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Abstract: Recent advances in brain imaging allow producing large amounts of 3-D volumetric 
data from which morphometry data is reconstructed and measured. Fine detailed structural 
morphometry of individual neurons, including somata, dendrites, axons, and synaptic connectivity 
based on digitally reconstructed neurons, is essential for cataloging neuron types and their 
connectivity. To produce quality morphometry at large scale, it is highly desirable but extremely 
challenging to efficiently handle petabyte-scale high-resolution whole brain imaging database. 
Here, we developed a multi-level method to produce high quality somatic, dendritic, axonal, and 
potential synaptic morphometry, which was made possible by utilizing necessary petabyte 
hardware and software platform to optimize both the data and workflow management. Our method 
also boosts data sharing and remote collaborative validation. We highlight a petabyte application 
dataset involving 62 whole mouse brains, from which we identified 50,233 somata of individual 
neurons, profiled the dendrites of 11,322 neurons, reconstructed the full 3-D morphology of 1,050 
neurons including their dendrites and full axons, and detected 1.9 million putative synaptic sites 
derived from axonal boutons. Analysis and simulation of these data indicate the promise of this 
approach for modern large-scale morphology applications. 
 
 
INTRODUCTION 
 
Reconstructing the complete 3-D shape or morphology of a neuron, including its dendrites and 
axons in their entirety, as well as finer structures such as the somata, dendritic spines, and axonal 
terminal boutons, is recognized as a crucial step to profile the myriad types of neurons in brains1–

4. This technique, which we refer to as Multi-Morphometry, has begun to generate intriguing 
information and hypotheses about brain circuits at the single-neuron / single-synapse level5–7. 
 
Mammalian brains, of at least hundreds of cubic millimeters in volume, are very large when sub-
micrometer resolution imaging is used to acquire 3-D volumetric image datasets at the whole-brain 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 10, 2021. ; https://doi.org/10.1101/2021.01.09.426010doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426010


 2 

scale. A fundamental challenge in multi-morphometry is that sub-micrometer resolution is 
necessary to analyze synaptic patterns in a neuron’s arborization, while whole-brain scale is 
essential to delineate long projecting axonal arbors8. As a result, even for the mouse brain, a widely 
used model system of mammalian brains, a typical 3-D brain-image dataset will have tens of 
teravoxels in volume9,10. On the other hand, neurons have a very complicated tree-like shape, and 
are often labelled and visualized sparsely using chemical11,12, transgenic13 or viral approaches14,15. 
The number of morphologically distinguishable neurons per brain is often limited. Therefore, to 
understand the vast complexity and variation of neurons, it is crucial to obtain a large collection 
of brain image datasets16,17. As each voxel is often stored as one or more bytes, the multi-
morphometry problem arises as a petabyte-computing challenge, and as a paramount task for 
current bioimage informatics applications and technologies18–21. 
 
There is a long history of reconstructing individual neurons’ morphology with image analysis22,23. 
Subneuronal structures including somata, spines and boutons have also been segmented and 
analyzed from images5,24–28. This is a challenge of high community interest. A number of 
algorithms have been examined and compared against each other in public initiatives, e.g. 
DIADEM29 or in the global collaborative BigNeuron initiative30. However, most existing methods 
are applicable only to smaller image datasets and partial neuronal structures. For individual 
mammalian brain datasets, technologies that can handle teravoxels of image volume to trace 
millimeters long neurite fibers emerged only recently, including TeraFly31, UltraTracer32, 
BigDataViewer33, and TeraVR34. Manual and semi-automatic methods were used to trace neurons’ 
full skeletons in Janelia’s MouseLight project2. Yet, it is largely an open problem how to scale up 
all these approaches to handle petabyte-scale multi-morphometry challenge that is becoming a 
compelling reality as whole-brain screening projects involving increasingly larger and more 
complicated animal models are being carried out internationally (BRAIN Initiative 
(https://braininitiative.nih.gov/), Blue Brain Project35, etc.).  
 
