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Abstract   
  

Perceptual   confidence   typically   corresponds   to   accuracy.   However,   observers   can   be   
overconfident   relative   to   accuracy,   termed   ‘subjective   inflation’.   Inflation   is   stronger   in   the   visual   
periphery   relative   to   central   vision,   especially   under   conditions   of   peripheral   inattention.   
Previous   literature   suggests   inflation   stems   from   errors   in   estimating   noise,   i.e.   ‘variance   
misperception’.   However,   despite   previous   Bayesian   hypotheses   about   metacognitive   noise   
estimation,   no   work   has   systematically   explored   how   noise   estimation   may   critically   depend   on  
empirical   noise   statistics   which   may   differ   across   the   visual   field,   with   central   noise   distributed   
symmetrically   but   peripheral   noise   positively   skewed.   Here   we   examined   central   and   peripheral   
vision   predictions   from   five   Bayesian-inspired   noise-estimation   algorithms   under   varying   usage   
of   noise   priors,   including   effects   of   attention.   Models   that   failed   to   optimally   estimate   noise   
exhibited   peripheral   inflation,   but   only   models   that   explicitly   used   peripheral   noise   priors   
incorrectly   showed   increasing   peripheral   inflation   under   increasing   peripheral   inattention.   Our   
findings   explain   peripheral   inflation,   especially   under   inattention.     
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Variance   misperception   under   skewed   empirical   noise   statistics   explains   overconfidence   
in   the   visual   periphery   

  
A.   INTRODUCTION   
  

Great   progress   has   been   made   towards   understanding   the   internal   statistical   models   that   guide   
our   perceptual   decision-making   and   corresponding   confidence   ratings.   When   we   make   
perceptual   decisions   about   the   world   around   us,   they   are   accompanied   by   a   metacognitive   
sense   of   certainty,   or   confidence,   in   whether   those   percepts   are   correct.   Confidence   ought   to   
depend   on   the   strength   (signal)   and   reliability   (noise)   of   the   evidence   to   make   the   decision,   i.e.,   
should   correlate   with   these   measures    (Fleming   and   Daw,   2017;   Green   and   Swets,   1966;   
Macmillan   and   Creelman,   2005;   Pouget   et   al.,   2016) ;   however,   sometimes   it   does   not    (Fetsch   et   
al.,   2014;   Koizumi   et   al.,   2015;   Maniscalco   et   al.,   2020,   2019,   2016;   Morales   et   al.,   2020;   Peters   
et   al.,   2017a;   Rahnev   et   al.,   2015,   2012a,   2012b;   Rounis   et   al.,   2010;   Samaha   et   al.,   2017,   
2016;   Zylberberg   et   al.,   2016,   2012)    or   does   so   but   not   in   a   Bayesian   optimal   way    (Adler   and   
Ma,   2018;   Denison   et   al.,   2018) ;   these   cases   suggest   a   need   for   innovation   in   models   of   
perceptual   confidence.   Here,   we   sought   to   determine   how   natural   scene   statistics   about   noise   
distributions   in   the   visual   field   might   explain   why   confidence   does   not   always   perfectly   track   
performance   --   beyond   a   supposition   that   metacognition   might   simply   involve   “more   noise”   over   
and   above   noise   in   first-order   (Type   1)   estimates    (Maniscalco   and   Lau,   2016) .     
  

A   particularly   intriguing   case   in   which   confidence   and   accuracy   can   dissociate   is   the   
phenomenon   of   subjective   inflation,   which   is   particularly   evident   in   the   visual   periphery:   
subjective   feelings   of   decisional   confidence   for   unattended   stimuli   in   the   visual   periphery   are   
higher   than   those   for   stimuli   in   the   center   of   the   visual   field   for   both   complex   and   simple   stimuli   
when   task   accuracy   is   matched    (Knotts   et   al.,   2020;   Li   et   al.,   2018;   Odegaard   et   al.,   2018;   
Rahnev   et   al.,   2011;   Solovey   et   al.,   2014) .   In   other   words,   observers   appear   ‘overconfident’   in   
their   peripheral   percepts   relative   to   central   percepts   of   the   same   signal   reliability    (Ehinger   et   al.,   
2017;   Gloriani   and   Schütz,   2019;   Hess   et   al.,   2008;   Rosenholtz,   2016) .   One   explanation   given   
for   these   findings   is   that   observers’   Type   2   (metacognitive)   criteria   are   fixed,   such   that   under   
conditions   of   increased   noise   they   do   not   adapt   to   the   changing   noise   statistics   of   the  
environment,   leading   to   a   higher   proportion   of   “high   confidence”   responses   under   a   signal   
detection   theoretic   framework    (Li   et   al.,   2018;   Rahnev   et   al.,   2011;   Solovey   et   al.,   2014) .   
However,   the   degree   to   which   such   Type   2   criteria   are   fixed   remains   open   to   some   debate,   as   
others   have   suggested   that   confidence   judgments    are    sensitive   to   changing   environmental   or   
attentional   conditions    (Adler   and   Ma,   2018;   Denison   et   al.,   2018) ,   albeit   not   in   a   Bayes-optimal   
manner.   Importantly,   it   also   remains   unexplored   why   such   explanations   would   provide   stronger   
subjective   inflation   due   to   attentional   manipulations   in   the   visual   periphery   over   central   vision.     
  

Other   series   of   studies   have   suggested   a   conceptually   analogous   explanation:   that   illusions   of   
confidence   can   be   bidirectional,   with   both   over-   and   under-confidence   exhibited   by   the   same   
system,   due   to   a   similar   “fixed”   estimate   of   noise,   i.e.   a   “misperception”   of   variance    (Gorea   and   
Sagi,   2001;   Peters   et   al.,   2017a;   Zylberberg   et   al.,   2014) .   That   is,   one   element   of   the   
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metacognitive   system’s   capacity   to   judge   decisional   accuracy   is   its   ability   to   judge   noise,   i.e.   
signal   reliability;   by   knowing   a   signal’s   or   representation’s   noisiness,   the   observer   can   then   set   
confidence   criteria   or   engage   in   Bayesian   inference   appropriately.    In   cases   of   variance   
misperception,   rather   than   directly   measuring   the   reliability   of   its   internal   signals   and   using   such   
an   optimal   measure   in   metacognitive   calculations,   the   observer   instead   uses   a   heuristic   --   a   
fixed,   ‘typical’   level   of   noise   applied   unilaterally   to   metacognitive   evaluations   in   the   current   task   
regardless   of   actually   varying   noise   conditions    (Gorea   and   Sagi,   2001;   Peters   et   al.,   2017a;   
Zylberberg   et   al.,   2014)    or   otherwise   possesses   mistaken   beliefs   about   noise   levels   
( (Drugowitsch   et   al.,   2014;   Fleming   and   Daw,   2017) ;   see   also    (Adams   et   al.,   2013) ).   It   has   been   
shown   that   such   variance   misperceptions   can   explain   bidirectional   confidence   errors   relative   to   
decisional   accuracy,   and   are   related   to   the   fixed   metacognitive   (Type   2)   criteria   also   mentioned   
above    (Li   et   al.,   2018;   Rahnev   et   al.,   2011;   Solovey   et   al.,   2014) .     
  

Despite   these   potential   answers   due   to   fixed   confidence   criteria   or   variance   misperception,   a   
core   explanation   for   why   peripheral   inflation   occurs   remains   elusive   for   at   least   two   reasons.   
First,   it   remains   unclear   clear   how   such   heuristic   ‘typical   noise   level’   judgments   might   be   
achieved:   by   what   mechanism   does   the   system   “pick”   a   typical   level   of   noise,   and   how   is   it   used   
to   set   confidence   criteria?    And   second,   as   with   fixed   criteria,   variance   misperception   alone   
doesn’t   necessarily   explain   why   illusions   of   confidence   appear   to   be   easier   to   achieve   in   the   
periphery   relative   to   central   vision:   on   average,   variance   misperception   (i.e.,   errors   in   noise   
beliefs)   should   lead   to   similar   over-   or   under-confidence   in   general   for   both   central   and   
peripheral   vision,   unless   the   system   were   differentially   applying   misperceived   variance   in   
peripheral   versus   central   vision.      Instead,   we   see   two   main   trends:   subjective   inflation   in   the   
periphery   happens   more   than   in   the   center   under   normal   visual   conditions    (Knotts   et   al.,   2020;   
Li   et   al.,   2018;   Odegaard   et   al.,   2018;   Rahnev   et   al.,   2011;   Solovey   et   al.,   2014)    (i.e.,   not   in   the   
dark;    (Gloriani   and   Schütz,   2019) ),   and   on   average   there   is   no   inflation   or   deflation   in   central   
vision    (Zylberberg   et   al.,   2014) .    
  

Here,   we   sought   to   develop   a   simple   explanation   for   these   phenomena   by   combining   these   
theoretical   explanations   with   hypotheses   about   their   potential   source   in   empirical   distributions   of   
internal   noise,   in   the   same   vein   as   the   well-known   influence   of   natural   scene   statistics   on   visual   
perception   in   general.   Generally,   the   visual   system   and   its   perceptual   computations   are   
sensitive   to   external   natural   scene   statistics    (Adams   et   al.,   2004;   Girshick   et   al.,   2011;   Peters   et   
al.,   2015;   Stocker   and   Simoncelli,   2006)    and   human   observers   adapt   their   internal   models   to   
such   external   environmental   statistical   properties    (Seriès   and   Seitz,   2013)    --   making   use   of   
knowledge   that   cardinal   directions   are   more   comment,   light   typically   comes   from   above,   or   
motion   tends   to   be   slow   and   smooth,   for   example.   Knowledge   of   these   external   natural   scene   
statistics   drives   the   formation   of   prior   beliefs   in   a   Bayesian   decision-making   framework,   which   
are   combined   with   incoming   sensory   information   to   form   Bayes-optimal   percepts   of   motion   
speed,   orientation,   convexity,   and   so   on    (Adams   et   al.,   2004;   Girshick   et   al.,   2011;   Peters   et   al.,   
2015;   Stocker   and   Simoncelli,   2006) .   
  

