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Monoclonal antibody therapeutics are often produced from
non-human sources (typically murine), and can therefore gen-
erate immunogenic responses in humans. Humanization proce-
dures aim to produce antibody therapeutics that do not elicit an
immune response and are safe for human use, without impact-
ing efficacy. Humanization is normally carried out in a largely
trial-and-error experimental process. We have built machine
learning classifiers that can discriminate between human and
non-human antibody variable domain sequences using the large
amount of repertoire data now available. Our classifiers consis-
tently outperform existing best-in-class models, and our output
scores exhibit a negative relationship with the experimental im-
munogenicity of existing antibody therapeutics. We used our
classifiers to develop a novel, computational humanization tool,
Hu-mAb, that suggests mutations to an input sequence to re-
duce its immunogenicity. For a set of existing therapeutics with
known precursor sequences, the mutations suggested by Hu-
mAb show significant overlap with those deduced experimen-
tally. Hu-mAb is therefore an effective replacement for trial-
and-error humanization experiments, producing similar results
in a fraction of the time. Hu-mAb is freely available to use at
opig.stats.ox.ac.uk/webapps/humab.
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Introduction
Since the first monoclonal antibody (mAb), muromonab, was
approved by the US FDA in 1986, the antibody therapeutic
market has grown exponentially, with six of the top ten sell-
ing drugs in 2018 being mAbs (1). Therapeutic mAbs and
antibody-related products such as Fc-fusion proteins, anti-
body fragments, nanobodies, and antibody-drug conjugates
are now the predominant class of biopharmaceuticals, repre-
senting half the total sales of all biopharmaceutical products
(2). These therapeutics treat a range of pathologies includ-
ing but not limited to cancer, multiple sclerosis, asthma and
rheumatoid arthritis. To date (September 2020), 93 therapeu-
tics mAbs have been approved by the US FDA and at least
400 others are in development (3).
Many therapeutic antibodies are derived from natural B-
cell repertoires of mice, or mice with an engineered human
germline repertoire (1). However, antibodies developed in
animal models are often not tolerated by humans and can
elicit an immune response – this property is known as im-
munogenicity. Immunogenic responses can negatively im-
pact both safety and pharmacokinetic properties of the thera-

peutics and can result in the production of neutralizing an-
tibodies that lead to loss of efficacy (1). This can pose a
significant barrier to the development and approval of thera-
peutics (4). To combat the immunogenicity of mAbs, various
techniques to engineer murine antibodies by substituting part
of their sequence with human ones are used. These include
chimerization (5) and humanization (6). The former involves
the combining of a murine variable domain with human con-
stant region domains, and the latter involves grafting the
murine CDR sequences into a human scaffold. Early stud-
ies have suggested that more human-like sequences demon-
strate lower levels of immunogenicity (7). Whilst multiple
techniques have been developed to obtain fully human mAbs,
humanized antibodies remain the predominant class of mAb
making up 50% of therapeutics in development (3).

The aim of humanization is to reduce immunogenicity while
preserving the efficacy of the therapeutic. Typically, human
frameworks with high homology to the original sequence of
interest are chosen as a scaffold (8). Some murine residues in
framework regions, referred to as vernier zone residues, af-
fect the conformation of CDR loops and may therefore be re-
tained to preserve antibody affinity. Although computational
methods are available (e.g. 9–14), the humanization process
remains a bottleneck in mAb development, often based on
trial-and-error, involving arbitrary back-mutations to restore
efficacy or reduce immunogenicity (15).