 
 
RESULTS 
 
We attempted this petabyte (PB)-scale whole-brain computing challenge by introducing a 
technology that involves a hardware platform that is able to handle petabytes of data storage, 
sharing, computing and visualization, a software platform called MorphoHub that can utilize such 
hardware platform, and most importantly, a mechanism to scale up the synergized automated 
computation and multi-user collaboration for effective validation and correction. Our method is 
centered around reconstructing the multi-level information of single neuron’s morphology (Fig. 
1a) at the whole-brain scale for a number of brains. The MorphoHub software package is able to 
streamline the workflow of imaging data management, visualization, reconstruction and 
collaboration, and data sharing (Fig. 1b, Methods). Using this approach, we extended several 
state-of-the-art methods to the PB-scale (Supplementary Table 1) and produced multi-
morphometry data from such massive image database (Fig. 1c). Our method allows a smooth 
transition from manual and interactive morphometry acquisition to increasingly routine work done 
by automatic algorithms as we show below. 
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A key component of our method is a three-level (L1, L2, and L3) reconstruction approach (Fig. 
1a). We incrementally reconstruct morphological components of neurons, including somata, 
dendrites, axons, spines and boutons, only when such information can be produced faithfully and 
affordably. Specifically, an L1 reconstruction contains the full dendritic arbor and the skeleton of 
all axonal neurite tracts, excluding the fine structures of distal axonal arbors (Fig. 1a and Fig. 2). 
An L2 reconstruction contains the complete structures of all neuronal arbors (Fig. 1a and Fig. 2). 
An L3 reconstruction contains the identification of two key elements of synaptic connectivity, 
dendritic spines and axonal boutons, as well as other structures of potential interest (e.g., specific 
topology of axonal branching patterns, modeling of specific neuronal compartments’ shape) (Fig. 
1a and Fig. 3).  
 
The proposed multi-level reconstruction method is generic and scalable to single neuron datasets 
of arbitrary size if proper data structure and data workflow are in place. To provide such capability 
for a real PB-scale computing environment, we developed MorphoHub to manage all data flow 
and processing procedures in an integrated way (Fig. 1b and Supplementary Fig. 1, Methods). 
MorphoHub handles four heterogeneous data types, including image volumes, neuron morphology, 
meta-data of user interactions, and data management (conversion, storage, transferring/sharing) 
schemas, for a PB-scale database. We also engineered a universal application interface (Fig. 1b 
and Supplementary Fig. 2) in MorphoHub so that it could invoke additional image analysis and 
validation tools when needed.  
 
To demonstrate the capability of this approach, we built an image database called D62 consisting 
of 62 whole mouse brain images. D62 has in total 713.35 teravoxels, 1.43 petabytes in native image 
space, and 973 terabytes in compressed file space (Supplementary Data 1). MorphoHub ran 
smoothly on D62 and allowed us to precisely pinpoint somata of 50,233 neurons using TeraFly 
(100% accuracy validated by independent annotators). For each neuron, we then reconstructed the 
dendrites automatically (Fig. 3a, Methods), followed by feature-based screening and visual 
validation (Fig. 1c, Methods). Using this workflow, we produced traceable dendritic results of 
11,322 neurons. Due to the scale of the problem, similar results were hard to obtain using other 
software. 
 
For each of the sparsely labeled neurons whose long axon projection could be separated, we first 
produced an L1-reconstruction corresponding to the key skeleton of a neuron along with its 
dendrites and axonal projection targets. We then requested human annotators to validate each L1-
reconstruction. The resulting L1-reconstruction was then further refined to complete the L2-
reconstruction that also added the distal axonal arbors projecting far away across various brain 
regions. In this study, we focused on reconstructing the full morphology of 1,050 neurons whose 
somata situate in the thalamus, striatum, and cortical regions of mouse brains (Methods). Each 
L1-L2 pair of the completed neuron reconstructions were validated by at least two annotators. This 
dataset, called R1050, was used to further examine whether or not the core multi-level 
reconstruction method would make sense. 
 