3   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425966doi: bioRxiv preprint 

https://paperpile.com/c/vlpYYl/m27a6+KozRr+9PRib
https://paperpile.com/c/vlpYYl/m27a6+KozRr+9PRib
https://paperpile.com/c/vlpYYl/pyMs+65bv
https://paperpile.com/c/vlpYYl/hKzo
https://paperpile.com/c/vlpYYl/LUVqJ+QKtPh+ECliO
https://paperpile.com/c/vlpYYl/ECliO+LUVqJ+81DHq+ccPQU+QKtPh
https://paperpile.com/c/vlpYYl/ECliO+LUVqJ+81DHq+ccPQU+QKtPh
https://paperpile.com/c/vlpYYl/luj6g
https://paperpile.com/c/vlpYYl/m27a6
https://paperpile.com/c/vlpYYl/wtAZx+aFWo+aXIYz+qim69
https://paperpile.com/c/vlpYYl/wtAZx+aFWo+aXIYz+qim69
https://paperpile.com/c/vlpYYl/P1i3N
https://paperpile.com/c/vlpYYl/wtAZx+aFWo+aXIYz+qim69
https://paperpile.com/c/vlpYYl/wtAZx+aFWo+aXIYz+qim69
https://doi.org/10.1101/2021.01.08.425966
http://creativecommons.org/licenses/by/4.0/


  

We   extend   this   idea   to   suppose   that   the   system   is   sensitive   to   internal   ‘natural   scene   statistics’   
or   empirical   priors   about    its   own   noise ,   i.e.   that   the   visual   system   has   learned   typical   
distributions   of   internal   signal   noisiness   as   a   function   of   a   stimulus’   location   in   the   visual   field.   
The   system   has   likely   learned   that   peripheral   vision   is   noisier   than   central   vision,   forming   the   
basis   for   an   empirical   prior   over   the   reliability   of   internal   representations   of   these   differing   parts   
of   the   visual   field.    However,   while   such   empirical   priors   are   based   in   fact,   they   can   sometimes   
lead   to   inaccurate   perceptual   estimates   when   the   system   is   required   to   use   them   in   
Bayes-optimal   computations.   For   example,   empirical   priors   about   man-made   versus   natural   
objects’   densities   are   used   by   the   system   in   judging   visuo-haptic   weight   estimates    (Peters   et   al.,   
2015) ,   but   in   ways   that   lead   to   illusory   percepts   of   heaviness   due   to   simplification   of   complex,   
continuous   priors   over   density   into   mixtures   of   Gaussians    (Peters   et   al.,   2018,   2016)    --   perhaps   
due   to   biological   restrictions   on   information   coding    (Heng   et   al.,   2020) .   It   has   also   been   shown   
that   highly   asymmetric   (skewed)   priors   over   stimulus   location   which   are   initially   learned   correctly   
can   be   relied   upon   as   if   they   were   Gaussian   when   the   observer   is   required   to   use   them   in   a   cue   
combination   task    (Acerbi   et   al.,   n.d.) ,   and   that   incorrect   priors   in   general   can   lead   to   illusions   
across   many   areas   of   visual   perception   in   both   healthy   and   atypical   perception    (Flanagan   et   al.,   
2008;   Geisler   and   Kersten,   2002;   Teufel   et   al.,   2013;   Valton   et   al.,   2019;   Weiss   et   al.,   2002) .   
Thus,   incorrect   empirical   priors   can   play   a   large   role   in   ultimate   percepts,   even   in   first-order   
visual   tasks.   
  

We   therefore   reasoned   that   inflation   of   confidence   in   the   visual   periphery   might   likewise   occur   
due   to   incorrect   empirical   priors   about    noise    in   the   visual   system   as   a   function   of   visual   field   
location,   or   at   least   incorrect   usage   of   such   priors.   Specifically,   we   hypothesized   that   the   true   
distribution   of   visual   noise   (variance   or   standard   deviation   of   sensory   signals)   in   the   visual   
periphery   is   significantly   positively   skewed   relative   to   central   noise,   due   to   mathematical   
properties   of   variance   (i.e.,   it   cannot   be   less   than   zero)   and   observation   that   peripheral   vision   is   
on   average   noisier   (less   reliable)   than   central   vision.   However,   the   metacognitive   or   even   
perceptual   system   may   not   be   able   to   use   this   true   prior   to   optimally   estimate   momentary   noise   
levels,   instead   using   a   simplified,   non-skewed   prior   for   Bayesian   noise   estimation   or   even   
simply   the   mode   of   the   prior,   i.e.   the   most   likely   noise   level   to   be   encountered   in   the   periphery.   If   
the   visual   system   uses   incorrect   priors,   or   otherwise   incorrectly   estimated   the   differences   in   
reliability   between   central   versus   peripheral   vision,   such   suboptimal   introspection    (Adler   and   
Ma,   2018;   Denison   et   al.,   2018;   Peters   et   al.,   2017a)    could   lead   to   variance   misperception   
(Zylberberg   et   al.,   2014)    and   thus   over-   as   well   as   underconfidence.     
  

In   this   project,   we   used   five   different   Bayesian-inspired   model   observers   to   systematically   
explore   the   potential   consequences   of   such   a   process.   Our   findings   demonstrate   how   such   an   
environmental   statistic   coupled   with   certain   metacognitive   errors   in   estimation   or   usage   of   this   
prior   --   even   under   near-optimal   Bayesian   inference   about   noise   --   could   explain   peripheral   
subjective   inflation,   especially   under   inattention.     
  

B.   RESULTS   
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B.1.   Conceptual   description   of   models   
  

We   formalized   the   above   intuition   about   the   relative   impact   of   different   natural   statistics   of   noise   
in   central   versus   peripheral   vision   using   signal   detection   &   Bayesian   decision   theory   (SDT/BDT)   
(Figure   1a).     
  

B.1.i   Type   1   decisions   
  

We   simulated   an   observer   that   engages   in   a   simple   discrimination   task.   On   each   trial,   an   
observer   samples   the   environment.   The   sample   the   observer   receives   may   have   come   from   a   
stimulus   that   has   identity    S 1 ,   or   one   with   identity    S 2 .   Assuming   Gaussian   internal   noise,   these   
samples   form   Gaussian   internal   response   distributions   centered   at   the   true   mean   for    S 1    and    S 2  
with   standard   deviations   governed   by   the   combined   internal   noise   of   the   observer   and   the   
external   noise   of   the   stimulus.   For   simplicity   here   we   assume   equal   variances   between   the    S 1   
and    S 2    distributions,   following   standard   convention    (Green   and   Swets,   1966;   Macmillan   and   
Creelman,   2005) .     
  

We   modeled   the   distributions   of   these   internal   response   signals   as   two   Gaussian   distributions   
representing   cases   where   the   signal   came   from    S 1    or    S 2    following   standard   SDT   conventions   
(Green   and   Swets,   1966;   Macmillan   and   Creelman,   2005)    (Figure   1b).   The   discrimination   
criterion,   which   is   hardcoded   at   the   optimum   in   this   simple   system   (halfway   between   the   
distributions   to   maximize   performance,   i.e.   by   setting   the   criterion   where   a   sample   is   equally   
likely   to   have   been   generated   by   either   stimulus   class,   which   under   equal   priors   corresponds   to   
the   location   where   the   distributions   intersect),   is   shown   through   a   dashed   vertical   line.   When   the   
internal   response   variable   falls   above   this   threshold,   the   observer   answers   “ S 2 ”   to   a   
discrimination   question,   and   otherwise   answers   “ S 1 ”.   The   internal   response   criterion   in   the   
models   below   is   specified   in   posterior   probability   ratio   space,   making   this   observer   a   Bayesian   
observer,   to   facilitate   the   confidence   readout   as   the   posterior   probability   of   the   choice   that   the   
observer   made.   See   Methods   for   specific   details.   
  

To   this   simple   Type   1   system   we   add   an   additional   hierarchical   or   metacognitive   (Type   2)   
inference   layer   to   explore   several   hypotheses   about   how   the   noise   in   the   system   (both   internal   
noise   and   external   noise    (Lu   and   Dosher,   2008) )   governs   the   Type   1   decision   space.   Drawing   
inspiration   from   (1)   Bayesian   ideal   observer   analysis   demonstrating   that   natural   scene   statistics   
govern   Type   1   perception    (Adams   et   al.,   2004;   Girshick   et   al.,   2011;   Peters   et   al.,   2015;   Stocker   
and   Simoncelli,   2006) ,   and   (2)   hierarchical   models   in   which   a   Bayesian   ideal   observer’s   
inference   about   latent   variables   also   governs   the   ultimate   percept    (Knill   and   Richards,   1996;   
Knill   and   Saunders,   2003;   Körding   et   al.,   2007;   Körding   and   Tenenbaum,   2007a;   Odegaard   et   
al.,   2015;   Peters   et   al.,   2018,   2016;   Samad   et   al.,   2015;   Yuille   and   Bülthoff,   1996) ,   we   
developed   and   compared   a   series   of   ‘flat’   and   ‘hierarchical’   inference   models   with   varying   
‘knowledge’   or   reliance   of   natural   scene   statistics   of   noise   in   central   versus   peripheral   vision   to   
evaluate   their   predictions   for   peripheral   inflation.   
  

