL4, ACSS3). Additionally, key 180 

genes involved in the mitochondrial biogenesis (POLG and POLG2), mitochondrial fission 181 

(PINK1), mitochondrial fusion (OPA1), mitophagy (BNIP3 and PINK1), oxidative stress 182 

(SOD1, SOD2, glutathione S-transferases and glutathione peroxidases families), and the 183 

resolution of lipopolysaccharide induced pro-inflammatory pathway (C1QBP) were also 184 

found in this list. CREB, the most potent activator of PGC-1α (Wu et al, 2006) was also 185 

differentially expressed upon endurance exercise.
 

186 

 
187 

Our data further indicated that among the mt-related genes,
 
at least 21 genes encoding rps and 188 

rpl proteins of the small and large subunits of ribosomes (rpl3, rpl4, rpl5, rpl6, rpl18, rpl23, 189 

rpl27, rpl36, rps3, rps8, rps9, rps10, rps11, rps12, rps13, rps14, rps15, rps16, rps17, rps18, 190 

rps19) (Janouškovec et al, 2017; Esser et al, 2004; Maier et al, 2013) were common with the 191 

α-Proteobacteria. This was also the case for the methionine sulfoxide reductase A (MSRA) 192 

and NAD(P)H dehydrogenase quinone 1 (NQO1) (Crisp et al, 2015), consistent with a 193 

vertical origin in the mitochondrial endosymbiont. 194 

 
195 

1
H NMR metabolome, biochemical assay and acetylcarnitine profiles  196 

The 
1
H NMR metabolome and biochemical assay profiles used in this paper were gleaned 197 

from our previous works (Plancade et al, 2019; Le Moyec et al, 2019). Briefly, a total of 50 198 

1
H NMR known metabolites was detected in the plasma, including several amino acids, 199 

energy metabolism-related metabolites and organic osmolytes (Table EV6). Three well-200 
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known microbial derived metabolites were ascertained, including formate, dimethyl sulfone 201 

and trimethyl amine oxide (TMAO). 202 

 203 

The relative abundance values of these circulating metabolites fell within the normal 204 

reference range for healthy horses. However, the concentration of lactate (a proxy for 205 

glycolytic stress and disturbances in cellular homeostasis (Hawley et al, 2018)) was 206 

significantly increased after the race, as well as the levels of fatty acids from lipoproteins and 207 

of certain amino acids, namely alanine, branched amino acids such as leucine, valine and iso-208 

valerate, glutamate, glutamine and aromatic amino acids such as tyrosine and phenylalanine. 209 

Ketone bodies were slightly increased after the race (i.e., acetoacetate and acetate; Table 210 

EV6). In the case of biochemical profiles, all of the horses showed above-average 211 

concentrations for total bilirubin, creatine kinase, aspartate transaminase, and serum amyloid 212 

A after the race. The NEFA and BHB concentrations also showed similar patterns (Table 213 

EV7).  214 

 215 

Fecal short chain fatty acids measurements, 16S rRNA data and microorganism 216 

concentrations 217 

The microbiota composition and derived-metabolites were obtained from Plancade et al. 218 

(2019), but it is important to note that the 16S rRNA raw sequences were re-analysed using 219 

the QIIME 2 plugin, which quantitatively improved results over QIIME 1 by enhancing the 220 

pre-processing of sequenced reads, the taxonomy assignment, the phylogenetic insertion and 221 

the generation of amplicon sequence variants (ASVs) (Callahan et al, 2017). A total of 222 

519,866 high-quality sequence reads were obtained (mean per subject: 21,131 ± 15,625, 223 

range: 6,036 – 57,389). Reads were clustered into 3,384 chimera- and singleton-filtered 224 

ASVs at 99% sequence similarity (Table EV8). The intestinal microbial community found in 225 
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the total set of 20 individuals as a whole was made up of a core of 23 genera, the core being 226 

defined as the genera shared by 99% of all sampling events with a minimum 0.1% mean 227 

relative abundance. Overall, 61% of the core genera belonged to the Firmicutes phylum, 228 

mainly to the Lachnospiraceae and Ruminococcaceae families (Fig EV4A). A total of 100 229 

unique genera was identified in the microbiota (Table EV9). The majority of these genera 230 

(80%) fell among the 20 most abundant (Fig EV4B) and accounted for more than 75% of the 231 

sequences in the data (Table EV9). To deeper understand how the gut microbiota functioned, 232 

SCFAs, pH measurements and the loads of anaerobic fungi, protozoa and total bacteria in 233 

feces were also investigated. The main products of microbial fermentation were acetate, 234 

propionate and butyrate, with ratios ranging from 60:32:8 to 76:19:5. Small amounts of 235 

branched chain fatty acids (iso-butyrate, valerate and iso-valerate) were also detected (Table 236 

EV10). Although bacteria represented the major portion of the fecal microbiota in our horses, 237 

the relative concentrations of anaerobic fungi and ciliate protozoa were 0.82 and 0.76, 238 

respectively (Table EV11). 239 

 240 

Integration of transcriptome, 
1
H NMR metabolites, biochemical parameters, fecal 241 

microbiota, SCFA and microorganism concentrations 242 

After the identification of the 801 mt-related genes that were regulated by endurance 243 

exercise, it remained to be determined which genes were interconnected to the gut microbiota 244 

and responded to specific circulating molecules. To this aim, we applied four independent 245 

statistical methods using the mt-related genes as the response variable and the other data sets, 246 

namely 
1
H NMR metabolome, biochemical assay profiles, fecal microbiota, fecal SCFAs and 247 

the concentrations of bacteria, anaerobic fungi and protozoa as exploratory variables. 248 

We first used global non-metric multidimensional scaling (NMDS) ordinations to visualize 249 

the structure of mt-related gene expression (ordination stress = 6%, k = 2, non-metric fit r
2
 = 250 
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0. 0.996, linear fit r
2 

= 0.988) and we then fitted all sets of explanatory variables to the 251 

ordination to find the most influential variables (Fig 3A). Bacteria such as Oribacterium, 252 

Rikenellaceae RC9, Ruminococcaceae NK4A214, unclassified rumen bacterium and 253 

Clostridium sensu stricto showed the strongest correlation to all ordinations, together with 254 

some microbial-derived metabolites (i.e., dimethyl sulfone, formate, valerate and iso-255 

valerate) and the plasmatic NEFA (adjusted p < 0.05; Fig 3A-B).  256 

To control for spatial variance and to identify the minimal combination of non-redundant 257 

covariates that would best fit with the mt-related gene profiles, a more rigorous multivariate 258 

distance-based redundancy analysis (db-RDA) was used on constrained NMDS ordinations. 259 

In agreement with the aforementioned results, the expression of mt-related genes responded 260 

most strongly to bacteria such as Treponema (r
2

adj = 0.48, p = 0.007), followed by 261 

Butyrivibrio (r
2

adj = 0.45, p = 0.002), plasmatic NEFA (r
2

adj = 0.38, p = 0.003), Fibrobacter 262 

(r
2

adj = 0.31, p = 0.0008) and Oribacterium (r
2

adj = 0.24, p = 0.003; Fig 3C). The 
1
H NMR 263 

metabolites and fecal SCFAs and the concentration of fecal microorganism did not directly 264 

contribute to the variation of mt-related genes. Therefore, they were not selected by the 265 

dbRDA model.  266 

These findings were further confirmed by an RDA forward-selection model based on the 267 

Akaike information criterion. Specifically, Oribacterium (F = 7.26, p < 0.005), Fibrobacter 268 

(F = 2.96, p < 0.005), Butyrivibrio (F = 2.91, p < 0.005), Agathobacter (F = 2.12, p < 0.005), 269 