An effective systematic humanization protocol requires a
model that is able to identify the humanness of a sequence
with little error. Higher humanness scores should also be
linked with lower levels of immunogenicity. Traditional
humanness scores are based on pairwise sequence identity
methods between the sample and a set of reference (most of-
ten germline) human sequences. For example, the score can
correspond to the sequence identity of the closest germline
sequence or the average among a set of sequences (11). Re-
cent models take account of both preferences of particular
residues and pair correlations between amino acids (12). A
Multivariate Gaussian model (MG) utilized a statistical in-
ference approach (13) and could distinguish human from
murine sequences accurately, but the score demonstrated only
a weak negative correlation to experimental immunogenicity
levels. More recently, a deep learning approach utilizing a bi-
directional long short-term memory (LSTM) model demon-
strated best-in-class performance in discriminating between
human and murine sequences (14).
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The recent growth of publicly available antibody sequences
has created many opportunities for large-scale data mining.
OAS (16) is a database of Ig-seq outputs from ∼80 studies
with nearly 2 billion redundant antibody sequences across di-
verse immune states and organisms (although primarily hu-
man and mouse). OAS is ideal for data mining due to its size,
consistent IMGT numbering, and because the sequences rep-
resent natural mature antibodies produced in vivo.
Utilizing random forest models, we have constructed classi-
fiers that accurately distinguish between each human V gene
and non-human variable domain sequences. The ‘human-
ness’ scores produced by these classifiers exhibited a negative
relationship with observed immunogenicity levels. We used
these models to build Hu-mAb – a computational tool that
can systematically humanize VL and VH sequences of inter-
est by suggesting mutations that increase humanness. Hu-
mAb humanizes the sequence in an optimal manner, mini-
mizing the number of mutations made to the sequence to limit
the impact on efficacy. The mutations made by our humanizer
were found to be very similar to those made in experimen-
tal therapeutic humanization studies that produced sequences
with low immunogenicity. Hu-mAb offers a powerful alter-
native to time-consuming, trial-and-error based approaches
to reducing immunogenicity. Hu-mAb is freely available at
opig.stats.ox.ac.uk/webapps/humab.

Results
Classification performance of our Random Forest (RF)
models on OAS sequences. RF models were generated by
training on the OAS IgG dataset (see Methods). Each model
was created as a binary classifier – trained on human anti-
body sequences (either VH, VL Kappa or VL Lambda) of a
specific V gene type as the positive class and all non-human
sequences of the respective chain type as the negative class.
Different classifiers were constructed for each V gene as PCA
demonstrated trivial clustering of sequences by their respec-
tive V gene type (see SI, section 3A). The performance of
the RF models was assessed by determining its ability to cor-
rectly distinguish human sequences of a specific V gene type
from those originating from other species. We used the val-
idation set to determine the classification thresholds as the
value that maximizes the Youden’s J statistic (YJS; see Meth-
ods). Performance on the test set was then calculated using
the chosen threshold for each model. Extremely high per-
formance was observed across all models, achieving AUCs
(area under the receiver operating characteristic curve) close
to 1 or 1 (see SI, section 3B). Similar YJS values were also
seen in both validation and test sets with all models scoring
≥0.999. All the VH models perfectly discriminated between
human and negative sequence in both validation and test sets.
Performance on the light chain is slightly worse - this may be
due to the greater amount of negative training data available
for the VH models (>12 million sequences) compared to that
of kappa (950,000) and lambda (650,000) models.

Comparison of RF models to previous LSTM models.
Recent work has used the LSTM model for predicting hu-

manness (14). We generated LSTM models with our dataset
of sequences (see Methods) and performance was compared
to our RF models. Across all 22 models (each chain and
each V gene type), the RF model outperformed the respective
LSTM model on both AUC and YJS scores (see SI, section
3C). None of the LSTM models were capable of completely
discriminating between human and negative sequences. We
suspect our RF models produce better results because they
are trained using both positive and negative (non-human)
data, whereas LSTM models were only trained on positive
human sequences.