5   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425966doi: bioRxiv preprint 

https://paperpile.com/c/vlpYYl/ih3dG+ofczv
https://paperpile.com/c/vlpYYl/ih3dG+ofczv
https://paperpile.com/c/vlpYYl/ih3dG+ofczv
https://paperpile.com/c/vlpYYl/xBGpk
https://paperpile.com/c/vlpYYl/wtAZx+aFWo+aXIYz+qim69
https://paperpile.com/c/vlpYYl/wtAZx+aFWo+aXIYz+qim69
https://paperpile.com/c/vlpYYl/wpHK+jEm1+ehCP+vZ1O+JLniR+IMRi1+JfSF+24rk+llQG
https://paperpile.com/c/vlpYYl/wpHK+jEm1+ehCP+vZ1O+JLniR+IMRi1+JfSF+24rk+llQG
https://paperpile.com/c/vlpYYl/wpHK+jEm1+ehCP+vZ1O+JLniR+IMRi1+JfSF+24rk+llQG
https://doi.org/10.1101/2021.01.08.425966
http://creativecommons.org/licenses/by/4.0/


  

B.1.ii   Environmental   statistics   of   noise   in   central   versus   peripheral   vision   
  

A   critical   factor   in   an   observer’s   ability   to   make   accurate   Type   1   decisions   is   the   noisiness   
(variability)   of   the   system   itself:   noise   can   cause   the   observer   to   respond   “ S 1 ”   when   a   signal   
actually   came   from   the   S2   distribution,   or   vice   versa,   with   varying   levels   of   precision   or   error   
(Figure   1d).   The   noise   in   the   system   depends   on   the   location   in   the   visual   field,   central   or   
peripheral,   with   central   vision   being   more   reliable   (less   noisy)   than   peripheral   vision    (Provis   et   
al.,   2013) ;    (Gloriani   and   Schütz,   2019) .   It   is   therefore   reasonable   to   assume   that   central   and   
peripheral   vision   have   different   hypothesized   underlying   (parent)   distributions   governing   the   
distributions    (Lu   and   Dosher,   1998)    of   noise   typically   experienced   in   these   two   regions   of   the   
visual   field   (Figure   1b   &   c).   Specifically,   the   variance   (noise)   corresponding   to   peripheral   vision   
is   assumed   to   be   higher   than   for   central   vision.     
  

A   Bayesian   observer   that   is   sensitive   to   environmental   statistics   about   a   given   variable   will   
represent   expectations   about   such   variables   as   prior   distributions   --   for   example,   about   light   
source   location,   motion   speed,   or   contour   orientation    (Adams   et   al.,   2004;   Girshick   et   al.,   2011;   
Stocker   and   Simoncelli,   2006) ,   as   mentioned   above.   Here,   we   hypothesized   that   central   and   
peripheral   environmental   distributions   of    noise    experienced   by   the   visual   system   also   lead   the   
visual   system   to   form   prior   expectations   about   variability   as   a   latent   variable,   following   previous   
convention   in   hierarchical   Bayesian   inference   in   vision   and   multisensory   integration    (Beierholm   
et   al.,   2009;   Knill   and   Richards,   1996;   Knill   and   Saunders,   2003;   Körding   et   al.,   2007;   Körding   
and   Tenenbaum,   2007a;   Landy   et   al.,   2011;   Odegaard   et   al.,   2015;   Peters   et   al.,   2018,   2016,   
2015;   Samad   et   al.,   2015;   Shams   et   al.,   2000;   Wozny   et   al.,   2008;   Yuille   and   Bülthoff,   1996) .   
That   is,   the   visual   system   learns   to   expect   that   central   vision   typically   involves   less   noisy   
signals,   while   peripheral   vision   typically   involves   noisier   signals.     
  

Our   hypothesis   is   further   extended   by   the   observation   that   variance   is   a   property   that   cannot   be   
mathematically   negative,   such   that   any   distribution   of   variance   must   by   definition   exist   in   the   
domain   .   When   the   distribution   of   variance   is   narrow   and   symmetric,   a   truncated   Gaussian  σ > 0  
distribution   (with   domain   of   )   might   be   modestly   appropriate   to   represent   the   empirical  σ > 0  
distribution   for   central   noise   (Figure   1a);   that   is,   we   hypothesized   that   the   empirical   distribution   
of   noise   is   appropriately   represented   by   a    symmetric    distribution   around   a   typical   (mode/most   
common)   level   of   noise.   However,   in   the   periphery   it   is   possible   that   a   broader   distribution   of   
noise   is   experienced,   especially   under   varied   lighting   conditions.   Although   it   would   be   possible   
for   such   a   distribution   to   be   symmetric   as   in   central   vision,   here   we   hypothesized   a   positively   
skewed   empirical   distribution   for   noise   in   the   periphery   (Figure   1b);   that   is,   we   hypothesized   that   
when   the   variance   does   fluctuate   it   does   so    asymmetrically    around   a   typical   (mode/most   
common)   level   of   noise.   We   note   that   although   such   a   distribution   is   mathematically   justified   by   
properties   of   noise   (variance),   it   has   yet   to   be   empirically   demonstrated   (see   Discussion).    Thus,   
the   purpose   of   this   project   was   to   serve   as   a   precursor   to   measuring   such   statistics   by   
evaluating   the   impact   of   such   natural   statistics   on   decisions   and   confidence   judgments,  
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including   how   an   observer’s   differential   ‘knowledge’   of   this   true   empirical   distribution   might   
explain   puzzling   behaviors   such   as   peripheral   subjective   inflation.   
  

[   Figure   1   about   here   ]   
  

B.1.iii   Intuitive   introduction   to   models   
  

Typically,   the   visual   system   is   assumed   to   be   optimal    (Bejjanki   et   al.,   2016;   Landy   et   al.,   2007)   
in   that   it   uses   an   accurate   estimate   of   its   own   noise   because   it   has   ‘knowledge’   of   its   own   
internal   statistics    (King   and   Dehaene,   2014;   Lau,   2008) ;   this   optimality   is   assumed   to   propagate   
to   the   visual   metacognitive   system    (Drugowitsch,   2016;   Drugowitsch   et   al.,   2019;   Fleming   and   
Daw,   2017) ,   perhaps   corrupted   by   some   additional   metacognitive   noise    (Maniscalco   and   Lau,   
2016) .    However,   a   number   of   heuristic   models   have   previously   been   shown   to   capture   
metacognitive   behavior   better   than   optimal   models,   including   variance   misperception    (Peters   et   
al.,   2017a;   Zylberberg   et   al.,   2014)    (this   is   also   seen   in   cognitive   decision-making;    (Herce   
Castañón   et   al.,   2019) ),   fixed   Type   2   (metacognitive)   criterion   setting   under   varying   noise    (Li   et   
al.,   2018;   Rahnev   et   al.,   2012b,   2011;   Solovey   et   al.,   2014) ,   a   bias   indicating   overweighting   
evidence   favoring   a   decision    (Maniscalco   et   al.,   2016;   Peters   et   al.,   2017b;   Zylberberg   et   al.,   
2012) ,   or   suboptimal   Type   2   criterion   setting    (Adler   and   Ma,   2018) ,   among   others.   In   particular,   
overconfidence   relative   to   true   Type   1   sensitivity   is   more   often   observed   in   the   visual   periphery   
than   the   center    (Li   et   al.,   2018;   Rahnev   et   al.,   2011;   Solovey   et   al.,   2014) .     
  

Combining   these   observations,   we   hypothesized   that   the   visual   system   in   both   peripheral   and   
central   vision   may   not   be   able   to   accurately   perceive   the   noisiness   of   the   stimulus.   To   explore   
how   various   heuristic   strategies   could   lead   to   overconfidence   specific   to   the   periphery,   we   
defined   and   compared   five   candidate   computational   models,   falling   into   two   classes:    flat   
models,   which   include   no   explicit   metacognitive   estimation   of   noise   at   all;   and    hierarchical   
models,   which   specify   various   algorithms   for   the   metacognitive   system   to   estimate   the   noise.   
Simple   descriptions   of   each   model   are   provided   in   Table   1;   we   provide   full   details   of   these   
models   in   Methods.   
  

[   Table   1   about   here   ]   
  

For   each   of   these   models,   we   estimated   the   behavior   of   the   Type   1   and   Type   2   decision-making   
system   under   different   variances,   i.e.   different   levels   of   noise   in   the   signal,   under   central   versus   
peripheral   vision   conditions.   The   critical   factor   to   evaluate   the   models’   performance   is   how   each   
model   makes   metacognitive   decisions   relative   to   Type   1   performance   capacity   (which   is   dictated   
by   the   true   noise   regardless   of   the   metacognitive   noise   estimation   process).   Model   details   are   
presented   in   Methods.   
  

B.3   Attentional   manipulations   
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Subjective   inflation   of   confidence   relative   to   performance   has   been   shown   previously   to   be   
stronger   under   cases   of   inattention    (Li   et   al.,   2018;   Rahnev   et   al.,   2011) ,   such   that   --   somewhat   
counterintuitively   --   increased   sensory   precision   due   to   attention   leads   to   a   reduction   in   
peripheral   subjective   inflation   in   particular.   We   next   investigated   the   behavior   of   all   five   model   
observers   under   simulated   conditions   of   increasing   attention   by   assuming   that   attention   may   
modify   two   factors:   (1)   the   precision   in   the   sensory   estimate,   and   (2)   the   precision   in   the  
metacognitive   estimate   of   noise.   Details   are   presented   in   Methods.   
  

B.4   Central   versus   peripheral   confidence   relative   to   performance   (no   attentional   manipulation)   
  

We   first   examined   the   behavior   of   the   five   simulated   observers   under   ‘default’   conditions,   i.e.   
using   the   parameters   presented   in   Table   1   without   any   attentional   manipulations   ( ).  a1 = a2 = 1  
The   key   measure   is   that   of   confidence   inflation,   measured   here   using   the   effect   size   measure   of   
Cohen’s    d :   mean   difference   between   confidence   (Equation   5)   and   the   percent   correct   answers   
(performance   governed   by   Equation   4),   scaled   by   their   pooled   standard   deviation,   such   that   
positive   values   of    d    indicate   confidence   >   performance,   while   and   negative   values   indicate   
confidence   <   performance.   See   Methods   for   details.   
  