Treponema (F = 7.15, p < 0.01), unclassified rumen bacterium (F = 1.96, p < 0.01), and the 270 

concentration of plasmatic NEFA (F = 2.91, p < 0.005) explained most of the variance 271 

observed in mt-related genes (Fig 3D). However, the 
1
H NMR metabolites, the fecal SCFAs 272 

and concentration of microorganisms were not found to contribute significantly to the 273 

variability in mt-related gene expression. The first constrained axis (RDA1) explained 44% 274 

of the variance in mt-related gene expression, and the second (RDA2) explained 9.4% of the 275 
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variance; on the other hand, the two first unconstrained axes (PC1 and PC2) represented less 276 

than 8% of the total variance, i.e., much less than that explained by the explanatory variables 277 

together.  278 

To uncover other potential underlying mechanisms of mitochondrial regulation, we then 279 

sought to examine the relationships existing among all aforementioned data sets by adding a 280 

further categorical variable, namely the racing performance of horses. To perform this task, 281 

we used the DIABLO framework from mixOmics (Singh et al, 2019). While the mt-related 282 

genes showed high levels of covariation with the fecal microbiota (r
2
 > 0.91, Fig 4A), it was 283 

not possible to identify a tight relationship with the other data sets. A more fine-grained view 284 

of this biological system was then obtained by focusing on pairwise correlations between 285 

variables. The first component of the DIABLO analysis highlighted a significant link 286 

between a subset of 45 mt-related genes (all encoded by the nuclear genome) and four gut 287 

taxa (i.e., the genus Mogibacterium, the species Eubacterium coprostanoligenes and the 288 

groups Rikenellaceae RC9 and Ruminococcaceae NK4A214). A link to blood metabolites 289 

related to energy supply (i.e., methyl groups of FAs and choline-containing compounds) and 290 

metabolites related to the TCA cycle such as glutamine, glutamate, and α-glucose was also 291 

unveiled (Fig 4B-C). Moreover, mt-related genes co-occurred with pronounced variations of 292 

microbiota derived metabolites, including fecal acetate and valerate, and plasmatic 293 

concentrations of TMAO, dimethyl sulfone, and formate. The subset of 45 mt-related genes 294 

was functionally enriched in pathways related to fatty acid β-oxidation, mitochondrial 295 

apoptosis and biogenesis, respiratory electron transport and signalling and innate immune 296 

system response (Table EV12).  297 

Finally, an rCCA analysis was also carried out to study in a more targeted way the 298 

relationships between mt-related genes and gut microbiota. In this case, the most relevant 299 

associations were represented by 90 genes and 9 bacterial genera (Table EV13). Overall, this 300 
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method largely validated the associations already detected with the other aforementioned 301 

approaches. First, all of the four genera highlighted by DIABLO were confirmed, as well as 302 

the genus Fibrobacter, which had already been detected using NMDS and the db-RDA 303 

method. Second, three more taxa found with rCCA appeared to be functionally related to 304 

other previously identified microorganisms, thus providing indirect support to those findings. 305 

This was the case for Ruminococcaceae UCG-002, Pseudobutyrivibrio and the Eubacterium 306 

hallii group. 307 

 308 

DISCUSSION 309 

In this work, we present an integrative study that combines the whole blood transcriptomic 310 

with untargeted serum metabolome data, blood biochemical assay profiles and gut 311 

metagenome in 20 equine-athletes. We assumed the adaptive response to extreme endurance 312 

exercise was essentially explained through the gut-mitochondria axis. Indeed, the different 313 

and complementary statistical approaches that we used confirmed this hypothesis, 314 

highlighting that the two main omic layers at play were the mt-related genes and the gut 315 

microbiota composition (r
2
 > 0.91).  316 

 317 

Whole blood transcriptome underlines in a clear manner the global response to exercise in 318 

equines (Mach et al, 2017b, 2016; Capomaccio et al, 2013; Barrey et al, 2006; Ropka-Molik 319 

et al, 2017), including the inflammatory response of the muscle associated with sarcolemma 320 

permeability and rhabdomyolysis (Barrey et al, 2006) (displayed in our study by the high 321 

levels of plasma creatine kinase and aspartate aminotransferase after the race). Yet, it remains 322 

to be explored whether the whole blood transcriptome reflects the physiological events 323 

occurring at the mitochondrial level, notably in the tissues that are highly solicited under 324 

endurance, like for instance, the skeletal muscles, the heart and the liver (Gunn, 1987). In 325 
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addition, whether the transcription of nuclearly-encoded and mitochondrially-encoded genes 326 

are regulated in a coordinated way is much less well understood. We therefore compared the 327 

transcriptome profile in equine-athletes before and after exercise and we used a meta-328 

analytical approach that allowed us to identify 801 differentially expressed genes that were 329 

putatively linked to mitochondria. These genes fit neatly into the well-characterized context 330 

of adaptive mitochondrial regulation to endurance and mostly belonged to molecular 331 

pathways such as mitochondrial biogenesis, energy metabolism through OXPHOS and FAO, 332 

resistance to oxidative stress, mitophagy and inflammation regulation.  333 

 334 

We then specifically focused on the mechanisms underlying the biological links between the 335 

aforementioned mt-related genes and the gut microbiota to untangle the gut-mitochondria 336 

crosstalk. The interdependence of mitochondria and gut microbiota is underscored by several 337 

lines of evidences (Yardeni et al, 2019; Gruber & Kennedy, 2017; Mottawea et al, 2016; 338 

Zhang et al, 2020; Han et al, 2017; Qi & Han, 2018; Ruiz et al, 2020; Saint-Georges-339 

Chaumet & Edeas, 2018), although the range and extent of this interplay are largely 340 

unknown. For example, (Mottawea et al, 2016) showed that butyrate-producing bacteria and 341 

mitochondrial proteins were positively correlated, suggesting a signalling role for butyrate in 342 

mitochondrial gene expression. In support of this observation, our results revealed that 343 

several functionally redundant butyrate-producing bacterial families were associated with the 344 

mt-related genes, namely Lachnospiraceae (Oribacterium, Butyrivibrio, Agathobacter and 345 

Eubacterium spp.), Ruminococcaceae, Spirochaetaceae (Treponema spp.) (Vital et al, 2015; 346 

Vacca et al, 2020; Gharechahi et al, 2020) and Rikenellaceae (Vital et al, 2015). The 347 

bioavailability of butyrate is obviously related to endurance performance because of the role 348 

played by this molecule in energy metabolism (Mollica et al, 2017). Beyond the scope of its 349 

energy producing capacity, butyrate is also known to induce the expression of PPARγ gene 350 
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(Gao et al, 2009) and downstream targets in different cells. Our blood transcriptomic analysis 351 

indicated an upregulation of PPARγ following exercise, raising the possibility that the 352 

enrichment in butyrate-producing bacteria increased the expression of this transcription factor 353 

and downstream signaling, leading to fatty acid shuttling into and oxidation by the 354 

mitochondria. Notably, the redox imbalance during strenuous exercise might be also 355 

attenuated by butyrate (Mottawea et al, 2016; Dobashi et al, 2011). The potential of butyrate 356 

to improve exercise capacity has been further posited by Gao et al. (2009) and Henagan et al. 357 

(2015), who observed that the supplementation of this molecule improved the oxidative 358 

skeletal muscle phenotype, its mitochondrial content and its proportion of type I fibers. 359 

Concomitantly, it is possible that serum lactate, which appeared to be significantly increased 360 

in our horses upon prolonged exercise, entered the gut lumen, where it was subsequently 361 

transformed into butyrate by Eubacterium hallii (Duncan et al, 2004; Scheiman et al, 2019). 362 