Classification of therapeutics. A set of 481 antibody ther-
apeutics (Phase I to approved) were obtained from Thera-
SAbDab (3) (see Methods). Each VH and VL sequence was
scored by the respective set of RF classifiers (VH, kappa, or
lambda) and was classified as human if a single model scores
it as human (above the YJS threshold). In the case of VL
sequences, we built and used an additional RF model to first
discriminate whether the sequence type is kappa or lambda
(see Methods). Figure 1 shows the proportion of therapeu-
tics classified as human (split by origin) by their chain type
(VH or VL) and combined (requires both VH and VL to be
classified as human). All 176 human sequences were clas-
sified as human, and all 14 mouse sequences as non-human.
Overall our RF models classify more therapeutics as human,
as the human content of the antibody sequences increases.
This trend is also observed using the LSTM method, but not
as clearly - for example, more of the chi/humanized set are
classified as human than the humanized set, and some human
therapeutics are classified as non-human (SI section 3D).
It might be expected that all chimeric sequences have a com-
pletely non-human variable domain as only the constant do-
mains are replaced with human sequence. However, two VH
sequences and one VL sequence (out of 43) were labelled as
human by our classifiers. This is likely to be because these
sequences were of Macaca irus origin – a species that was
not present in the training dataset from the OAS. Two-thirds
of the humanized therapeutics had both VH and VL classi-
fied as human. Humanized sequences often have arbitrary
back mutations on the FR regions to improve efficacy which
might explain why not all humanized sequences are classified
as human. Moreover, the INN definition was changed in 2014
such that sequences with a chimeric origin could be given an
INN that implied a humanized sequence (17). VL sequences
had a lower proportion classified as human compared to VH
sequences. This could be potentially attributed to the lower
number of mutations made in VL sequences (on average 75%
of the number of mutations made on VH sequences - see Ta-
ble 1).

Relationship of RF model scores with immunogenic-
ity. The aim of humanization is to create a therapeutic that
is safe and does not elicit an immune response. A strong
predictive score for classification is not sufficient to pro-
duce a humanizer as it does not explicitly account for im-
munogenicity. The relationship of the model scores with ob-
served immunogenic responses, as measured by the appear-
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Fig. 1. Percentage of antibody therapeutics classified as human by our RF models,
split by their origin. Chi/humanized are sequences which are part humanized and
part chimeric. Therapeutics were classified based on their VH and VL sequences
separately, as well as combined (to be classified as human, both VH and VL scores
had to be above the respective YJS threshold). As the humanness of the therapeu-
tics decreases (left to right), the proportion classified as human also decreases.

ance of anti-drug antibodies (ADAs), was therefore investi-
gated. The fraction of patients with observed immunogenic
responses was obtained from FDA labels of approved anti-
body therapeutics and clinical studies of therapeutics still in
clinical trials (outlined in Methods). There are limitations to
this data: for example there are differences in patient demo-
graphic (age, physical conditions, illness), dosage levels and
length of dosage of the therapeutic and if the treatment is in
combination with other drugs. In addition, the murine ther-
apeutics within the dataset are likely to be inherently biased
towards lower levels of immunogenicity as they are approved
therapeutics. SI section 3E shows the correlation between our
model scores and the fraction of patients with observed im-
munogenic responses across 218 therapeutics. We found that
higher model scores tend to relate to lower immunogenic-
ity, although the correlation was weak with an R2 of 0.35.
This correlation is significantly higher than the R2 of 0.18
observed in previous work (13).
We grouped the set of 481 therapeutics by their humanness
scores (the output of the RF models). Figure 2 illustrates this
categorization and demonstrates that high humanness scores
are linked with low immunogenicity and vice versa. For ex-
ample, over 90% of therapeutics that had both their VH and
VL sequence above the YJS threshold exhibited low observed
immunogenicity and only 1 sequence (0.7%) had high im-
munogenicity. In contrast, less than 50% of the therapeutics
with scores below the YJS threshold had low immunogenic-
ity.

Hu-mAb: a computational humanizer tool and its
application to previously experimentally-humanized
therapeutics. As high model scores were linked with lower
levels of immunogenicity, we used the score to construct a
computational humanization tool, Hu-mAb, that suggests op-
timal mutations that would increase the model score of the in-
put sequence, therefore lowering immunogenicity. Residues
in the CDRs are not mutated to maintain antigen-binding
properties (described in Methods). The humanizer should
ideally produce as few mutations as possible to reduce effi-
cacy loss of the therapeutic. To investigate the similarity be-