B.4.i   Model   F1:   Flat   Bayesian   ideal   observer   
  

The   flat   Bayesian   ideal   observer   (F1)   followed   optimal   expected   behavior   in   both   central   and   
peripheral   vision   (Figure   2a,   first   column).   Under   higher   noise   conditions   performance   
(p(correct))   falls   and   this   drop   is   mirrored   in   confidence   estimates   for   both   visual   field   locations.   
Thus,   this   observer   displayed   neither   under-   nor   overconfidence   on   average   (Figure   2b).   The   
average   effect   size   for   F1   in   the   center   was   Cohen’s    d    =   -0.0104,   and   in   the   periphery   was   
Cohen’s    d    =   -0.0054   --   that   is,   there   is   almost   no   overconfidence   on   average   for   either   visual   
field.   
  

B.4.ii   Model   F2:   Flat   fixed   criterion   heuristic   observer   
  

The   flat   fixed   criterion   heuristic   observer   (F2)   also   behaved   as   reported   in   previous   literature     (Li   
et   al.,   2018;   Rahnev   et   al.,   2011;   Solovey   et   al.,   2014)    (Figure   2a,   second   column).   Performance   
dropped   as   expected   for   increasingly   noisy   conditions   in   both   central   and   peripheral   vision,   but   
due   to   the   fixed   Type   2   criterion   (set   here   according   to   an   average   of   the   noise   in   central   and   
peripheral   visual   fields)   F2   displayed   a   general   underconfidence   bias   under   less   noisy   
conditions   and   a   general   overconfidence   bias   under   noisier   conditions.   Importantly,   because   
peripheral   vision   is   on   average   much   noisier   than   central   vision,   the   fixed   confidence   criterion   
led   to   biases   towards   underconfidence   relative   to   performance   in   central   vision,   accompanied   
by   significant   peripheral   inflation   (overconfidence   relative   to   performance)   (Figure   2b).   The   
average   effect   size   for   F2   in   the   center   was   Cohen’s    d    =   -0.8510   (i.e.,   strong   underconfidence),   
and   in   the   periphery   was   Cohen’s    d    =   1.0273   (i.e.,   strong   overconfidence).   If   the   fixed   criterion   
were   instead   set   only   according   to   central   vision   noise,   this   would   translate   to   optimal   
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confidence   in   central   vision   and   extreme   overconfidence   in   the   periphery;   however,   this   is   not   
the   focus   of   the   present   project,   so   we   leave   such   explorations   to   future   studies.     
  

B.4.iii   Model   H1:   Hierarchical   Bayesian   ideal   observer   
  

The   hierarchical   Bayesian   ideal   observer   (H1)   estimates   the   noise   in   its   system   optimally   using   
both   prior   experience   (optimal   knowledge   of   the   empirical   prior   governing   noise   in   central   versus   
peripheral   vision)   and   an   estimate   of   noise   at   the   given   moment.   Thus,   it   also   displayed   similar   
behavior   to   model   F1,   albeit   with   slight   bias   towards   underconfidence   under   extremely   not-noisy  
conditions   and   towards   overconfidence   under   extremely   noisy   conditions   due   to   reliance   on   
knowledge   of   the   empirical   distributions   of   noise   (i.e.,   use   of   the   prior   distributions   of   noise)   
(Figure   2a,   third   column).   Despite   these   slight   biases,   H1   displayed   neither   under-   nor   
overconfidence   on   average   in   either   central   or   peripheral   vision   (Figure   2b).   The   average   effect   
size   for   H1   in   the   center   was   Cohen’s    d    =   -0.2832,   and   in   the   periphery   was   Cohen’s    d    =   
-0.2212   --   that   is,   both   central   and   peripheral   vision   displayed   modest   underconfidence,   but   in   
similar   magnitude.     
  

B.4.iv   Model   H2:   Hierarchical   ‘mode   prior’   heuristic   observer   
  

The   hierarchical   ‘mode   prior’   heuristic   observer   (H2)   uses   the   most   probable   level   of   noise   in   
each   of   the   central   and   peripheral   visual   fields,   based   on   its   previous   experience,   rather   than   
represent   and   use   the   entire   empirical   prior.   Due   to   the   fact   that   this   empirical   distribution   is   
(here   hypothesized   to   be)   symmetrical   around   a   typical   noise   level   in   central   vision,   this   strategy   
leads   H2   to   exhibit   on   average   no   over-   or   underconfidence   in   the   center   of   the   visual   field   
(Figure   1a,   fourth   column,   top   row;   Figure   2b).   In   contrast,   like   F1   the   H2   observer   displayed   
overconfidence   in   the   visual   periphery   --   but   this   time,   it   is   due   to   the   fact   that   the   peripheral   
noise   distribution   is   (here   hypothesized   to   be)   positively   skewed.   Thus,   reliance   on   the   mode   of   
the   empirical   prior   distribution   led   to   overconfidence   more   often   than   underconfidence,   and   
overconfidence   on   average   in   the   visual   periphery   (Figure   1a,   fourth   column,   bottom   row;   Figure   
2b).   The   average   effect   size   for   H2   in   the   center   was   Cohen’s    d    =   -0.1522   (i.e.,   modest   
underconfidence)   and   in   the   periphery   was   Cohen’s    d    =   0.7287   (i.e.,   strong   overconfidence).   
  

B.4.v   Model   H3:   Hierarchical   ‘Gaussian   assumption’   heuristic   observer   
  

Finally,   we   examined   the   predicted   behavior   of   the   hierarchical   ‘Gaussian   assumption’   heuristic   
observer   (H3).   H3   is   nearly   identical   to   H1   (the   hierarchical   Bayesian   ideal   observer)   with   the   
important   difference   that   H3   uses   a   Gaussian   estimate   for   the   empirical   distribution   of   noise   in   
the   visual   periphery.   Thus,   while   H3   displayed   identical   behavior   to   H1   in   the   center   (Figure   2a,   
fifth   column,   top   row;   Figure   2b),   this   Gaussian   assumption   for   peripheral   noise   led   H3   to   more   
often   under-   than   over-estimate   noise   in   the   visual   periphery,   leading   once   again   to   peripheral   
overconfidence   on   average   (Figure   2a,   fifth   column,   bottom   row;   Figure   2b).   Thus,   even   though   
H3   possesses   knowledge   of   the   scale    and    location   of   the   empirical   distribution   of   noise   in   the   
visual   periphery,   its   assumption   that   this   distribution   is   symmetrical   led   to   an   average   

9   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425966
http://creativecommons.org/licenses/by/4.0/


  

under-estimation   of   noise   and   therefore   overconfidence   relative   to   performance.   The   average   
effect   size   for   H3   in   the   center   was   Cohen’s    d    =   -0.2857   (i.e.,   modest   underconfidence   because   
it   is   identical   to   H1),   but   in   the   periphery   was   Cohen’s    d    =   0.4846   (i.e.,   medium-strong   
overconfidence).     
  

[   Figure   2   about   here   ]   
  

B.5   Attentional   manipulations   
  

Given   that   several   of   the   model   observers   we   tested   displayed   overconfidence   in   the   visual   
periphery,   we   next   turned   to   attentional   manipulations   as   a   possible   avenue   for   arbitrating   
models’   fit   to   previously-reported   effects.   In   particular,   it   has   previously   been   reported   that   
attentional   manipulations   may   affect   peripheral   inflation   in   a   somewhat   counterintuitive   manner,   
with   high-attention   conditions   leading   to   less   strong   peripheral   overconfidence   and   inattention   
causing   increases   in   subjective   inflation   in   the   periphery    (Li   et   al.,   2018;   Rahnev   et   al.,   2011;   
Solovey   et   al.,   2014) .   Thus,   we   simulated   anticipated   effects   of   increasing   attention   as   
decreases   in   sensory   noise   and   increases   in   metacognitive   precision   (see   Methods).   We   
quantified   the   effect   size   of   inflation,   i.e.   the   difference   between   performance   and   confidence,   as   
Cohen’s    d ,   with   positive   values   indicating   confidence   >   performance   and   negative   values   
indicating   confidence   <   performance.   
  

As   expected,   increasing   attentional   allocation   increased   sensory   precision   and   thus   increased   
performance   in   both   central   and   peripheral   vision   (Figure   3a,b;   Table   3).   However,   this   was   
generally   accompanied   by   a   relatively   flat   or   if   anything   slightly   increasing   effect   size   (Cohen’s   
d )   for   subjective   inflation   (confidence   overestimating   performance)   for   both   central   and   
peripheral   vision   (Figure   3c,d;   Table   3),   with   the   exceptions   of   model   F2   in   central   vision   (Figure   
3c;   Table   3)   and   models   H2   and   H3   in   peripheral   vision   (Figure   3d;   Table   3).     
  

In   particular,   while   model   F2   (flat   fixed   criterion   heuristic   observer)   showed   increasingly   strong   
under confidence   in   central   vision   due   to   inflation   (despite   increasing   performance),   it   displayed   
flat   or   if   anything   increasing   overconfidence   in   peripheral   vision.   If   a   correction   were   to   be   
applied   such   that   central   Cohen’s    d    for   inflation   were   to   remain   flat   across   increasing   attentional   
allocation,   this   would   translate   to    increasing    inflation   in   the   visual   periphery   --   the   opposite   of   
empirical   reports   in   the   literature.   On   the   other   hand,   models   H2   and   H3   showed   flat   inflation   in   
central   vision   due   to   increasing   attentional   allocation,   but   if   anything   slightly    decreasing   
overconfidence   in   the   visual   periphery.   Qualitatively,   this   behavior   matches   reports   from   the   
literature    (Li   et   al.,   2018;   Rahnev   et   al.,   2011) .     
  