Indeed, Eubacterium hallii was associated to a subset of mt-related genes according to our 363 

rCCA analysis. Eubacterium-derived butyrate could then be absorbed into the portal vein and 364 

serve as an energy source to the different organs. Another plausible mechanisms employed by 365 

microbiota to communicate with mitochondria involved valerate, a branched SCFA formed 366 

from protein and amino acid degradation (Fernandes et al, 2014). It may be debated whether 367 

the urea produced by the host during endurance could be hydrolyzed by commensal gut 368 

microbiota resulting in valerate.  369 

 370 

Beyond SCFAs, the secondary bile acids could also play an important role in gut-microbiota 371 

crosstalk. The genera Eubacterium and Clostridium, which contributed significantly to our 372 

biological system, have the capacity to degrade 5–10% of the primary bile acids forming 373 

secondary bile acids (Gérard, 2013). Secondary bile acids might interact with the 374 

mitochondria via the activation FXR-CREB axis. CREB, which was significantly increased in 375 
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our horses after the endurance race, is a sensor of energy charge and other stress signals, and 376 

is a regulator of metabolism that activates autophagy and lipid catabolic functions (Seok et al, 377 

2014). Therefore, a picture emerges that, under conditions that foster an increased 378 

colonization by these microorganisms, the production of butyrate, valerate and secondary bile 379 

acids in the intestine is likely increased, with potential effects on the mitochondria 380 

functionality and endurance performance (Fig 5). Yet, evidence of causality of microbiome-381 

derived metabolites on the gut-mitochondria crosstalk remains elusive.  382 

 383 

The coordination between mitochondria and gut microbiota was presumably regulated by the 384 

circulating free fatty acids, the so-called NEFAs. It is becoming clearer that NEFAs not only 385 

serves as energy source in the working muscles but act as extracellular signaling molecules 386 

that modulate the production of chemokines and cytokines, and the synthesis of pro-387 

inflammatory lipid-derived species (Rodríguez-Carrio et al, 2017). Thus, a provocative 388 

extension of our work suggests that increased release of NEFAs participated in the 389 

mitochondrial regulation of the inflammatory processes elicited by oxidative stress, microbial 390 

dissemination and microbial lipopolysaccharides translocation outside of the gastrointestinal 391 

tract, commonly observed in endurance athletes (Fielding & Dechant, 2012). Increased 392 

release of free fatty acids may dampen the inflammatory response and prevent or mitigate the 393 

negative effects of redox imbalance. Supporting this notion, the mitochondrial sirtuin (SIRT5) 394 

and SIRT1, which have an anti-inflammation function (Wang et al, 2017), were found to be 395 

increased during endurance.  396 

 397 

The observations presented herein indicate that the horse could be considered as an 398 

interesting in vivo model for research in the field of human exercise given its large body size, 399 

the aptitude for endurance exercise (Votion et al, 2012; van der Kolk et al, 2020), that is, 400 
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high baseline maximal oxygen uptake (VO2max; ~120 mL·min
-1

·kg
-1

) and the ability to sustain 401 

work at a high percentage of VO2max without either the accumulation of exponential levels of 402 

blood lactate or skeletal muscle fatigue and the exercise economy (van der Kolk et al, 2020; 403 

Cottin et al, 2010; Goachet & Julliand, 2015). The level of exercise performed by a horse 404 

during an endurance competition is similar to that of a human marathon runner (Mach et al, 405 

2016; Capomaccio et al, 2013)
 
or ultramarathon runner (Scott et al, 2009). Nevertheless, 406 

despite the usefulness of this model, the differences between the microbiota of horses and 407 

humans are relevant. In contrast to what happens in humans, in horses the cecum is large 408 

relative to the total gastrointestinal tract and it is an important site for the fermentation of 409 

plant materials. Our study presents other limitations. Although the omic approaches used here 410 

are considered robust and generate high quality data, they still present several limitations. For 411 

instance, 16S rRNA sequencing measures the relative abundance of bacterial genera 412 

contained in it, but it does not give any information about its actual functionality, which 413 

should be therefore evaluated using other methods, such as for instance metatranscriptomics. 414 

Moreover, in our case, 
1
H NMR has been able to detect only metabolites at high 415 

concentrations, like in the cases of amino acids, lipids, choline and N-acetylglucosamine. In 416 

this regard, the combination of 
1
H NMR and mass spectrometry should result in better 417 

coverage of metabolites derived from bacteria, metabolites that are produced by the host and 418 

then modified by bacteria and metabolites that are de novo synthesized by bacteria. Lastly, it 419 

still remains to be determined how the individual components of blood, including plasma, 420 

platelets, erythrocytes, nucleated blood cells and exosomes reflect the transcriptomic profiles 421 

in horses. Upon endurance, contracting muscles release proteins and metabolites that have 422 

endocrine-like properties (Hawley, 2020), but they might also release long non-coding RNAs, 423 

myo-miRs and circulating cell-free respiratory competent mitochondria (Al Amir Dache et al, 424 
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2020; Song et al, 2020) that might participate in the aforementioned crosstalk by using the 425 

microbiota-derived metabolites. 426 

 427 

Taken together, the present study offers extensive novel insight into the mitochondria-gut 428 

microbiota axis and opens the way for mechanistic studies that will lead to a better 429 

understanding of the orchestrated molecular pathways that underpin endurance adaptations 430 

and contribute to the holobiont biology. This is the first description of how metabolites 431 

derived from commensal gut microbiota (SCFAs and secondary bile acids), or produced by 432 

the host and biochemically modified by gut bacteria (lactate and urea), might influence the 433 

genes related to the mitochondria and involved in energy production, redox balance and 434 

inflammatory cascades, making them a potential therapeutic target for the endurance. The 435 

activation of PPARγ and the FRX-CREB axis are likely key mechanisms through which 436 

SCFAs and bile acids coordinately engage multiple converging pathways to regulate 437 

mitochondrial functions, including fatty acid uptake and oxidation to forestall hypoglycemia 438 

and ensure longer running time. 439 

Our results also suggest that free fatty acids may not only serve as an important fuel for 440 

skeletal muscle during endurance, but may also regulate mitochondrial inflammatory 441 

responses through a plethora of mechanisms, the principal one likely being the modulation of 442 

the intestinal barrier-ROS production and lipopolysaccharide translocation. Further research 443 

focusing on the role that gut microbiota plays on the mitochondrial function across a wide 444 

range of tissues and cell types may be highly informative to improve the athlete’s energy 445 

metabolism, redox status and inflammatory response. 446 

  447 

MATERIALS AND METHODS 448 

Ethics approval 449 
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The study protocol was reviewed and approved by the local animal care and use committee 450 

(ComEth EnvA-Upec-ANSES, reference: 11-0041, dated July 12
th

 2011) for horse study. All 451 

the protocols were conducted in accordance with EEC regulation (n
o
 2010/63/UE) governing 452 

the care and use of laboratory animals, which has been effective in France since the 1
st
 of 453 

January 2013. In all cases, the owners and riders provided their informed consent prior to the 454 

start of study procedures with the animals. 455 

 456 

Animals 457 

Twenty pure-breed or half-breed Arabian horses (7 females, 3 male, and 10 geldings; mean ± 458 

SD age: 10 ± 1.69) were selected from the cohort used by Plancade et al. (2019) (Table EV1). 459 

The 20 horses were selected following these criteria: (1) enrolment in the 160 km or 120 km 460 

category; (2) blood sample collection before and after the race; (3) feces collection before the 461 

race; (4) absence of gastrointestinal disorders during the four months prior to enrolment; (5) 462 

absence of antibiotic treatment during the four months prior to enrolment and absence of 463 

anthelmintic medication within 60 days before the race; (6) a complete questionnaire about 464 

diet composition and intake.  465 

 466 

Among the 20 horses selected for this study, 16 horses were enrolled for the 160 km category 467 

and four for the 120 km category. In the 160 km category, two animals were eliminated due 468 

to tiredness after 94 km and 117 km, respectively, and five horses failed a veterinary gate 469 

check due to lameness after 94 km (n = 1), and after 117 km (n = 4). In the 120 km category, 470 

one horse was eliminated due to metabolic troubles after 90 km (Table EV1).  471 

 472 

The weather conditions, terrain difficulty and altitude were the same for all the participants 473 

enrolled in the study as all races (120 and 160 km) took place during October 2015 in 474 
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Fontainebleau (France). The average air temperature was 15 ºC, with a maximum of 20 ºC 475 

and a minimum of 11 ºC, the average air humidity was 88%, and no rain was recorded.  476 