Fig. 2. Relationship between the the humanness scores produced by our RF mod-
els and experimentally-determined immunogenicity. Therapeutics were split into
three categories according to their humanness scores: above 0.9 (’High Score’),
above the YJS threshold for the relevant RF model (’Positive’), and below the YJS
threshold (’Negative’). Both the VH and VL sequences have to be above the thresh-
old to be classed as ’Positive’. The immunogenicity of a therapeutic is also rep-
resented by three levels: over 50% of patients develop ADAs (orange), 10-50%
of patients develop ADAs (yellow), and under 10% of patients develop ADAs (blue).
Therapeutic sequences classified as human by our model tend to have low immuno-
genicity levels, while sequences classified as not human are more immunogenic.

tween mutations suggested by Hu-mAb and experimentally
derived mutations, experimentally humanized sequences that
demonstrated low immunogenicity and for which the precur-
sor sequence was available were collected (for full details see
SI sections 1E and 3F). The VH and VL sequence of each
therapeutic was scored by each RF model, and the V gene
identified by selecting the model that produced the highest
score. The precursor sequence was used as the input se-
quence into the humanizer, along with its target humanness
score (the score achieved by the experimentally-humanized
sequence) and V gene type.
Table 1 compares the mutations made experimentally and
those suggested by Hu-mAb for the precursor (unhuman-
ized) sequences of 25 therapeutics. Each of these therapeu-
tics displayed low immunogenicity in their experimentally-
humanized forms. All precursor sequences were of murine,
rat or rabbit origin and most had model scores close to 0 (see
SI section 1E/3F for breakdown of scores and immunogenic-
ity). Two therapeutics had precursor sequences scoring above
their YJS threshold (VL only for Campath and both VH/VL
for Clazakizumab). This is likely due to sequences of their
species origin not being present in the training dataset of our
models - neither VH/VL rabbit sequences (Clazakizumab)
nor VL rat sequences (Campath) were present in the respec-
tive training datasets.
Hu-mAb consistently suggested fewer mutations than the
number carried out experimentally - on average, Hu-mAb
suggested 59% and 58% of the experimental amount for the
VH and VL sequences respectively. Of the mutations sug-
gested by Hu-mAb, an average of 68% and 77% (for VH and
VL sequences respectively) were also made experimentally
(overlap ratio or OR). Including mutations to similar residue
types (see SI section 3C for groupings) resulted in an average
adjusted overlap ratio (AOR) of 77% and 85% for VH and VL
respectively. This shows that the mutations suggested by Hu-
mAb are very similar to those made experimentally. In con-
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Table 1. Comparison between experimental humanization, and our computational tool Hu-mAb. The mutation ratio is the average number of mutations Hu-mAb suggested
relative to the number of mutations made experimentally. The overlap ratio is the number of mutations that were both suggested by Hu-mAb and made experimentally, relative
to the number of mutations suggested by the Hu-mAb. For the ‘unadjusted’ overlap ratio, only mutations to identical amino acid types were considered; the ‘adjusted’ version
considers mutations to similar amino acid types to be a match (see SI section 2C).

VH VL
Unadjusted Adjusted # Hu-mAb # Experimental Mutation Unadjusted Adjusted # Hu-mAb # Experimental Mutation