[   Figure   3   about   here   ]   
  

[   Table   2   about   here   ]   
  

C.   DISCUSSION   
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Here,   we   asked   how   knowledge   and   use   of   noise   statistics   across   the   visual   field   might   inform   
metacognitive   judgments   of   perceptual   decisions.   We   specifically   focused   on   the   phenomenon  
of   visual   subjective   inflation   in   the   visual   periphery   --   the   phenomenon   wherein   confidence   
judgments   overestimate   decisional   accuracy   --   including   how   this   phenomenon   interacts   with   
attentional   manipulations.   We   hypothesized   that   the   metacognitive   system   makes   use   of   
knowledge   of   noise   statistics   in   central   vision   and   peripheral   vision   differently,   and   that   errors   in   
estimation   of   noise   or   in   use   of   this   prior   knowledge   might   explain   why   peripheral   inflation   
occurs,   and   why   it   becomes   stronger   under   conditions   of   inattention.   Specifically,   we   proposed   
that   peripheral   noise   statistics   might   exhibit   a   positively-skewed   empirical   distribution   while   
central   noise   statistics   show   a   symmetric   noise   distribution,   and   that   metacognitive   heuristics   
might   lead   the   visual   system   to   systematically   overestimate   confidence   relative   to   performance   
in   the   visual   periphery.   
  

We   compared   five   possible   model   observers   which   estimate   noise   and   make   decisions   and   
confidence   in   various   ways   according   to   Bayesian   computations:   two    flat    observers   that   
possessed   no   knowledge   of   natural   statistics   of   noise   across   the   visual   field,   and   three   
hierarchical    observers   that   used   such   prior   knowledge   in   varying   ways.   Using   Monte   Carlo   
simulations   and   simple   parameter   choices   as   a   proof   of   concept,   we   showed   that   Bayesian   ideal   
observer   models   that   either   have   optimal   access   to   true   noise   in   a   sample   (model   F1:   flat   
Bayesian   ideal   observer)   or   optimally   estimate   noise   using   accurate   empirical   noise   priors   in   the   
center   and   periphery   (i.e.,   ‘knew’   the   peripheral   empirical   noise   distribution   was   positively   
skewed;   model   H1:   hierarchical   Bayesian   ideal   observer)   predict   no   over-   or   underconfidence   at  
all,   instead   showing   confidence   behavior   that   tracks   decisional   accuracy   essentially   perfectly.   In   
contrast,   heuristic   observers   that   either   used   a   fixed   Type   2   criterion   for   both   central   and   
peripheral   judgments   (model   F2:   flat   fixed   criterion   heuristic   observer),   used   the   most   likely   
noise   level   in   central   or   peripheral   vision   (model   H2:   hierarchical   ‘mode   prior’   heuristic   
observer),   or   used   a   Gaussian   estimate   for   the   peripheral   noise   prior   (model   H3:   hierarchical   
‘Gaussian   assumption   heuristic   observer)   predicted   clear   patterns   of   underconfidence   under   
less   noisy   conditions   and   overconfidence   under   noisier   conditions;   because   of   the   hypothesized   
positive   skew   of   empirical   noise   in   the   visual   periphery,   this   led   these   observers   to   display   
peripheral   inflation.   However,   only   model   F2   predicted   underconfidence   in   central   vision   and   
overconfidence   in   the   periphery,   while   the   two   hierarchical   heuristic   observers   (H2   and   H3)   
predicted   near-perfect   confidence   in   the   center   and   overconfidence   in   the   periphery.   And   
crucially,   only   H2   and   H3   also   correctly   predicted   that   increasing   sensory   and   metacognitive   
precision   due   to   attentional   allocation   ought   to   decrease   peripheral   inflation.     
  

Our   results   may   explain   findings   reported   in   previous   empirical   work   showing   overconfidence   in   
the   visual   periphery    (Li   et   al.,   2018;   Odegaard   et   al.,   2018;   Rahnev   et   al.,   2011;   Solovey   et   al.,   
2014) .   They   also   further   extend   previous   signal   detection   and   Bayesian   models   of   peripheral   
inflation   and   errors   in   variance   estimation    (Fleming   and   Daw,   2017;   Li   et   al.,   2018;   Rahnev   et   
al.,   2011;   Solovey   et   al.,   2014;   Zylberberg   et   al.,   2014)    to   include   explicit   formulation   and   
exploration   of   computations   that   may   underlie   metacognitive   estimates   of   noise,   especially   how   
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such   mechanisms   may   rely   on   natural   statistics   and   previous   experience.   This   formulation   thus   
places   the   metacognitive   system   in   the   same   conceptual   space   as   other   hierarchical   models   of   
perceptual   inference   which   use   prior   knowledge   of   natural   scene   statistics    (Adams   et   al.,   2004;   
Girshick   et   al.,   2011;   Landy   et   al.,   2011;   Stocker   and   Simoncelli,   2006;   Yuille   and   Bülthoff,   1996)   
and   which   estimate   distributions   and   values   for   latent   variables.   Previous   work   in   this   area   has   
posited   that   such   hierarchical   Bayesian   inference   might   underlie   visual   inferences   about   shape   
by   first   estimating   luminance   or   specularity    (Kersten   et   al.,   2004;   Yuille   and   Bülthoff,   1996) ,   
visual   inferences   about   planar   slant   by   first   estimating   texture   isotropy    (Knill   and   Saunders,   
2003) ,   multisensory   inferences   about   object   heaviness   by   first   estimating   relative   density   
(Peters   et   al.,   2018,   2016) ,   or   multisensory   inferences   about   numerosity    (Shams   et   al.,   2000;   
Wozny   et   al.,   2008) ,   spatial   location    (Odegaard   et   al.,   2015;   Wozny   et   al.,   2010;   Wozny   and   
Shams,   2011) ,   body   ownership    (Samad   et   al.,   2015) ,   or   sensorimotor   signal   processing   
(Körding   and   Tenenbaum,   2007b;   Körding   and   Wolpert,   2003;   Wei   and   Körding,   2011)    by   first   
estimating   causal   relationships   among   multimodal   signals    (Körding   et   al.,   2008,   2007;   Shams   
and   Beierholm,   2010) ,   among   others.   
  

Other   previous   studies   have   demonstrated   that   seemingly   suboptimal   estimation   of   noise   
leading   to   metacognitive   errors   may   stem   from   a   heuristic   estimate   of   noise   rather   than   a   fixed   
estimate   (as   in   the   fixed   Type   2   criterion   models    (Li   et   al.,   2018;   Rahnev   et   al.,   2011;   Solovey   et   
al.,   2014) ,   simple   variance   misperception    (Zylberberg   et   al.,   2014) ),   or   belief   errors   about   noise   
(Fleming   and   Daw,   2017) .   It   has   also   been   suggested   that   a   metacognitive   update   rule   which   
takes   into   account   changing   reliability   due   to   sensory   noise    (Adler   and   Ma,   2018)    or   attentional   
manipulations    (Denison   et   al.,   2020)    in   a   linear   or   quadratic   manner   rather   than   fully   
Bayes-optimal   fashion   can   explain   decisional   confidence   estimates   in   simple   perceptual   tasks.   
These   latter   studies   found   that   while   the   fixed   criterion   type   models   fail   to   capture   behavior,   
models   that   assume   the   metacognitive   system   is   suboptimally   sensitive   to   changing   noise   in   this   
particular   heuristic   fashion   can   better   mimic   human   behavior.   However,   these   models   have   not   
been   applied   to   the   differential   confidence   errors   found   between   central   versus   peripheral   
vision,   nor   do   they   explain   how   specifically   the   shape   of   the   empirical   noise   priors   in   central   
versus   peripheral   vision   (and   its   mismatch   with   the   observers    beliefs    about   such   priors)   would   
impact   such   metacognitive   errors.   Instead,   here   we   show   that   Bayesian   inference   --   especially   
for   model   H3,   which   assumes   that   the   perceptual   system   possesses   an   erroneous   prior   
expectation   about   the   shape   of   the   distribution   of   noise   itself   --   produces   empirically-observed   
errors   in   metacognitive   estimation   as   well   as   the   critical   pattern   of   increasing   peripheral   inflation   
under   increasing   inattention.   Future   work   should   formally   compare   the   models   we   explored   here   
with   the   linear,   quadratic,   and   other   heuristic   models   proposed   by   other   authors   in   an   empirical   
dataset.     
  

Our   results   suggest   that   an   efficient   coding   scheme   for   expectations   about   noise   conditioned   on   
visual   field   location,   based   on   empirical   priors,   may   contribute   to   peripheral   inflation   of   
confidence.   In   particular,   that   hierarchical   models   H2   and   H3   showed   peripheral   inflation   
suggests   that   the   system’s   prior   about   noise   in   the   visual   periphery   may   not   reflect   the   true   
noise   experienced,   but   instead   a   simplified   representation   of   the   most   likely   noise   level   to   be   
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experienced   by   the   observer   in   the   visual   periphery   (the   mode   of   the   empirical   prior)   in   addition   
to   an   impoverished   metacognitive   ability   to   estimate   such   noise   in   the   periphery   as   compared   to   
the   center   ( )   .   This   simplification   of   prior   expectations   for   complex,   skewed,   or  ςcenter < ςperiphery  
otherwise   non-Gaussian   empirical   priors   into   (mixtures   of)   Gaussians   (sometimes   formulated   as   
competing   priors)   has   been   noted   previously    (Knill,   2007,   2003;   Knill   and   Saunders,   2003;   Yuille   
and   Bülthoff,   1996) ,   and   has   been   suggested   to   underlie   other   perceptual   illusions    (Peters   et   al.,   
2018,   2016) .   Incorrect   priors   in   general,   regardless   of   simplification,   can   lead   to   illusions   in   
many   areas   of   perception    (Flanagan   et   al.,   2008;   Geisler   and   Kersten,   2002;   Teufel   et   al.,   2013;   
Valton   et   al.,   2019;   Weiss   et   al.,   2002) ,   and   even   if   skewed   priors   are   initially   learned   
appropriately   it   seems   the   system   has   difficult   using   them   optimally   in   cue   integration    (Acerbi   et   
al.,   n.d.) .   Therefore,   perhaps   due   to   biological   constraints   restricting   information   coding    (Heng   et   
al.,   2020) ,   we’ve   shown   here   how   it   is   possible   that   in   metacognition,   too,   efficient,   simplified   
coding   of   noise   expectations   in   the   periphery   may   lead   to   overconfidence   relative   to   
performance   capacity.  
  