 477 

As detailed by Plancade et al. (2019), to ensure sample homogeneity, the participating horses 478 

were subject to the same management practices throughout the endurance ride and passed the 479 

International Equestrian Federation (FEI) compulsory examination before the start. Animals 480 

were fed 2–3 hours before the start of the endurance competition with ad libitum hay and 1 481 

kg of concentrate pellets. During the endurance competition, all the animals underwent 482 

veterinary checks every 20 to 40 km, followed by recovery periods of 40 to 50 minutes (in 483 

accordance with the FEI endurance rules). After each veterinary gate check, the animals were 484 

provided with ad libitum water and hay and a small amount of concentrate pellets.  485 

 486 

Transcriptomic microarray data production and pre-processing 487 

Blood samples for RNA extraction were collected from each animal at T0 and T1 using 488 

Tempus Blood RNA tubes (Thermo Fisher). Because blood interacts with every organ and 489 

tissue in the body and has crucial roles in immune response, inflammation and physiological 490 

homeostasis (Mohr & Liew, 2007), blood-based transcriptome was carried-out as a means for 491 

exploring the response to endurance.   492 

Total RNAs were then isolated using the Preserved Blood RNA Purification Kit I (Norgen 493 

Biotek Corp., Ontario, Canada), according to the manufacturer’s instructions. RNA purity 494 

and concentration were determined using a NanoDrop ND-1000 spectrophotometer (Thermo 495 

Fisher) and RNA integrity was assessed using a Bioanalyzer 2100 (Agilent Technologies, 496 

Santa Clara, CA, USA). All the 40 RNA samples were processed. 497 

Transcriptome profiling was performed using an Agilent 4X44K horse custom microarray 498 

(Agilent Technologies, AMADID 044466). All of the steps were performed by the 499 
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@BRIDGe facility (INRAE Jouy-en-Josas, France, http://abridge.inra.fr/), as described 500 

previously (Mach et al, 2017b, 2016).  501 

The horse array was annotated as described by Mach et al. (2017b, 2016). In a limited 502 

number of cases, a manual annotation step was also included. Probe intensities were 503 

background-corrected using the “normexp” method, log2 scaled and quantile normalized 504 

using the limma package (version 3.1.42.2) (Smyth, 2004) in the R environment (version 505 

3.6.1). Only the probes which presented, on at least two arrays, intensity values at least 10% 506 

higher than the 95% percentile of all the negative control probes were kept. Subsequently, 507 

controls were discarded and the probes corresponding to genes were summarized. The 508 

obtained expression matrix “E1” was processed with the arrayQualityMetrics R package 509 

(version 3.42.0) (Kauffmann et al, 2009) for quality assessment. No outliers were detected.  510 

 511 

Transcriptome statistical analysis 512 

The differential analysis was performed using the limma R package. A linear model was 513 

fitted for each gene, setting the time, the sex, the distance and whether the animal was 514 

eliminated from the race as fixed effects, and comparing T1 to T0. The individual was 515 

included as a random effect using the “duplicateCorrelation” function (Smyth et al, 2005). 516 

The p-values were Bonferroni corrected setting a threshold of 0.05. The expression matrix 517 

“E1” was then used to perform a scaled PCA analysis with FactoMineR R package (version 518 

2.4) (Lê et al, 2008). 519 

To confirm the results of the DE analysis, the WGCNA method was also run on the “E1” 520 

matrix using the WGCNA R package (version 1.69) (Langfelder & Horvath, 2008). The 521 

parameters for the analysis were set as follows: “corFnc” = bicor, “type” = signed hybrid, 522 

“beta” = 10, “deepSplit” = 4, “minClusterSize” = 30, and “cutHeight” = 0.1. The eigengenes 523 

corresponding to each identified module were correlated individually to all the 
1
H NMR and 524 
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biochemical assay metabolites, i.e., a set of 56 different molecules (see next paragraphs). A 525 

module was then considered positively or negatively associated to this set of molecules if the 526 

Pearson r correlation values were ≥ |0.65| for at least 5 molecules and if all the corresponding 527 

p-values were ≤ 1e-05. The positively and the negatively correlated modules defined in this 528 

way were merged to obtain a single gene list, which was subsequently compared to the DEG 529 

list using a Venn diagram. 530 

Afterwards, a literature-based meta-analytical enrichment test was carried out to assess 531 

whether the DEG list and the gene list obtained using WGCNA were enriched in genes 532 

related to mitochondria. To this aim, first a consensus list of genes related to these organelles 533 

was created (Expanded View Information and Table EV4). This gene list was then annotated 534 

in a descriptive way. First, gene symbols were converted into the corresponding KEGG 535 

Orthology (KO) codes using the “db2db” tool (https://biodbnet-536 

abcc.ncifcrf.gov/db/db2db.php) from the bioDBnet suite and using the then up-to-date 537 

underlying databases. Then, the retrieved KO codes were processed with the “Reconstruct 538 

Pathway” tool (https://www.genome.jp/kegg/tool/map_pathway.html) from the KEGG 539 

Mapper suite. Eventually, the obtained KEGG pathways underwent some manual editing step 540 

to make them easier to interpret, namely (1) only first- and third-level hierarchies including at 541 

least 15 genes were kept for visualization; (2) the “Human diseases” first-level hierarchy, 542 

with all its child taxonomic terms, was removed; (3) the “Metabolic pathways” third-level 543 

hierarchy was discarded as it was redundant with respect to the other third-level hierarchies 544 

of the “Metabolism” term (Fig EV4). 545 

Then, the same gene list was intersected with the genes found expressed on the microarray 546 

(i.e., the “E1” matrix). The subset thus obtained was separately intersected with the DEG list 547 

and the WGCNA gene modules. A Fisher’s exact test and hypergeometric test were then used 548 

to evaluate the overrepresentation of genes related to mitochondrial functions in each list. 549 
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The intersection between the genes related to mitochondria found on the microarray and the 550 

DEGs included 801 genes and was referred to as “mt-related genes”. It was functionally 551 

annotated using ClueGO (version 2.5.7) (Bindea et al, 2009) by carrying out a right-sided 552 

test. Significance was set at a Benjamini-Hochberg adjusted p-value of 0.05 and the k-score 553 

was fixed at 0.4. Only the “KEGG 30.01.2019” ontology was selected. 554 

 555 

Proton magnetic resonance (
1
H NMR) metabolite analysis in plasma  556 

As described by Plancade et al. (2019) and Le Moyec et al. (2019) to characterize the 557 

metabolic phenotype of endurance horses in detail, we measured 
1
H NMR  spectra at 600 558 

MHz for plasma samples. Blood was collected from each horse the day before the event (T0) 559 

and within 30 minutes from the end of the endurance race (T1) using sodium fluoride and 560 

oxalate tubes in order to inhibit further glycolysis that may increase lactate levels after 561 

sampling. All the samples were immediately refrigerated at 4 ºC to minimize the metabolic 562 

activity of cells and enzymes and to keep metabolite composition as stable as possible, and 563 

clotting time was strictly controlled to avoid cell lysis. After clotting, plasma was separated 564 

from blood cells and subsequently transported to the laboratory at 4 ºC and then frozen at -565 