Therapeutic Gene Overlap Ratio Overlap Ratio Mutations Mutations Ratio Gene Overlap Ratio Overlap Ratio Mutations Mutations Ratio
AntiCD28 V3 63% 79% 19 33 58% KV4 64% 73% 11 19 58%
Campath V4 75% 88% 16 39 41% KV1 67% 67% 3 14 21%
Bevacizumab V3 50% 57% 14 25 56% KV1 89% 100% 9 16 56%
Herceptin V3 59% 78% 27 32 84% KV1 88% 88% 8 22 36%
Omalizumab V3 62% 76% 21 34 62% KV1 89% 95% 19 25 76%
Eculizumab V1 73% 73% 15 23 65% KV1 83% 83% 12 20 60%
Tocilizumab V4 64% 86% 14 23 61% KV1 78% 89% 9 19 47%
Pembrolizumab V1 73% 73% 11 23 48% KV3 75% 75% 12 20 60%
Pertuzumab V3 68% 79% 19 32 59% KV1 80% 90% 10 20 50%
Ixekizumab V1 75% 75% 12 29 41% KV2 78% 100% 9 12 75%
Palivizumab V2 75% 83% 12 18 67% KV1 77% 92% 13 26 50%
Certolizumab V3 61% 78% 18 31 58% KV1 80% 90% 10 20 50%
Idarucizumab V4 80% 80% 15 24 63% KV2 67% 67% 6 8 75%
Reslizumab V3 50% 80% 10 21 48% KV1 83% 100% 6 20 30%
Solanezumab V3 50% 70% 10 16 63% KV2 88% 100% 8 10 80%
Lorvotuzumab V3 90% 90% 10 13 77% KV2 82% 82% 11 13 85%
Pinatuzumab V3 61% 78% 23 33 70% KV1 74% 79% 19 23 83%
Etaracizumab V3 58% 83% 12 16 75% KV3 62% 69% 13 25 52%
Talacotuzumab V5 78% 83% 18 33 55% KV4 73% 73% 11 16 69%
Rovalpituzumab V1 67% 67% 21 30 70% KV3 64% 69% 14 26 54%
Clazakizumab V3 86% 86% 7 27 26% KV1 75% 75% 4 22 18%
Ligelizumab V1 64% 64% 11 21 52% KV3 64% 91% 11 21 52%
Crizanlizumab V1 64% 64% 11 23 48% KV1 85% 95% 20 23 87%
Mogamulizumab V3 67% 67% 6 15 40% KV2 67% 67% 6 12 50%
Refanezumab V7 87% 87% 15 17 88% KV4 92% 100% 12 17 71%
Average 68% 77% 59% 77% 85% 58%
Median 67% 78% 59% 78% 88% 56%

Fig. 3. The Hu-mAb humanization procedure, demonstrated using the heavy chain sequence of the therapeutic Campath. The humanized sequence produced experimentally
is shown at the bottom of the figure (conserved residues in yellow, mutated residues in orange). Starting with the unhumanized precursor sequence (top), Hu-mAb makes
every possible mutation to the framework residues (grey) and selects the one that produces the largest increase in humanness score. CDR residues (dark blue) are not
mutated to preserve binding. This procedure is performed iteratively until the humanness score reaches a given threshold. Mutations suggested by Hu-mAb are coloured
depending on whether they are the same (green), similar (blue) or different (red) to mutations made experimentally. In this case, Hu-mAb suggested 16 mutations (compared
to 39 from experiment), of which 14 were the same or similar to those derived experimentally.

trast, a randomly humanized sequence would be expected to
produce an average OR and AOR of ∼2% and ∼5% respec-
tively (see SI section 3G). Hu-mAb is exploiting the infor-
mation found in the antibody repertoires to more efficiently
humanize therapeutic sequences.

Hu-mAb protocol and RF model analysis. Since exper-
imental humanization procedures often involve grafting of
non-human CDRs onto a human framework, it is expected
that the framework regions are more important than the hy-
pervariable CDR regions for the classification of human and
non-human sequences. Analysis of our RF models’ fea-
ture importance found that this is true; the key residues for
discrimination are mostly found in the framework region 4.
However, some CDR positions are utilized by the models for

discrimination. The most important features (top 10) for each
RF model are given in the Supplementary Information.

Analysis of our Hu-mAb protocol showed that identical mu-
tations (i.e. mutations of position X to residue type Y) do not
result in an identical increase in humanness score; the effect
depends on the rest of the sequence. Moreover, we found
that Hu-mAb occasionally made more than one mutation to
the same position in the sequence over the course of the hu-
manization procedure. These observations suggest that our
RF models do not consider positions in the sequence inde-
pendently, but rather they incorporate interactions between
residues to more realistically evaluate humanness.