Our   findings   here   also   suggest   other   fruitful   avenues   for   future   study.   In   particular,   they   suggest   
that   the   natural   statistics   of   noise   in   the   visual   periphery   may   be   highly   positively   skewed.   
Validating   this   assumption   would   likely   require   comprehensive   measurement   of   experienced   
noise   statistics   in   central   versus   peripheral   vision   across   a   large   range   of   stimulus   types.   A   
strong   challenge   to   this   endeavor   would   be   that   the   natural   statistic   to   be   measured   is   
experienced    noise   in   the   visual   system   rather   than   natural   statistics   of   noise   in   the   environment.   
Thus,   one   promising   future   approach   might   be   to   use   established   methods   for   measuring   
additive   and   multiplicative   internal   noise,   e.g.   through   the   triple-threshold-versus-contrast   
function   (triple-TVC)   approach    (Dosher   and   Lu,   2017,   2000;   Lu   and   Dosher,   1998,   2008)    and   
double-pass   procedures    (Awwad   Shiekh   Hasan   et   al.,   2012;   Gold   et   al.,   2004;   Levi   and   Klein,   
2003;   Ratcliff   et   al.,   2018;   Vilidaite   and   Baker,   2017)    to   quantify   internal   noise.   It   would   be   
necessary   to   conduct   these   procedures   under   a   range   of   attentional   manipulations,   in   both   the   
center   and   visual   periphery,   and   across   a   large   range   of   tasks    in   the   same   observer    (i.e.,   a   
within-subjects   design)   in   order   to   accurately   measure   the   shape   of   the   internal   noise   
distributions.   Although   this   approach   is   daunting,   smaller   studies   may   make   headway   by   
comparing   a   few   tasks   at   a   time.   Unfortunately,   such   an   endeavor   is   beyond   the   scope   of   the   
current   project,   which   aims   to   provide   an   exploratory   proof   of   concept   for   how   noise   priors   might   
be   used   by   the   metacognitive   system   to   result   in   metacognitive   errors   in   noise   estimation;   we   
therefore   leave   such   studies   for   future   research.     
  

We   admit   the   present   study   is   limited   in   its   scope   due   to   its   nature   as   proof-of-concept   
simulations   only,   without   comprehensive   parameter   fitting   or   behavioral   data;   this   of   course   
limits   its   utility,   although   it   provides   a   principled   jumping   off   point   for   future   empirical   studies,   as   
has   been   done   previously   (see   e.g.    (Fleming   and   Daw,   2017) ).   These   models   also   do   not   take   
into   account   more   nuanced   differences   between   central   versus   peripheral   vision   in   terms   of   
other   factors,   such   as   crowding   or   visual   search,   differential   impact   by   attentional   manipulation,   
and   so   on    (Rosenholtz,   2016;   Rosenholtz   et   al.,   2012a,   2012b) .   However,   despite   the   models’   
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simplicity,   the   results   shown   here   pave   the   way   for   integrating   metacognitive   noise   or  
uncertainty   estimation   with   a   long   and   established   history   of   hierarchical   Bayesian   models   in   
perception   and   cue   combination   by   explicating   the   specific   hypothesis   that   the   metacognitive   
system   builds   prior   distributions   of   expected   noise   that   are   sensitive   not   only   to   experienced   
‘environmental’   (within   itself)   noise   statistics   but   are   also   sensitive   to   attentional   manipulations,   
visual   field   location,   and   other   contextual   modulations.   We   therefore   believe   that   our   results   
provide   an   important   step   in   realizing   the   power   of   such   modeling   frameworks   and   empirical   
approaches   for   fully   explaining   how   metacognitive   computations   are   performed,   and   how   they   
may   be   implemented   in   neural   architecture.   
  

D.   METHODS   
  

D.2   Formal   computational   models   
  

D.2.i   Type   1   decisions  
  

Two   Gaussian   distributions   represent   the   internal   response   distributions   for   signal   and   noise   
conditions,   respectively   (Figure   1b).   To   make   a   decision,   the   conditional   probability   of   the   source   
being   present   given   an   internal   response   variable   on   that   trial   is   calculated   through   Bayes   rule:   
  

(S|x; μ, σ) p     =   p(x)
p(x|S)p(S) (1)   

  
where    S    is   source   ( S 1    or    S 2 ),   and    x    is   the   internal   response,   with     
  

(μ , )xS1 ~ N S1
σ (2)   

(μ , )xS2 ~ N S2
σ     

  
where   is   the   mean   of   the   internal   response   to   a   signal   from   distribution   S2   with   a   given  μS2  

strength,     following   previous   convention   ,   and     represents   their   (assumed   to   be   μS1 =    μS2 σ  

equal)   standard   deviations   under   the   simplest   implementation.   Prior   probabilities   for   sources   S1   
and   S2   are   defined   by   
  

  (S )  p(S )  0.5p 1 =   2 =   (3)   
  

The   decision   made   (D)   is   determined   by   the   following   
  

  if    D = S1 (S |x)  0.5p 1 >    (4)   
          if    S2 (S |x)  0.5  p 2 ≥    
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where   0.5   serves   as   the   optimal   criterion   in   an   SDT   framework   (set   to   maximize   percent   correct   
choices).   That   is,   the   criterion   is   set   so   the   observer   selects     according   to   which   is   most   likely Si  
to   be   correct.   
  

The   standard   convention   is   that   confidence   is   computed   via   
  

   p(S |x)C =   chosen  (5)   
  

The   models   below   selectively   alter   elements   of   this   standard   process,   with   focus   on   Equations   1   
and   2.     
  

D.2.i   Empirical   prior   distributions   governing   noise   in   central   versus   peripheral   vision   
  

The   standard   deviations   of   both   the   and   internal   response   distributions   are   set   to   the  xS1 xS2  

same     (Equation   2)   within   a   given   visual   field   location,   governed   by   the   noise   distributions   at  σ  
each   location:   central   vision’s   empirical   distribution   of   standard   deviations   (i.e.,   the   natural   
statistics   of   noise   in   central   vision)   is   symmetric   (Gaussian),   while   peripheral   vision’s   is   
positively   skewed:     
  

(M , )σcenter ~ N center Σcenter (6)   
ogN (M , )σperiphery ~ l periphery Σperiphery (7)   

  
where     and   represent   the   mean   (or   log   mean)   of   true   standard   deviations  M center M periphery  
experienced   by   central   and   peripheral   visual   fields   across   a   wide   range   of   situations,   
respectively,     and     represent   the   respective   variabilities   in   these   empirical  Σcenter Σperiphery  

distributions,   and     is   always   constrained   to   be   in   domain     (i.e.,   Equation   6   is   a   truncated  σ σ > 0  
normal   distribution).   Thus,   central   vision   experiences   a   symmetric   distribution   of   noise   around   a   
central   mean   (Figure   1a),   while   peripheral   vision   experiences   on   average   higher   noise   and   with   
positive   skew   (Figure   1b).   
  

D.2.ii   Definitions   of   Flat   and   Hierarchical   models   of   metacognition   
  

F1:   Flat   Bayesian   ideal   observer     
This   observer   ‘knows’   the   true   noise   in   its   system,   separately   for   central   and   peripheral   vision,   
without   any   explicit   metacognitive   noise   estimation   process   or   knowledge   of   empirical   noise   
distributions.   This   is   the   standard   model   employed   in   simple   signal   detection   and   Bayesian   
decision   systems,   with   true   knowledge   of   .   This   model   calculates   the   Type   1   decision   via  σ  
Equations   1,   2   and   4,   and   confidence   via   Equation   5   as   written   above.     
  

F2:   Flat   fixed   criterion   heuristic   observer     
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This   observer   sets   a   single   estimate   for   the   noise   in   the   environment   across   both   central   and   
peripheral   vision   based   on   optimal   ‘knowledge’   of   both,   without   any   explicit   metacognitive   noise   
estimation   process   or   knowledge   of   empirical   noise   distributions.   Thus,   it   is   conceptually   akin   to   
the   ‘fixed   Type   2   criterion’   model   described   in   previous   literature    (Li   et   al.,   2018;   Rahnev   et   al.,   
2011;   Solovey   et   al.,   2014) .   This   model   alters   Equations   1   &   2   such   that   all   decisions   and   
confidence   judgments   for   both   central   and   peripheral   vision   are   based   on   a   single   heuristic   
estimate   of   ,   :  σ σ̂F2  
  

 σ̂F2 = 2
σ + σcenter periphery  (8)   

  
Thus,   Equation   1   is   rewritten   as:     
  

(S|x; μ, σ ) p     ˆF2 =   p(x)
p(x|S)p(S) (9)   

  
  

with   Equation   2   rewritten   as   the   observer    assuming   
  

(μ , )xS1 ~ N S1
σ̂F2 (10)   

(μ , )xS2 ~ N S2
σ̂F2     

  
Decisions   and   confidence   judgments   are   made   according   to   Equations   4   and   5   as   above.     
  