We compared the L1 and L2 morphology in R1050. On average a pair of L1-L2 reconstructions 
have five to six fold difference in terms of their length and number of branches (Fig. 2a and Fig. 
2b). However, a Sholl analysis36 indicates that the L1-L2 pairs share branching patterns in 
dendrites and differ only in the additional axonal regions of L2 (Supplementary Fig. 3). 
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Additionally, 95% of the corresponding L1 and L2 reconstruction-pairs have at least 75% overlap 
in their projecting target brain-regions (Fig. 2c). Finally, we used random-sampling to simulate 
the potential reconstruction error that would be seen if the L1-L2 leveled protocol were not used 
(Methods). The L1-L2 reconstruction protocol can avoid reconstruction error of a brute-force 
approach that would reconstruct distal arbors directly without first validating the L1-reconstruction 
(Fig. 2d). In summary, Fig. 2 shows that reconstructing L1 first without incurring the great 
complexity in producing the L2 data already offers an efficient way to analyze the key branching 
structures and the ballpark projection pattern of single neurons. The reconstructions in each level 
state were also transmitted and stored efficiently and safely. 
 
On the other hand, the rich detail in the axonal arbors of the L2 reconstruction of a neuron as 
demonstrated in Fig. 2 also serves as the basis of finer-resolution morphometry. For axonal arbors 
in R1050, we further generated the L3 morphometry by detecting putative synaptic sites (boutons) 
of neurons at very large scale (Methods). Due to the presence of axonal fibers, we are able reduce 
the conventionally required 3-D blob-segmentation problem for bouton detection to a much 
simpler 1-D Gaussian model fitting problem, that can be solved in both high accuracy and high 
speed. We fit a Gaussian kernel to the axonal varicosities and detected 1.9 million boutons (Fig. 
3b-d). Random inspection of the results indicated that the detection precision was above 95% 
(Supplementary Fig. 4). We also found that nearly 80% of the average spacing of adjacent 
boutons along an axon ranged from 5 to 20 um (Fig. 3c). The L1-L2-L3 trio morphometry 
produced using this method allows studying the complete distribution of single neurons, their 
projection, and potential connectivity patterns at whole brain scale. A detailed analysis of the 
patterns in and statistics of these datasets will be reported elsewhere. 
 
All multi-morphometry data produced were also registered to the Allen Common Coordinate 
Framework (CCF)37 to see how the distributions of each data level correlate with others (Fig. 4). 
In this way, various brain regions (the white colored regions), dendrites, axons, and boutons can 
all be identified (Fig. 4a-e). As a result, we output a summary matrix with rows representing 
neurons, columns representing a unique CCF parcel, and numerical entries expressing, for each 
neuron and corresponding parcel, the axonal and dendritic length, the number of boutons, and the 
(binary) presence of soma. Such representation lends itself to highly informative quantitative 
analyses, such as pairwise probability of directional connection between neurons (dot product of 
presynaptic axonal values and postsynaptic dendritic values) and projection similarity (arccosine 
distance between axonal values of two neurons). Fig. 4 shows that the distributions of these 
neuronal entities do not correlate globally. Instead, they exhibit regional enrichment of which the 
pattern is hard to observe when only local brain areas are analyzed. 
 
For PB-scale computing, the speed of data I/O for storage and data sharing across networks 
(Internet or intranets) becomes more critical than in applications at small scale. It is essential to 
reduce data volume without compromising visualization and analysis of such large data. We 
observed that an L1-L2-L3 morphology trio of a neuron will always be sparse and that the spine 
and bouton information in the L3 data could be described using a neighborhood around the neuron 
skeleton in preceding levels. To utilize this observation, we developed a compact L0 representation 
of a neuron for effective imaging data management, sharing, and computation (Fig. 5a, Methods). 
The key idea is that the L0 data of a neuron represents a tightly bounded image region that covers 
the L1-L2-L3 trio area. Because dendritic spines typically attach dendritic fiber orthogonally, and 
axonal boutons scatter along axons, for any given L2 (or L1) skeleton we conveniently extracted 
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a series of piecewise 512x512x512-voxel 3-D image-tiles around the skeleton to cover all spines 
and boutons and at the same time to allow fast image file I/O. In this way, an L0 representation 
identifies an image sub-region that contains all parts of a specific neuron.  
 