We have also analysed the characteristics of the mutations
proposed by Hu-mAb and compared them to those made ex-
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Fig. 4. Feature importance of the VH V3 RF model and
its top 10 features. The x axis consists of the residue
positions in a sequential manner (left to right, IMGT num-
bering scheme). The inset table shows the top 10 fea-
tures and the percentage frequency of the relevant amino
acid type seen within the respective sets of sequences
(V3 and negative , or non-human). The most important
features likely determine the humanness of the sequence
and are mainly located in the framework (FR) regions.

perimentally. In terms of residue types, the mutations pro-
posed by Hu-mAb and experimentally were very similar (SI
section 3H). Most commonly, mutations were from one hy-
drophobic residue to another (18% and 20% of all mutations
made by Hu-mAb and through experiment, respectively).
Least common were mutations involving cysteines (<1% for
both Hu-mAb and experiment); importantly the conserved
cysteines at IMGT positions 23 and 104 were never mutated,
meaning structural viability is maintained (18).
The geometry of the antibody binding site is dependent on the
orientation of the VH and VL, which is in turn affected by the
residues present at the interface between the two domains.
The proportion of mutations suggested by Hu-mAb to key
VH-VL interface residues is slightly lower than the propor-
tion made by experimental procedures (see SI section 3I), and
the overlap ratio calculated for these residues is also higher
than the average (74%/96% for VH/VL compared to an aver-
age across all mutations of 68%/77%). Since Hu-mAb also
suggests fewer mutations on average (58-59% of the number
made experimentally), the average number of interface muta-
tions per sequence is around half that of experimental proce-
dures (0.8 vs 1.6 for heavy chains, 0.8 vs 1.8 for light chains).
A similar pattern was also observed for the Vernier zone - Hu-
mAb proposed fewer mutations to these residues, which are
thought to affect CDR conformations (19) (full details in SI).
This means that the binding properties of the antibody are
more likely to be preserved by using Hu-mAb.

Discussion
We have developed a novel humanization tool (Hu-mAb) that
can humanize both the VH and VL sequences of potential
antibody therapeutics. The model is based on RF classifiers
that have been trained on large-scale repertoire sequence data
and demonstrate very high levels of accuracy in classifica-
tion of antibodies by their origin. The humanness scores of
the model exhibited a negative relationship with observed ex-
perimental immunogenicity. Therefore, sequences that have
a higher humanness score are likely to have lower levels of
immunogenicity.
Our model is worse at classifying non-human sequences of
species that it has not been trained on (as seen with the rab-
bit precursor sequence of Clazakizumab). The non-human
sequences within OAS are almost entirely of murine origin,

and therefore Hu-mAb is mainly intended for use on murine
precursor sequences. We intend to regularly train and up-
date the RF models as new studies of non-human species are
added to OAS, potentially widening its uses; however as most
therapeutics of non-human origin are derived from murine
sources, our RF models and humanizer Hu-mAb should al-
ready be applicable in many cases.
Experimental approaches to humanization are largely a trial-
and-error process involving grafting of CDRs onto a com-
pletely human scaffold and if efficacy is lost, arbitrary back-
mutations are made to attempt to restore it (8). Hu-mAb was
constructed as a greedy algorithm and is optimized to select
the mutations that provide the highest increase in humanness
score, thus suggesting as few mutations as possible to reduce
the likelihood of impacting the efficacy of the therapeutic.
By utilizing RF classifiers that have only trained on a partic-
ular V gene type, the humanizer should produce a realistic
sequence with a single V gene origin.
Hu-mAb is efficient and only proposes mutations to the key
residues in the framework region responsible for humanness;
it incrementally suggests additional mutations to reduce im-
munogenicity if necessary; and back-mutations can be sug-
gested in a sequential and non-arbitrary manner (the muta-
tion with the lowest impact on the humanness score). Com-
pared to experimentally humanized therapeutics, Hu-mAb
suggested 60% of the number of mutations, with a high simi-
larity to those suggested experimentally (adjusted overlap ra-
tio of 75-80%). Hu-mAb offers a promising alternative to
experimental humanization approaches, allowing mutations
to be made in a more systematic and efficient manner, and
achieving similar results in a fraction of the time.