80 °C (no more than 5 h later in all cases). Plasma samples were subsequently thawed at 566 

room temperature. Using 5 mm NMR tubes, 600 µL of plasma were added to 100 µL 567 

deuterium oxide for field locking. The 
1
H NMR spectra were acquired at 500 MHz with an 568 

AVANCE III (Bruker, Billerica, MA, USA) equipped with a 5 mm reversed QXI Z-gradient 569 

high-resolution probe. Water signal was suppressed with a pre-saturation pulse (3.42 x 10
-5

 570 

W) during a 3s-relaxation delay at the water resonance frequency. The spectrum was divided 571 

into 0.001 ppm regions (bins) over which the signals were integrated to obtain intensities. 572 

The high- and low-field ends were removed, leaving only the data between 9.5 to 0.0 ppm. 573 

The region between 4.5 and 5.0 ppm, which corresponded to the signal of residual water, was 574 
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also removed. The data were normalized according to the spectra using the probabilistic 575 

quotient method (Dieterle et al, 2006) and the bins, corresponding to the variables for the 576 

statistical analysis, were scaled to unit variance. Further details on sample preparation, data 577 

acquisition, data quality control, spectroscopic data pre-processing, and data pre-processing 578 

including bin alignment, scaling and normalization are broadly discussed elsewhere (Le 579 

Moyec et al, 2014).  580 

As specified in Plancade et al. (2019), metabolite identification was then performed by using 581 

information acquired from other available biochemical databases, namely HMD 582 

(http://www.hmdb.ca/), KEGG (https://www.genome.jp/kegg/), METLIN 583 

(http://metlin.scripps.edu/), ChEBI (http://www.ebi.ac.uk/Databases/), and LIPID MAPS 584 

(http://www.lipidmaps.org/) and the literature (Le Moyec et al, 2014; Mach et al, 2017b; Le 585 

Moyec et al, 2019; Jang et al, 2017). Each peak was assigned to a metabolite when chemical 586 

shifts of peaks in the samples were the same as in the publicly available reference databases 587 

or literature (with a shift tolerance level of ± 0.005 ppm), in order to counteract the effects of 588 

measurements and pre-processing variability introduced by factors such as pH and solvents. 589 

A manual curation for identified compounds was carried out by an expert in horse 590 

metabolomics (Le Moyec et al, 2014). Eventually, the relative abundance of each metabolite 591 

was calculated as the area under the peak (Zheng et al, 2011). A total of 50 metabolites was 592 

identified, which belonged to the following broad categories: amino acids, including aromatic 593 

and branched-chain amino acids, energy metabolism-related metabolites, saccharides, and 594 

organic osmolytes (Table EV6). We refer to our previous work (Plancade et al, 2019) for 595 

more detailed descriptions of the pre-processing and main results of the plasma metabolome 596 

data that were used to generate the input files provided with this study.  597 

 598 

Biochemical assay data production 599 
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Blood samples for biochemical assays were collected at T0 and T1 using 10 mL BD 600 

Vacutainer EDTA tubes (Becton Dickinson, Franklin Lakes, NJ, USA). As detailed in 601 

Plancade et al. (2019), after clotting the tubes were centrifuged and the harvested serum was 602 

stored at 4 °C until analysis (no more than 48 later, in all cases). Sera were assayed for total 603 

bilirubin, conjugated bilirubin, total protein, creatinine, CK, β-hydroxybutyrate, ASAT, γ-604 

glutamyltransferase and serum amyloid A levels on a RX Imola analyzer (Randox, Crumlin, 605 

UK). The biochemical values obtained are reported in the Table EV7. 606 

 607 

Fecal measurements, 16S data production and analysis 608 

As described by Plancade et al. (2019), fresh fecal samples were obtained while monitoring 609 

the horses before the race (no more than 24 h before starting the race, in all cases). One 610 

fecal sample from each animal was collected off the ground immediately after defecation as 611 

described by Mach et al. (2017a) and Plancade et al. (2019), and three aliquots (200 mg) 612 

were prepared. Aliquots for pH determination were kept at room temperature, while aliquots 613 

for SCFA analysis and DNA extraction were snap-frozen. Since most of the horses 614 

experienced dehydration after the race, the gastrointestinal emptying was significantly 615 

delayed and consequently we were not able to recover the feces after the race.  616 

Fecal pH was immediately determined after 10% fecal suspension (wt/vol) in saline solution 617 

(0.15 M NaCl solution). SCFAs concentrations were measured as previously described in 618 

Mach et al. (2017a) . The values obtained are described in the Table EV10. 619 

Total DNA was extracted using the EZNA Stool DNA Kit (Omega Bio-Tek, Norcross, 620 

Georgia, USA), and following the manufacturer’s instructions. DNA was then quantified 621 

using a Qubit and a dsDNA HS assay kit (Thermo Fisher). 622 

The V3-V4 hyper-variable region of the 16S rRNA gene was amplified as previously 623 

reported by our team (Mach et al, 2017a; Plancade et al, 2019; Clark et al, 2018; Mach et al, 624 
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2020; Massacci et al, 2019). The concentration of the purified amplicons was measured using 625 

a Nanodrop 8000 spectrophotometer (Thermo Fisher) and their quality was checked using 626 

DNA 7500 chips onto a Bioanalyzer 2100 (Agilent Technologies). All libraries were pooled 627 

at equimolar concentration, and the final pool had a diluted concentration of 5 nM and was 628 

used for sequencing. The pooled libraries were mixed with 15% PhiX control according to 629 

the protocol provided by Illumina (Illumina, San Diego, CA, USA) and sequenced on a single 630 

MiSeq (Illumina, USA) run using a MiSeq Reagent Kit v2 (500 cycles). 631 

The Divisive Amplicon Denoising Algorithm (DADA) was implemented using the DADA2 632 

plug-in for QIIME 2 (version 2019.10) to perform quality filtering and chimera removal and 633 

to construct a feature table consisting of read abundance per amplicon sequence variant 634 

(ASV) by sample (Callahan et al, 2016). DADA2 models the amplicon sequencing error in 635 

order to identify unique ASV and infers sample composition more accurately than traditional 636 

Operational Taxonomic Unit (OTU) picking methods that identify representative sequences 637 

from clusters of sequences based on a % similarity cut-off (Callahan et al, 2016). The output 638 

of DADA2 was an abundance table, in which each unique sequence was characterized by 639 

its abundance in each sample. Taxonomic assignments were given to ASVs by importing 640 

SILVA 16S representative sequences and consensus taxonomy (release 132, 99% of identity) 641 

to QIIME 2 and classifying representative ASVs using the naive Bayes classifier plug-in 642 

(Bokulich et al, 2018). The feature table, taxonomy, and phylogenetic tree were then 643 

exported from QIIME 2 to the R statistical environment and combined into a phyloseq object 644 

(McMurdie & Holmes, 2013). Prevalence filtering was applied to remove ASVs with less 645 

than 1% prevalence and in fewer than three individuals, decreasing the possibility of data 646 

artifacts affecting the analysis (Callahan et al, 2016). To reduce the effects of uncertainty in 647 

ASV taxonomic classification, we conducted most of our analysis at the microbial genus 648 

level.  649 
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The phyloseq (version 1.32.0) (Mcmurdie & Holmes, 2012), vegan (version 2.5.6) (Dixon, 650 

2003) and microbiome packages (version 1.10.0) were used in R (version 4.0.2) for the 651 

downstream steps of analysis. The minimum sampling depth in our data set was 10,423 reads 652 

per sample. Reads were clustered into 3,385 chimera- and singleton-filtered Amplicon 653 

Sequence variants (ASVs) at 99% sequence similarity. ASV counts per sample and ASV 654 

taxonomical assignments are available in Table EV8. Data were aggregated at genus, family, 655 

order, class and phyla levels throughout the taxonomic-agglomeration method in the phyloseq 656 