For R1050 reconstructed from D62, on average the L0 data generated based on an L1 skeleton 
contains more than 77% of that generated based on the corresponding L2 reconstruction (Fig. 5b). 
In addition, the L0 data of a neuron typically occupies three orders of magnitude less image volume 
compared to the whole brain image (Fig. 5c). The L0 data of the largest neuron in this work has 
~80 gigavoxels, while the mean value and standard deviation of the volume of L0 data of 1,050 
fully reconstructed neurons are 6.75 and 5.94 gigavoxels, respectively (Fig. 5d, Supplementary 
Table 2). Practically, even the union of all L0 data of neurons, denoted as Super L0, in a sparsely 
labeled brain still has 1 to 3 orders of magnitude fewer voxels compared to the total volume of the 
brain (Fig. 5c). In this way, the multi-morphometry framework allows thousands of fold better 
efficiency in both storing and transferring the essential image data and quantitative shape 
information of neurons. This utility greatly simplifies the previously challenging data sharing task. 
Indeed, without accelerated content delivery, currently it is possible to transfer the L0 data in 
R1050 between the data production center (SEU-ALLEN) in Asia and one data releasing facility 
(BICCN Image Library, Pittsburgh supercomputing center) in North America (Fig. 5d). This direct 
data sharing replaced a previous way to bulk ship hard drives containing the massive amount data 
back-and-forth across continents. 
 
With the L0-L1-L2-L3 quadruple data, we further enhanced the scale and faithfulness of our multi-
morphometry produced in two ways. First, since the L0 data has a much smaller volume and thus 
is much easier to share across network, we developed a collaborative mode that interconnects a 
number of formerly autonomous TeraFly/TeraVR users to synergistically work on the L0 data 
directly (Supplementary Fig. 5). This method parallelizes the workflow and thus improves the 
data production rate. The cooperative work of multiple annotators also elevates the faithfulness of 
the resultant morphometry. Second, we used a deep learning network to learn from the L0-Lx (x = 
1,2,3) pair. The trained model was used to detect specific neuronal features, such as neurite 
skeleton or axonal terminals (Supplementary Fig. 6). This process can be repeatedly optimized 
based on progressively more and more accurate L0-L1-L2-L3 quadruple data. Such automation 
also increases the data production rate for PB-scale computing.  
 
 
DISCUSSION 
 
In this study, we demonstrated a robust PB-scale informatics platform to generate large-scale 
single neuron reconstructions suitable for multi-scale biological analysis. Our approach has several 
advantages: (1) efficient multi-level production and management of whole-brain neuron 
reconstructions; (2) conducting morphological analysis and cell typing globally and at multi-
resolution; (3) enabling the investigation of the convergence or divergence of neuronal projections 
by analyzing distribution of neuronal arbors across brain regions; (4) comparison of various 
neuronal elements and sub-structures with respect to the types of cells. Taken altogether, our 
whole-brain multi-morphometry approach provides a framework to produce hierarchical datasets 
that synchronize brain anatomy, single neuron morphology, sub-neuronal structures, and potential 
pre-synaptic sites, all mapped onto a standardized atlas. Our method will be useful for further 
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studies of neuronal circuits based on whole-brain imaging, not only for mouse brains but also for 
other model systems such as monkey brains.  
 
Our work furthers previous effort to use light microscopy (LM) to visualize and detect synapses 
around neurite tracts labeled by genetic markers5,6 or antibodies17, which were limited to partial 
neuronal structures in local brain regions. In this study we used fMOST data as a showcase and 
for putative synaptic sites we have focused on axonal boutons. As a generic computational 
framework, our approach is applicable to various datasets produced with different methods and 
collected with different imaging modalities.  
 