Materials and Methods

Preparation of OAS antibody sequence datasets. All
IgG VH and VL sequences were downloaded from the OAS
database (August 2020), totaling over 500 million sequences
in the IMGT format. Human sequences were split by their V
gene type - for example, V1 to V7 for VH sequences. Re-
dundant sequences, sequences with cysteine errors (18) and
sequences with missing framework 1 residues (residues pre-
ceding CDR1) were removed. The total dataset included over
65 million non-redundant sequences (SI section 1A).
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Training and testing the RF models. All models were
trained using the scikit-learn Python module with default pa-
rameters unless stated otherwise. RF binary classifiers for
each V gene type were trained with their respective set of V
gene sequences and the entire set of negative sequences. For
example, the VH V1 model was trained on all human VH V1
sequences (labelled as the positive class) and all VH negative
sequences (labelled as the negative class). 80% of the dataset
was used for training, 10% for validation and 10% for testing.
Performance plateaued after 100-200 estimators and there-
fore each RF classifier was trained with 200 estimators. The
performance of the RF models were assessed by determining
its ability to correctly distinguish human sequences of a spe-
cific V gene type from those originating from other species.
The validation set was utilized to set the classification thresh-
old according to the value that maximizes the Youden’s J
statistic (calculated as YJS = sensitivity + specificity - 1).
It was found that the threshold that maximizes the YJS was
very similar to the threshold that maximizes the Matthews
correlation coefficient (see SI section 3B). This classification
threshold was then used for calculating YJS values of the test
set and for classification of therapeutic datasets. In addition,
receiver operating characteristic (ROC) curves were gener-
ated and area under curve (AUC) scores for each model were
calculated in order to assess performance.

Training and testing the LSTM models. Identical train-
ing (excluding negative sequences), validation and test sets
were used for the LSTM models. The method to construct
the LSTM models followed that described in (14). As with
the RF models, the validation set was used to set the classifi-
cation threshold for the test dataset.

VL kappa and lambda classifier. The RF model to classify
whether a light chain sequence is of type kappa or lambda
was trained on 25% of the total human VL dataset (12 mil-
lion sequences). Testing of the model demonstrated perfect
accuracy – it correctly classified every sequence as kappa or
lambda within the entire VL dataset (both human and nega-
tive).

Sequence alignments. All antibody sequences were
aligned and numbered using the IMGT scheme with the AN-
ARCI software (20).

Therapeutic antibody dataset. All approved and phase 1-
3 antibody therapeutics were obtained from Thera-SAbDab
(3) and were aligned and IMGT numbered by ANARCI (Au-
gust 2020). Only mAbs with both a VH and VL sequence
were included; this gave a set of 481 therapeutics (see SI
section 1B). Each therapeutic has an International Nonpro-
prietary Name (INN) assigned by the WHO (21). The INN
infix preceding the suffix ‘-mab’ is determined by the ori-
gin of the therapeutic. Thus, the origin of each therapeu-
tic was obtained from its source infix (SI sections 1C/2A).
Therapeutics named in 2017 onwards no longer followed this
nomenclature and their origins were obtained from the IMGT

database for therapeutic monoclonal antibodies (IMGT/mab-
DB) (22). The Supplementary Information contains lists of
all 481 therapeutics and their origin, as well as a list of the
25 experimentally humanized therapeutic sequences and their
precursors used to test Hu-mAb.

ADA response levels of therapeutics. Anti-drug anti-
body (ADA) responses of patients were obtained for 218 ther-
apeutics from clinical papers using an identical approach to
that described in (13). When multiple ADA levels are re-
ported for the same therapeutic, the mean between the mini-
mal and maximal reported value is used. The complete list of
sequences together with observed immunogenicity levels can
be found in the SI.

Hu-mAb protocol. The input sequence, specific chain type
(VH, kappa or lambda), V gene type, and target human-
ness score were used as inputs. To compare Hu-mAb to
experimental mutations, for the therapeutic cases we set
the Hu-mAb target score as the humanness score of the
experimentally-humanized sequence. Every possible single
site mutation within the framework region of the input se-
quence was made (SI section 2B). This generated a set of
mutated sequences which were then scored by the relevant
RF model. The humanness scores of the mutated sequences
were ranked and the top scoring sequence was selected. This
process was repeated with the newly selected sequence until
the target humanness score was achieved.
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