R package, which merges taxa of the same taxonomic category for a user-specific taxonomic 657 

level. The final table obtained after these steps was called “G1” and included 100 genera 658 

(Table EV9). 659 

 660 

qPCR quantification of bacterial, fungal and protozoan concentration 661 

As detailed by Plancade et al. (2019), concentrations of bacteria, anaerobic fungi and 662 

protozoa in fecal samples were quantified by qPCR using a QuantStudio 12K Flex platform 663 

(Thermo Fisher Scientific, Waltham, USA). Primers for real-time amplification of bacteria 664 

(FOR: 5’-CAGCMGCCGCGGTAANWC-3’; REV: 5’-CCGTCAATTCMTTTRAGTTT-3’), 665 

anaerobic fungi (FOR: 5’-TCCTACCCTTTGTGAATTTG-3’; REV: 5’-666 

CTGCGTTCTTCATCGTTGCG-3’) and protozoa (FOR: 5’-667 

GCTTTCGWTGGTAGTGTATT-3’; REV: 5’-CTTGCCCTCYAATCGTWCT-3’), are 668 

described in Mach et al. (2015) and Clark et al. (2018) and were purchased from Eurofins 669 

Genomics (Ebersberg, Germany). 670 

Amplified fragments of the target amplicons were used to create a seven-point 10-fold 671 

standard dilution series. The dilution points ranged from 2.25 × 10
7
 to 2.25 × 10

13
 copies per 672 

μg of DNA for bacteria and protozoa and from 3.70 × 10
6
 to 3.70 × 10

12
 copies per μg of 673 

DNA for anaerobic fungi. qPCR reactions were performed in a final volume of 20 μL, 674 
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containing 10 μL of Power SYBR Green PCR Master Mix (Thermo Fisher), 2 μL of standard 675 

or DNA template at 0.5 ng/μL and 0.6 μM of each primer to a final concentration of 200 mM 676 

for bacteria and anaerobic fungi and 150 mM for protozoa.  677 

In all the cases, the thermal cycling conditions were as follows: initial denaturation at 95 °C 678 

for 10 min; 40 cycles of denaturation at 95 °C for 15 sec, annealing and extension at 60 °C 679 

for 60 sec. To check for the absence of nonspecific signals, a dissociation step was added 680 

after each amplification. It was carried out by ramping the temperature from 60 ºC to 95 °C. 681 

All qPCR runs were performed in triplicate, and the standard curve obtained using the target 682 

amplicons was used to calculate the number of copies of microorganisms in feces.  683 

Taking into account the molecular mass of nucleotides and the amplicon length, the number 684 

of copies was obtained using the following equation: copies per nanogram = (NL × A × 10
-9

)/ 685 

(n × mw), where “NL” is the Avogadro constant (6.02 x 10
23

 molecules per mole), “A” is the 686 

molecular weight of DNA molecules (ng), “n” is the length of the amplicon in base pairs, and 687 

“mw” is the molecular weight per base pair. The final values obtained are described in the 688 

Table EV11. 689 

 690 

Integrative statistical analyses 691 

Data integration was carried out using several approaches and different combinations of data 692 

sets. Prior to integration, each data set underwent a specific set of pre-processing steps.  693 

In the case of the
 1

H NMR and biochemical assays, data were processed by subtracting the T0 694 

values from the T1 values. The two data sets included 50, and 9 molecules, respectively. 695 

In the case of the blood transcriptome, a new expression matrix (“E2”) was created including 696 

only the differentially expressed mt-related genes and by subtracting the T0 from the T1 697 

expression matrix values, i.e., by calculating the ratio between T1 and T0 log scaled 698 

expression values from the two matrices. A total of 801 genes was retained (Table EV5).  699 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425889


 29 

The fecal pH values and the proportions of the 6 SCFAs in feces did not undergo any specific 700 

pre-processing. In the case of fecal microbiota, the genera table “G1” was modified using the 701 

mixMC framework of the mixOmics R package (version 6.10.9) (Rohart et al, 2017). First, 702 

raw data were pre-filtered by removing the genera for which the percentage of the sum of 703 

counts was lower than 1% compared to the total sum of all counts. Then, the pre-filtered data 704 

were transformed using the Centered Log Ratio transformation (CLR) and applying an offset 705 

of 1. The filtered genera matrix “G2” obtained in this way included 85 genera (Table EV14). 706 

Finally, the concentration of microorganisms in feces did not undergo any specific editing. 707 

After the pre-processing steps, a first round of integration was performed using three different 708 

methods and working with all six data sets available, namely: (1) mt-related genes (i.e., the 709 

“E2” matrix); (2) 
1
H NMR metabolites; (3)

 
biochemical assay metabolites; (4) the 710 

concentrations of fecal SCFAs; (5) fecal 16S rRNA gene sequencing data (i.e., the “G2” 711 

matrix); and (6) the concentration of fecal microorganisms. 712 

As a first integration approach, a global NMDS ordination was used to extract and summarize 713 

the variation in mt-related genes (the “response variable”) using the “metaMDS” function in 714 

vegan R package. To determine the number of dimensions for each NMDS, stress values 715 

were calculated. Stress values are a measure of how much the distances in the reduced 716 

ordination space depart from the distances in the original p-dimensional space. High stress 717 

values indicate a greater possibility that the structuring of observations in the ordination 718 

space is entirely unrelated to that of the original full-dimensional space. 719 

The other five data sets (the “explanatory variables”) were then fitted to the ordination plots 720 

using the “envfit” function in the vegan R package (Clarke & Ainsworth, 1993) with 10,000 721 

permutations. The “envfit” function performs a multivariate analysis of variance (MANOVA) 722 

and linear correlations for categorical and continuous variables. The effect size and 723 

significance of each covariate were determined comparing the difference in the centroids of 724 
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each group relative to the total variation, and all of the p-values derived from the “envfit” 725 

function were Benjamini-Hochberg adjusted. The obtained r
2
 gives the proportion of 726 

variability (that is, the main dimensions of the ordination) that can be attributed to the 727 

explanatory variables.  728 

As a second integration approach, a forward-selection model-building method for redundancy 729 

analysis (RDA) (Blanchet et al, 2008) was used to extract and summarize the variation in mt-730 

related genes (the “response variable”) that could be explained by the other five data sets (the 731 

“explanatory variables”). To determine which set of covariates provided the most 732 

parsimonious model, automatic stepwise model selection for constrained ordination methods 733 

was used as implemented by the “ordistep” function of the vegan R package. To test for 734 

robustness, a forward automatic model selection on a distance based RDA was then 735 

performed using the “ordiR2step” function of the vegan package in R (Oksanen et al, 2013). 736 

This provided an estimation of the linear cumulative effect size of all the identified non-737 

redundant covariates and of their independent fraction in the best model. In the case of this 738 

latter function, the “E2” matrix was modified using the Hellinger transformation prior to the 739 

analysis. These two RDA functions use different criteria for variable selection. The 740 