Of note, our method stores both the original neuronal tracing in the native coordinates of the 
individual brain specimen, allowing efficient extraction of precise geometric measurements (e.g., 
synaptic distance from the soma along the axonal path) as well as a registered version of the same 
morphology mapped to CCF. The registration of the axonal reconstructions is efficiently expressed 
by augmenting each tracing coordinate, from the center of the soma all the way to the boutons, 
with the unique identifier of the anatomical parcel in which it is embedded38. On the one hand, 
such compact representation immediately enables real-time computation of potential circuit 
connectivity39. On the other, it provides critical information regarding neuronal identity by 
encoding its somatic region and quantitative projection targets. This information, together with the 
specification of essential details regarding the brain specimen and imaging modality, fulfills the 
recommended requirements for standard metadata description of neuromorphological 
reconstructions40. Thus, our IT infrastructure is seamlessly compliant for effective pipelining with 
the NeuroMorpho.Org public data sharing platform, ensuring maximum impact through expanded 
community outreach41.  
 
Another line of major current effort is to reconstruct dense neurite tracts and synapses, or 
“connectomes”, using electron microscopy (EM) followed by computationally intensive 3D image 
segmentation and modeling, such as the MICRON project42 and the Janelia FlyEM project43. For 
mammalian brains, EM-based approaches are still restricted to local brain regions due to their very 
high resolution and various challenges in sample preparation and imaging. Our method 
complements the EM-based approach in whole brain scale profiling. Importantly, the lower cost 
of LM enables one to integrate morphometry information from many brains that is crucial to 
understand the variability of neurons and their circuits across brains and conditions. In comparison 
with EM-based reconstruction of individual neurons, our work  reconstructs the whole morphology, 
including (1) soma locations; (2) dendritic arbors, which entails the capacity for and locations of 
synaptic inputs; (3) axonal trajectories with collateral projections and terminal boutons, which 
indicate innervation of projection targets. Together, such information is directly relevant to 
neuronal function.  
 
The multi-level reconstruction approach is being enhanced in various ways. In addition to various 
workstation/PC clients, virtual reality consoles, super-computing, and big-display walls that are 
already integrated in our software MorphoHub, mobile applications (APPs) for more intelligent 
and automated neuron tracing are being developed and added onto our software. We are also 
deploying MorphoHub for data servers in the cloud and scaling up the capability for concurrent 
data serving of distributed users. We hope these engineering efforts would lead to a new globally 
accessible platform that has potential to bring the current productivity to the next level, especially 
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addressing challenges in completing neuron morphometry more efficiently, producing more fine-
scale morphometry such as synapses with their shapes and statistics, integrating more automation 
through the use of AI, sharing of imaging data remotely at affordable cost, and international 
collaboration of neuroanatomists and other interested users. 
 
 
CONCLUSION 
 
Neuronal morphology is an essential component of cell type identity in the brain and an essential 
determinant of connectivity and circuit function. Large scale accurate neuronal profiling 
necessitates advanced methods in computational processing to effectively manage storage and 
bandwidth for collaborative segmentation and annotation. The data in this study shows our 
petabyte-scale computing framework is able to provide a solution to modern anatomic workflow 
requirements that are now demanded for very large-scale morphometry.  
 
 
 
DATA AND CODE AVAILABILITY 
 
The whole brain image datasets are released under BICCN’s Brain Image Library (BIL) at 
Pittsburgh Supercomputing Center. The multi-morphometry datasets can be downloaded at 
https://github.com/SD-Jiang/MorphoHub/releases/tag/v1.0. The software is available at 
https://github.com/SD-Jiang/MorphoHub. 
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METHODS 
 
Hardware and software platform 
Our system is designed for the task of multi-morphometry data generation from petabyte-scale 
whole-brain imaging database. Built upon customized hardware infrastructure and software tools, 
the system is capable of organizing whole-brain imaging datasets, generating multi-morphometry 
data, managing data and workflow, and visualization and analysis of the generated data 
(Supplementary Figure 1).  
 