  

H1:   Hierarchical   Bayesian   ideal   observer     
This   observer   has   optimal   knowledge   of   the   empirical   distributions   of   noise   in   central   versus   
peripheral   vision,   including   the   positive   skew   of   peripheral   noise.   It   uses   Bayes’   rule   to   optimally   
estimate   the   actual   noise   experienced   at   a   given   moment   based   on   these   prior   expectations   and   
the   likelihood   experienced   at   a   given   moment,   separately   in   central   and   peripheral   vision.   That   
is,   this   model   alters   Equations   1   &   2   such   that   all   decisions   and   confidence   judgments   for   both   
central   and   peripheral   vision   are   based   on   a   optimal   estimates   of   ,   ,   with   one   estimate   for  σ σ̂H1  
each   of   center   and   periphery:   
  

(σ|σ ) p H1 =   p(σ )H1

p(σ |σ)p(σ)H1 (11)   

  
with   assumed   Gaussian   noise   in   estimating   self-noise,   i.e.     follows   a   normal   distribution  (σ |σ)p H1  
with   mean     (the   sample   of   noise   drawn   on   this   particular   trial)   and   standard   deviation   of   this  σ  
likelihood   distribution   defined   as     --   again   with   separate   definitions     for   each   of   the  ς ς  
(separable)   center   and   periphery.   refers   to   the   empirical   prior   distribution   of   noise   for   a  (σ)p  
given   visual   field   location   (center   or   periphery).   That   is,   there   is   an   amount   of   noise   that   
happens   on   this   trial,   but   the   observer   does   not   have   ‘perfect’   access   to   this   noise;   instead,   it   
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has   a   noisy   representation   of   this   noise   (akin   to   how   one   would   have   a   noisy   representation   of   
some   other   aspect   of   a   physical   stimulus   [length,   location,   size,   speed,   etc.]   which   is   combined   
with   prior   expectations   for   that   noise    (Alais   and   Burr,   2004;   Beierholm   et   al.,   2009;   Burge   and   
Girshick,   2010;   Girshick   et   al.,   2011;   Knill,   2007,   2003;   Knill   and   Richards,   1996;   Knill   and   
Saunders,   2003;   Körding   et   al.,   2007;   Landy   et   al.,   2011;   Odegaard   et   al.,   2015;   Peters   et   al.,   
2018;   Weiss   et   al.,   2002;   Wozny   et   al.,   2010,   2008;   Yuille   and   Bülthoff,   1996) ).   The   estimate   for   

  is   chosen   as   the   maximum   a   posteriori   estimate,   i.e.   σ̂H1   
  

 rgmax p(σ |σ)σ̂H1 = a σ̂H1 H1  (12)   

  
Subsequently,   decisions   and   confidence   are   made   as   above   by   altering   Equations   1   &   2   to   read   
for   each   of   the   central   and   peripheral   judgments:   
  

(S|x; μ, σ ) p     ˆH1 =   p(x)
p(x|S)p(S) (13)   

  
(μ , )xS1 ~ N S1

σ̂H1 (14)   

(μ , )xS2 ~ N S2
σ̂H1   

  
and   then   following   Equations   4   and   5   as   above   to   complete   the   readout.   
    

H2:   Hierarchical   ‘mode   prior’   heuristic   observer     
This   observer   uses   an   estimate   of   the   most   likely   noise   experienced   at   a   given   moment,   
separately   for   central   and   peripheral   vision.    Rather   than   optimally   estimating   the   noise   as   the   
H1   observer   does,   it   instead   uses   the   mode   of   the   empirical   prior   distribution   as   a   heuristic   
estimate   --   it   picks   the   most   likely   amount   of   noise   experienced   at   this   location   in   the   visual   field.   
That   is,   rather   than   using   ,   this   observer   sets     via  σ σ̂H2  
  

  rgmax p(σ)σ̂H2 = a σ   
(15)   

  
again,   separately   for   center   and   periphery   as   before.   Then,   just   as   H1,   we   redefine   decisions   
and   confidence   by   rewriting   Equations   1   &   2   to   reflect   these   assumptions   for   each   of   the   central   
and   peripheral   judgments:   
  

(S|x; μ, σ ) p     ˆH2 =   p(x)
p(x|S)p(S) (16)   

  
(μ , )xS1 ~ N S1

σ̂H2 (17)   

(μ , )xS2 ~ N S2
σ̂H2   

  
and   then   following   Equations   4   and   5   as   above   to   complete   the   readout.   
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H3:   Hierarchical   ‘Gaussian   assumption’   heuristic   observer     
This   observer   uses   Bayes’   rule   to   estimate   the   noise   experienced   at   a   given   moment   (similar   to   
H1),   but   assumes   that    the   empirical   distribution   of   noise   in   peripheral   vision   is   Gaussian   rather   
than   using   the   true   positively-skewed   empirical   prior.   (It   also   uses   a   Gaussian   assumption   for   
central   vision,   but   since   this   is   accurate,   the   central   vision   H3   model   is   identical   to   the   central   
vision   H1   model.)   We   assume   that   the   observer   understands   the   general   location   of   this   
peripheral   noise   distribution,   but   possesses   poorer   knowledge   of   its   variability   or   level   of   
skewness.     
  

Thus,   this   observer   first   estimates   the   location   (mode)   of   the   empirical   prior   governing   peripheral   
noise   as:   
  

rgmax p(σ )  M̂periphery = a σperiphery periphery = eM Σperiphery
2
periphery (18)   

  
which   follows   from   the   fact   that   the   peripheral   noise   distribution   is   lognormal   (Equation   7).   That   
is,   the   location   (mean   and   mode)   of   the   "estimated",   symmetrical   prior   for     in   the   visual  σ  
periphery   is   computed   so   as   to   match   the   most   probable   noise   level   (mode)   of   the   "true,"   
asymmetrical   prior.     
  

Variability   in   the   estimated   peripheral   noise   empirical   prior   distribution   is   then   set   to   some   
multiple   of   the   variability   in   the   central   noise   prior:   
  

Σ̂periphery = kΣcenter (19)   
  

The   strength   of   this   assumption   (i.e.,   the   magnitude   of    k ,   the   variability   assumed   in   the   
peripheral   noise   priori)   controls   the   strength   of   peripheral   inflation   but   does   not   qualitatively   
affect   results.   Because   the   purpose   of   the   present   project   is   to   provide   a   proof   of   concept,   we   do   
not   fit    k    here,   and   set    k   =    1   for   simplicity.   Future   work   ought   to   fit    k    to   empirical   data.   
  

Then,   we   redefine   the    estimated    empirical   prior   for   noise   in   the   periphery   (Equation   7)   for   use   by   
this   observer   as:   
  

(M , )σ*periphery ~ N ˆ
periphery Σ̂periphery (20)   

  
(The   corresponding   distribution   for     is   equivalent   to   ,   since     and  σ*center σcenter M̂ center = M center  

  due   to   the   correct   expectation   Gaussian   noise   distributions   in   the   visual   center.)  Σ̂center = Σcenter  
Then,   just   as   with   H1,   all   decisions   and   confidence   judgments   for   both   central   and   peripheral   
vision   are   based   on   a   optimal   estimates   of     (now   based   on   the   incorrect   prior   expectations   for  σ  
the   distribution   of   ),   ,   again   for   each   of   center   and   periphery:  σ* σ̂H3  
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(σ |σ ) p * H3 =   p(σ )H3

p(σ |σ )p(σ )H3 * *

(21)   

  
with   assumed   Gaussian   noise   in   estimating   self-noise,   i.e.     follows   a   normal  (σ |σ )p H3 *  
distribution   with   mean     and   standard   deviation   ,   again   for   each   of   the   center   and   periphery.  σ* ς  
That   is,   now   refers   to   the    incorrect    expected   prior   distribution   of   noise   for   a   given   visual  (σ )p *  
field   location   (center   or   periphery).   As   with   H1,   the   estimate   for     is   chosen   as   the   maximum  σ̂H3  
a   posteriori   estimate,   i.e.     
  

 rgmax p(σ |σ )σ̂H3 = a σ*  H3 *  (22)   
  

Subsequently,   as   with   H1,   decisions   and   confidence   are   made   by   altering   Equations   1   &   2   to   
reflect   these   assumptions,   reading   for   each   of   the   central   and   peripheral   judgments:   
  

(S|x; μ, σ ) p     ˆH3 =   p(x)
p(x|S)p(S) (23)   

  
(μ , )xH3,signal ~ N signal σ̂H3 (24)   

(μ , )xH3,noise ~ N noise σ̂H3   
  

and   then   following   Equations   4   and   5   as   above   to   complete   the   readout.   
  
  

D.3   Attentional   manipulations   
  

As   described   in   Results,   we   investigated   model   predictions   under   simulated   attentional   
manipulations   assuming   that   attention   may   modify   two   factors:   (1)   the   precision   in   the   sensory   
estimate   (i.e.,   the   means   of   the   empirical   distributions   of   noise,    ),   and   (2)   the   precision   in   the   M  
metacognitive   estimate   of   noise   (i.e.,   the   standard   deviations   of   the   likelihood   distributions   of   
noise,   ).   For   this   simple   proof   of   concept,   we   introduced   two   additional   scalar   multiplicative  ς  
factors   that   could   modify   these   two   parameters   for   both   Type   1   and   Type   2   (metacognitive)   
judgments:     and   for   each   noise   factor,   respectively.   That   is,     is   actually   defined   as    a1 a2  M Ma1  
and     as   ,   with     under   default   conditions.   Thus,   under   increasing   attention,    ς ςa2 a1 = a2 = 1 a1  
and     are   both   assumed   to   decrease,   increasing   the   precision   of   the   Type   1   samples  a2  
themselves   as   well   as   the   Type   2   (metacognitive)   estimates   about   noise.   Increasing   attention   is   
referred   to   as   ‘attention+’   and   ‘attention++’   with   reference   to   ‘neutral’   (no   attentional   
manipulation)   in   Results.   
  

D.4   Simulation   details   
  

We   used   Monte   Carlo   simulations   to   evaluate   the   performance   and   confidence   behavior   of   all   
five   models   described   above,   assuming   the   same   signal   strength   in   all   scenarios.   Parameters   
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for   all   simulations   are   presented   in   Table   3;   although   these   parameter   values   are   arbitrary   for   
the   purposes   of   demonstration,   the   models’   qualitative   behavior   is   similar   across   a   range   of   
parameter   values   (data   not   shown).   
  