“ordistep” funciton uses the Akaike’s information criterion (AIC) and p-value < 0.05 741 

obtained from Monte Carlo permutation tests, while “ordiR2step” uses the adjusted 742 

coefficient of determination (r2adj). In both cases, the procedure begins by comparing a null 743 

model containing no variables and a test model containing one variable, where every possible 744 

covariate is considered.  745 

As a third integrative approach, the N-integration algorithm DIABLO of the mixOmics R 746 

package was used. In this case, the relationships existing among all six data sets were studied 747 

by adding a further categorical variable, i.e., the performance of horses. Horses that had a 748 

poor performance or that had been eliminated (n = 8) were compared to horses that had 749 
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completed the race (n = 12, Table EV1). DIABLO seeks to estimate latent components by 750 

modelling and maximizing the correlation between pairs of pre-specified datasets to unravel 751 

similar functional relationships between them (Singh et al, 2019). A full weighted design was 752 

considered and, to predict the number of latent components and the number of discriminants, 753 

the “block.splsda” function was used. In both cases, the model was first fine-tuned using the 754 

leave-one-out cross-validation by splitting the data into training and testing. Then, 755 

classification error rates were calculated using balanced error rates (BERs) between the 756 

predicted latent variables with the centroid of the class labels (i.e., eliminated vs non 757 

eliminated horses) using the “max.dist” function. BERs account for differences in the number 758 

of samples between different categories. Only interactions with r ≥ |0.70| were visualized 759 

using CIRCOS. To visualize the high-confidence molecule co-associations determined by 760 

CIRCOS, only those with r ≥ |0.70| and more than 15 connections were automatically 761 

visualized using the organic layout algorithm in Cytoscape (version 3.8.1) 762 

(http://cytoscape.org).  763 

Finally, we performed a pairwise integration, focusing only on mt-related genes and 764 

microbiota data, and using the rCCA method as implemented by the mixOmics R package 765 

(https://cran.r-project.org/web/packages/mixOmics/). The penalization parameters were 766 

estimated using the “shrinkage” method and setting the “ncomp” parameter to two. The 767 

correlation matrix thus obtained was filtered by retaining only the genes and the genera for 768 

which at least one association value data point presented r ≥ |0.55|. 769 
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 800 

DATA AVAILABILITY SECTION 801 

The datasets produced in this study are available in the following databases: 802 

 Microarray expression data: Gene Expression Omnibus (GEO) repository
 

under the 803 

accession number GSE163767; (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 804 

GSE163767) 805 

 Metabolomic data: NIH Common Fund’s Data Repository and Coordinating Center 806 

UrqK1489; 807 

(http://dev.metabolomicsworkbench.org:22222/data/DRCCMetadata.php?Mode=Study&S808 

tudyID=ST000945)  809 

 Gut metagenome 16S rRNA targeted locus data:  DDBJ/EMBL/GenBank under the 810 

accession KBTQ00000000, version KBTQ00000000.1; (locus KBTQ01000000). The 811 

corresponding BioProject is PRJNA438436, and the accession numbers of the BioSamples 812 

included in it were SAMN08715709 to SAMN08715760. 813 
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 1106 

FIGURES 1107 

FIGURE LEGENDS 1108 

Figure 1 - Description of the cohort and of the data analysis workflow. 1109 

A Key features of the experimental design. 1110 

B Overview of the data analysis workflow. On the left, the six datasets used in the study are 1111 

depicted, indicating whether they were obtained at T0 and T1 or at T0 only.  1112 

Data information: written permission for publication of the drawings corresponding to 1113 

endurance event in the panel A was obtained. In the A panel, the pictures of the blood and 1114 

plasma tubes were download from https://smart.servier.com. In all cases, no changes were 1115 

made. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 1116 

Unported License. 1117 

 1118 

Figure 2 - Overview of the mt-related genes. 1119 

A Plot of the first two components of the PCA obtained using all of the expressed genes. 1120 

B Sankey diagram of the differentially expressed genes, showing the numbers of up-1121 

regulated, down-regulated and mt-related genes. Only a relatively small fraction of the mt-1122 

related genes (249 out of 801) was up-regulated, whereas most (552 out of 801) were down-1123 

regulated. 1124 
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C Venn diagrams illustrating the overlaps among expressed genes (blue), differentially 1125 

expressed genes (purple), genes included in WGCNA modules (yellow) and mt-related genes 1126 

(green).  1127 

D Illustration of the proportion of mt-related genes encoded by the mitochondrial and by the 1128 

nuclear genomes. Except for MT-ND6, all of the other genes are encoded by the nuclear 1129 

genome. 1130 

Data information: in panel D, the picture of the mitochondria was download from 1131 

https://smart.servier.com. In all cases, no changes were made. Servier Medical Art by Servier 1132 

is licensed under a Creative Commons Attribution 3.0 Unported License. 1133 

 1134 

Figure 3 - Associations between mt-related genes, microbiota and circulating 1135 

metabolites. 1136 

A Dissimilarities in mt-related gene expression represented by the non-metric 1137 

multidimensional scaling (NMDS) ordination plot. The Bray–Curtis dissimilarity index was 1138 

calculated on normalised data, the samples were coloured according to the total length of the 1139 

race and the two different shapes of the dots indicate if the horses finished the race or if they 1140 

were eliminated. 1141 

B Effect sizes of gut microbiota, fecal SCFAs, 
1
H NMR and biochemical assay metabolites 1142 

over NMDS ordination. Covariates are coloured according to the type of dataset: 
1
H NMR 1143 

metabolites are in orange, biochemical assay metabolites in red, fecal SCFAs in violet and 1144 

bacteria in dark blue. Horizontal bars show the amount of variance (r
2
) explained by each 1145 

covariate in the model as determined by ‘envfit’ function. 1146 

C Grouped bar chart showing the cumulative effect sizes of covariates on mt-related gene 1147 

expression (coloured bars) compared to individual effect sizes assuming covariate 1148 

independence (grey bars) using a stepwise model selection using distance-based redundancy 1149 
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analysis (dbRDA). Covariates are coloured according to the type of dataset: red for 1150 

biochemical assay metabolites, and blue for bacteria. 1151 

D Plot showing the covariates that contribute significantly to the variation of mt-related genes 1152 

determined by stepwise model selection using redundancy analysis (RDA). The arrows for 1153 

each variable show the direction of the effect and are scaled by the unconditioned r
2
 value. 1154 

Covariates are coloured according to the type of dataset: red for biochemical assay 1155 

metabolites and dark blue for bacteria. 1156 

 1157 

Figure 4 - Data integration using mt-related genes, 
1
H NMR metabolites, biochemical 1158 

assay metabolites, fecal SCFAs and gut bacteria. 1159 

A Matrix scatterplot showing the correlation between the first components related to each 1160 

dataset in DIABLO according to the input design. 1161 

B CIRCOS plot of the final multi-omics final signature. Each dataset is given a different 1162 

colour: mt-related genes are in green, 
1
H NMR metabolites in orange, biochemical assay 1163 

metabolites in red, fecal SCFAs in violet and gut bacteria in dark blue. Red and blue lines 1164 

indicate positive and negative correlations between two variables, respectively (r ≥ |0.70|). 1165 

C Visualization of the network obtained with Cytoscape using the final DIABLO multi-omics 1166 

signature as an input. Only features with more than 15 connections are shown. The size of the 1167 

nodes indicates the number of interacting partners within the network.  1168 

 1169 

Figure 5 - The bidirectional crosstalk between the gut microbiota and mitochondria in 1170 

endurance horses. 1171 

The intertwined communication between mitochondria and gut microbiota was likely 1172 

mediated by microbiota derived byproducts (SCFA and secondary bile acids), which regulate 1173 

mitochondrial redox balance, inflammation and energy production during intense exercise. 1174 
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Among the SCFA, butyrate appeared as a key regulator of mitochondrial energy production 1175 

and oxidative stress. 1176 

Increased lactate and urea concentrations upon prolonged exercise likely entered the gut 1177 

lumen and were subsequently transformed into SCFA. It is also suggested that circulating 1178 

free fatty acids participated in the mitochondrial regulation of the inflammatory processes 1179 

elicited by oxidative stress, microbial dissemination and microbial lipopolysaccharides 1180 

translocation outside of the gastrointestinal tract, as often occurs in endurance athletes. 1181 