[   Table   3   about   here   ]   
  

For   each   of   the   above-described   model   observers   (F1,   F2,   H1,   H2,   H3),   we   sampled   1000   
standard   deviations     from   each   of   the   central   and   peripheral   distributions   (samples   with    σ σ < 0  
were   set   to   2.2204e-16);   at   each   sampled   standard   deviation   we   calculated   the  psσ = e =  
performance   (%   correct)   and   average   confidence   (mean    C )   for   each   model   across   50,000   
simulated   trials   (25,000   signal   and   25,000   noise).   As   described   in   Results,   we   quantified   over-   
and   underconfidence   using   Cohen’s    d    as   a   measure   of   effect   size,   with   positive   values   
indicating   confidence   >   performance   and   negative   values   indicating   confidence   <   performance:     
  

 ohen s d C ′ = σpooled

μ μC % correct  (25)   

  
with   the   mean   of   confidence   judgments   (Equation   5),     the   proportion   of   correct  μC μ% correct  
responses,   and     their   pooled   standard   deviation   (for   paired   samples)   according   to  σpooled  
standard   definitions.   All   simulations   were   carried   out   through   custom   scripts   written   in   Matlab   
R2019b.     
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G.   FIGURES   &   FIGURE   LEGENDS   
  
  

  
Figure   1.   Hypothesized   empirical   prior   distributions   of   noise   in   central   and   peripheral   vision,   and   how   they   
govern   Type   1   decision-making   in   a   Bayesian   decision   theory   framework.   (A)   The   empirical   distribution   of   
noise   in   central   vision   (left   panel)   is   assumed   to   be   Gaussian   with   relatively   small   mean   and   variance.   
The   empirical   distribution   of   noise   in   the   visual   periphery   (middle   panel)   is   assumed   to   be   positively   
skewed.   A   heuristic   metacognitive   observer   (e.g.   model   H3:   hierarchical   ‘Gaussian   assumption’   heuristic   
observer;   see   Methods)   may   correctly   represent   the   location   and   scale   of   the   peripheral   noise   distribution,   
but   misrepresent   its   skewed   shape   as   symmetric   (right   panel).   Small   x’s   refer   to   possible   noise   levels   
sampled   from   these   distributions,   with   consequences   on   the   decision   framework   noted   in   (C).)   (B)   The   
noise   in   the   central   or   peripheral   visual   field   dictates   the   behavior   of   the   Type   1   decision   system,   here   
represented   in   a   signal   detection   or   Bayesian   decision   theoretic   framework.   (C)   As   noise   changes   due   to   
environmental   conditions   or   location   in   the   visual   field   (small   x’s   in   the   panels   in   (A)),   the   Type   1   decision   
system   will   become   more   or   less   precise,   i.e.   more   or   less   sensitive   to   the   signal   in   the   environment.     
  
  

26   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425966
http://creativecommons.org/licenses/by/4.0/


  

  
Figure   2.   Predicted   performance   and   confidence   behavior   from   simulations   of   all   five   model   observers.   
(A)   Predicted   performance   (p(correct))   and   confidence   in   central   and   peripheral   vision   for   each   model   
across   a   range   of   noise   levels.   (B)   Median   performance   and   confidence   for   each   model   observer   in   
central   and   peripheral   vision.   Models   F1   (flat   Bayesian   ideal   observer)   and   H1   (hierarchical   Bayesian   
ideal   observer)   display   close   match   between   performance   (p(correct))   and   confidence   in   both   central   and   
peripheral   vision,   leading   to   neither   under-   nor   overconfidence   on   average.   In   contrast,   models   F2   (flat   
fixed   criterion   heuristic   observer)   and   H2   (hierarchical   ‘mode   prior’   heuristic   observer)   display   patterns   of   
both   under-   and   overconfidence   in   central   and   peripheral   vision.   Finally,   while   H3   (hierarchical   ‘Gaussian   
assumption’   heuristic   observer)   correctly   estimates   confidence   in   central   vision   due   to   knowledge   of   the   
shape   of   the   empirical   prior   distribution   of   noise,   due   to   its   assumption   of   symmetry   in   the   visual   periphery   
noise   distribution,   it   systematically   under-estimates   noise   leading   to   average   over-confidence   for   the   
visual   periphery   only.   See   Table   1   and   Methods   for   details   of   models.   
  

  
  
  
  

27   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2021. ; https://doi.org/10.1101/2021.01.08.425966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.08.425966
http://creativecommons.org/licenses/by/4.0/


  

  
Figure   3.   Results   of   simulated   attentional   manipulations   on   the   effect   size   (Cohen’s    d )   of   subjective   
inflation   (overconfidence).   Increasing   attention   is   modeled   as   increasing   precision   in   sensory   estimates   
and   increasing   metacognitive   noise   estimation   precision   (see   Methods).   In   central   vision,   increasing   
attentional   allocation   leads   as   expected   to   improved   Type   1   performance   (A),   but   generally   flat   or   slightly   
increasing   effect   size   for   inflation   (C)   with   the   exception   of   model   F2,   which   shows   stronger   and   stronger   
under confidence   as   attention   increases.   In   contrast,   in   the   periphery,   despite   attentional   allocation   
increasing   performance   as   expected   (B),   most   models   display   flat   or   slightly   increasing   effect   size   for   
peripheral   inflation   (D)   with   the   exception   of   models   H2   and   H3,   the   two   heuristic   hierarchical   models.     
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H.   TABLES   
  

Table   1.   Introduction   to   the    Flat    and    Hierarchical    models   tested.   
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Model   name   Brief   description   

F1:   Flat   Bayesian   ideal   
observer   

Sets   a   single   estimate   for   the   noise   in   its   own   system   across   both   central   
and   peripheral   vision   based   on   optimal   ‘knowledge’   of   both,   without   any   
explicit   metacognitive   noise   estimation   process.   

F2:   Flat   fixed   criterion   
heuristic   observer   

Has   optimal   knowledge   of   the   empirical   distributions   of   noise   in   central   
versus   peripheral   vision,   including   the   positive   skew   of   peripheral   noise.   
Uses   Bayes’   rule   to   optimally   estimate   the   actual   noise   experienced   at   a   
given   moment   based   on   these   prior   expectations   and   the   likelihood   
experienced   at   a   given   moment,   separately   in   central   and   peripheral   vision.   

H1:   Hierarchical   
Bayesian   ideal   observer   

Has   optimal   knowledge   of   the   empirical   distributions   of   noise   in   central   
versus   peripheral   vision,   including   the   positive   skew   of   peripheral   noise.   
Uses   Bayes’   rule   to   optimally   estimate   the   actual   noise   experienced   at   a   
given   moment   based   on   these   prior   expectations   and   the   likelihood   
experienced   at   a   given   moment,   separately   in   central   and   peripheral   vision.   

H2:   Hierarchical   ‘mode   
prior’   heuristic   observer   

Uses   an   estimate   of   the   most   likely   noise   experienced   at   a   given   moment   
(i.e.,   the   mode   of   the   empirical   prior   distribution),   separately   for   central   and   
peripheral   vision.   

H3:   Hierarchical   
‘Gaussian   assumption’   
heuristic   observer   

Uses   Bayes’   rule   to   estimate   the   noise   experienced   at   a   given   moment   
(similar   to   H1),   but   relies   on   a   Gaussian   estimate   of   the   empirical   
distribution   of   noise   in   peripheral   vision   rather   than   the   true   
positively-skewed   empirical   prior   --   i.e.,   a   distribution   of   noise   at   the   
correlect   location,   but   lacking   skew.   
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Table   2.   Cohen’s    d    measures   of   effect   size   for   inflation,   i.e.   the   difference   between   confidence    ( 
)   and   performance   (p(correct)),   as   a   function   of   increasing   attentional   allocation   (neutral,  (choice|x)  p  

attention+,   and   attention++;   see   Methods).   Positive   Cohen’s    d    indicates   inflation   (confidence  
overestimates   performance),   while   negative   Cohen’s    d    indicates   deflation   (confidence   underestimates   
performance).   Empirical   evidence   shows   that   peripheral   inflation   is   stronger   under   inattention,   so   
increasing   attention   ought   to   reduce   inflation   strength.   Only   H2   and   H3   correctly   predicted   that   peripheral   
inflation   ought   to   decrease   with   increasing   attention   to   the   periphery.   
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  neutral   attention+   attention++   

  a1  1   0.9   0.8   

  a2  1   0.8   0.6   

Model   Cohen’s    d   

F1   
center   -0.0104   -0.0236   0.0120   

periphery   -0.0054   0.0351   -0.0005   

F2   
center   -0.8510   -1.0903   -1.5854   

periphery   1.0273   1.0637   1.1605   

H1   
center   -0.2832   -0.2572   -0.1974   

periphery   -0.2212   -0.2248   -0.2412   

H2   
center   -0.1522   -0.1474   -0.1632   

periphery   0.7287   0.6634   0.5230   

H3   
center   -0.2857   -0.2536   -0.2001   

periphery   0.4846   0.4007   0.3090   
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Table   3.   Parameters   used   in   all   simulations.   
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Parameter   Description   Used   by   Value(s)   

 μsignal  mean   of   signal   distribution   all   models   0.5   

 μnoise  mean   of   noise   distribution   all   models   -0.5   

 M center  mean   of   central   vision   noise   prior   distribution   H1,   H2,   H3   1   

 M periphery  mean   of   peripheral   vision   noise   prior   distribution   H1,   H2,   H3   1   

 Σcenter  standard   deviation   of   central   vision   noise   prior   distribution   H1,   H2,   H3   0.3   

 Σperiphery  standard   deviation   of   peripheral   noise   prior   distribution   H1,   H2,   H3   0.75   

 ςcenter  standard   deviation   of   central   noise   likelihood   distribution   H1,   H3   0.15   

 ςperiphery  standard   deviation   of   peripheral   noise   likelihood   distribution   H1,   H3   0.5   

 a1  scaling   factor   for   the   mean   of   the   noise   prior   distributions   all   models   [1,0.9,0.8]  

 a2  scaling   factor   for   the   standard   deviation   of   the   noise  
likelihood   distributions   

H1,   H3   [1,0.8,0.6]  
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