Whether these mechanisms confer an advantage for endurance performance remains still 1182 

speculative, but results raise the possibility that gut-microbiota crosstalk is pivotal for greater 1183 

energy availability, aerobic metabolism, glycogen preservation, resistance to fatigue and to 1184 

maintain speed during the race. 1185 

Written permission for publication of the horse drawings was obtained. The pictures of the 1186 

mitochondria and gut were downloaded from https://smart.servier.com. In all cases, no 1187 

changes were made. Servier Medical Art by Servier is licensed under a Creative Commons 1188 

Attribution 3.0 Unported License. 1189 

 1190 

EXPANDED VIEW INFORMATION 1191 

Creation of a consensus list for literature-based meta-analytical analysis of 1192 

mitochondrial-related genes. 1193 

We retrieved four gene lists: (1) the Integrated Mitochondrial Protein Index (IMPI) gene list 1194 

(Smith & Robinson, 2019). Only the human gene list (‘Human IMPI genes’, ‘MitoMiner 1195 

version Q2 2018’, downloaded from http://mitominer.mrc-mbu.cam.ac.uk/release-1196 

4.0/impi.do) was retained (1,626 genes) to facilitate finding horse/human orthologs; (2) the 1197 

Mitocarta Inventory (Calvo et al, 2016) gene list. As before, only the human gene list 1198 

(‘Human MitoCarta 2.0 genes’, ‘MitoCarta 2.0 genes in MitoMiner’ downloaded from 1199 
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http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/mitocarta.do) was retained (1,158 genes) to 1200 

facilitate the identification of horse/human orthologs; (3) all of the 618 genes included in the 1201 

following KEGG pathways: hsa00020, hsa00061, hsa00062, hsa00071, hsa00072, hsa00100, 1202 

hsa00130, hsa00140, hsa00190, hsa00240, hsa00280, hsa00290, hsa00471, hsa00480, 1203 

hsa00628, hsa00760, hsa00860, hsa01212, hsa04020, hsa04024, hsa04072, hsa04115, 1204 

hsa04136, hsa04137, hsa04140, hsa04210, hsa04215, hsa04350, hsa04370, hsa04668 and 1205 

hsa04979. The genes in each KEGG pathway were retrieved from the KEGG database 1206 

(release 96.0) using the R package KEGGREST; (4) a custom list including 103 genes found 1207 

in the literature (Pearce et al, 2017; Bianchessi et al, 2016; Nicholls & Gustafsson, 2018; 1208 

Wang et al, 2016; Cosson et al, 2012; Rizzuto et al, 2012; Gustafsson & Samuelsson, 2001; 1209 

Gustafsson et al, 2016; Lee et al, 2015). These four gene sets were merged to create a 1210 

consensus list, which included 2,082 unique genes (Table EV4). 1211 

 1212 

EXPANDED VIEW FIGURES  1213 

Figure EV1 - Correlations between eigengene modules and metabolites from WGCNA 1214 

method.  1215 

Each module is labelled with a unique colour as an identifier. A module is considered 1216 

positively (highlighted in red) or negatively (highlighted in blue) associated to metabolites if 1217 

the Pearson r correlation values were ≥ |0.65| for at least 5 molecules (highlighted again in 1218 

red or blue) and if the corresponding p-values are ≤ 1e-05. Within each cell, upper values 1219 

indicate the correlation values between modules and metabolites, while lower values are the 1220 

corresponding p-values. 1221 

 1222 

Figure EV2 - Descriptive KEGG pathway classification bar plot obtained using the 1223 

consensus list of genes related to mitochondria.  1224 
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The horizontal bars represent the absolute number of genes found in third-level KEGG 1225 

pathways, grouped in first-level KEGG pathways using a colour code. The vertical bars on 1226 

the right indicate the names of first-level pathways. 1227 

 1228 

Figure EV3 - Functional classification of the mt-related genes. 1229 

Functional classification of mt-related genes obtained with ClueGO. The chart shows the 1230 

functional groups found as enriched, and the name of the group is represented by the group 1231 

leading term. The significant enriched functional groups are marked with a red *. 1232 

 1233 

Figure EV4 - Composition of the core microbiota. 1234 

A heatmap showing the core microbiota and its prevalence at different detection thresholds. 1235 

Only the genera shared by 99% of individuals in the cohort and with a minimum detection 1236 

threshold of 0.1% are shown.  1237 

B Circular stacked barplot of the main genera included in the core genome. Genera are 1238 

coloured according to the phylum they belong to. 1239 

 1240 

EXPANDED VIEW LARGE TABLES 1241 

Table EV1 - Metadata of the horses recruited in the experiment.  1242 

The letters between brackets in the “Ranking” column indicate the causes of the elimination 1243 

of the horse: “L” corresponds to “lameness”, R” to “retired” and “M” to “metabolic issues”. 1244 

 1245 

Table EV2 - List of genes found differentially expressed in whole blood in T1 with 1246 

respect to T0 horses.  1247 

Columns two and three show the mean log2 normalized expression values in the two time 1248 

points, while columns four and five show the log2 FC values and the Bonferroni adjusted p-1249 
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values. Columns six to nine indicate the genes that are also found in the mt-related consensus 1250 

list. The gene lists used to create the final consensus are indicated separately. 1251 

 1252 

Table EV3 - List of genes included in each of the three eigengene modules found as 1253 

correlated to metabolites using WGCNA.  1254 

The modules are indicated using the default WGCNA naming convention, and highlighted in 1255 

blue to indicate negative correlation and red to indicate positive correlation. 1256 

 1257 

Table EV4 - Consensus list of genes related to mitochondria obtained as described in 1258 

the Expanded View Information.  1259 

Gene description, gene localizations and gene types were determined according to IPA 1260 

(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). 1261 

 1262 

Table EV5 - List of mt-related genes, defined as the intersection between the list 1263 

included in the Table EV4 and the set of expressed genes.  1264 

Gene description, gene localizations and gene types were determined according to IPA 1265 

(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). Columns 1266 

from N from AG show the expression values found in the “E2” matrix, which were obtained 1267 

by subtracting the T0 from the T1 expression matrix values, i.e., by calculating the ratio 1268 

between T1 and T0 log scaled expression values from the two matrices. 1269 

 1270 

Table EV6 - Relative abundance of metabolites obtained from blood of the 20 horses 1271 

under study collected before and after the endurance ride. 1272 

 1273 

Table EV7 - Biochemical parameters obtained from the blood of the 20 horses under 1274 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425889doi: bioRxiv preprint 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://doi.org/10.1101/2021.01.08.425889


 52 

study collected before and after the endurance race. 1275 

 1276 

Table EV8 - ASV taxonomical assignments and ASV counts for the 20 horses under 1277 

study. 1278 

 1279 

Table EV9 - Non-normalized annotated abundance genera table observed in the fecal 1280 

samples of the 20 horses under study. 1281 

 1282 

Table EV10 - Fecal pH and fecal short chain fatty acids measurements in the 20 horses 1283 

under study before the endurance race. 1284 

 1285 

Table EV11 - Concentrations of bacteria, ciliate protozoa and anaerobic fungi in the 1286 

feces of the 20 horses under study. 1287 

 1288 

Table EV12 - Correlated variables obtained using DIABLO on all of the available data 1289 

sets.  1290 

Gene descriptions and localizations were determined using the IPA database 1291 

(https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). Molecular 1292 

pathways were determined using ClueGO 2.5.7 in the case of genes. 1293 

 1294 

Table EV13 - Correlation matrix of the associations between mt-related genes and 1295 

bacterial genera obtained using the rCCA method.  1296 

Only the genes and the genera for which at least one association value data point presented r 1297 

≥ |0.55| are shown. 1298 

 1299 
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Table EV14 - Genera table obtained using the mixMC framework. 1300 

Genera with less than 1% counts with respect to the total number were removed, and 1301 

subsequently a centered log ratio transformation was applied.  1302 
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