The hardware infrastructure includes the following parts. VR-equipped annotation workstations 
are used for data visualization, interactive neuron reconstruction, proofreading, etc. A petabyte-
scale storage is configured to store the whole-brain imaging datasets, while the multi-morphometry 
data is managed using cloud-based storage. A computing cluster is deployed for parallel execution 
of batch work assignments. Moreover, a wall-mounted display array is also available for 
monitoring the data generation status. The storage server and the computing cluster are connected 
with a 100 Gbps wired local area network for peta-scale data storage and parallel computing. The 
annotation workstations, cloud storage, and monitor system reside in a 10 Gbps local area network. 
 
There are four major software components in the MorphoHub software package. The MorphoHub-
DBMS is the core of the entire system which is responsible for the coordination of the overall data 
generation process. The DendriteGenerator is in charge for parallel generation of dendritic arbors. 
The L0Generator is useful for creating compact image representation of the reconstructions. The 
BoutonGenerator is capable of automatically detection of the synaptic boutons located on axons. 
These components are developed as plugins of Vaa3D44,45, thus making MorphoHub cross-
platform and deployable on various operating systems. 
 
MorphoHub-DBMS 
The MorphoHub-DBMS manages the generation of multi-morphometry data by either 
collaborating teams or automatic routines. All the morphometry data files are organized in the 
MorphoHub-Database, where they follow consistent naming rule and are assigned with unique 
IDs. The validity of the database is monitored by an error checking routine running in the 
background. Should there be any issue regarding to the morphometry data files, and error message 
would be generated and displayed on the screen wall system. 
 
During the multi-level generation of the neuron morphometry data, multiple brains, neurons, 
annotators are involved. Also, for each neuron, the L1, L2, and L3 data, together with a number of 
intermediate data levels are produced. The MorphoHub-DBMS maintains the correct working state 
for all the neurons and supports a number of operations, including commit (submitting a 
reconstruction to a higher level), rollback (sending a reconstruction to a previous level), 
proofreading (requesting for quality check of the reconstruction), etc. Besides, the MorphoHub-
DBMS also provides supports for user management and task assignment. All the data are 
periodically synchronized with private or public cloud-based storages for version control, data 
sharing and collaboration. 
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A screen wall display system is connected with MorphoHub to present useful information for the 
ongoing morphometry generation. On the display array, some of the latest reconstructed neurons 
are displayed; the status of the data repository is tracked; preliminary analysis results are also 
generated dynamically to provide potential insights of the data. 
 
Generation of somata and dendritic arbors (DendriteGenerator) 
The annotators browsed each whole brain image in D62 using TeraFly and pinpointed soma 
locations. 2-D maximum intensity projection (MIP) images were generated for each soma-centered 
region for further validation. Then, centering at each identified soma, a local image volume of 
1024x1024x512 was cropped from the from highest resolution of whole brain image. Next, the 
APP246 algorithm was invoked for the tracing of dendritic arbors. In particular, a number of 
background thresholds (15, 20, …, 40) were adopted for each tracing routine. The tasks were 
submitted to the cluster server for parallel computation. The results were retrieved and stored only 
if the execution time was under 30 seconds. Then, we leveraged the gold-standard datasets, e.g., a 
set of manually annotated and validated dendritic arbors, to form rules for further screening the 
automatic reconstruction results. The [min, max] interval of the following five features of the 
dendritic arbors were considered, including 'Tips', 'Length', 'Max Path Distance', 'Average 
Bifurcation Angle Remote', and 'Max Branch Order'. An automatic tracing result qualified if more 
than four features conformed with the gold-standard. In case more than one tracing qualified for a 
certain soma location, the result with larger overall tracing length was selected. In visual screening, 
tracing results were removed when multiple cells were connected.  
 
Generation of L1 and L2 data 
In MorphoHub, we use a multi-level approach to reconstruct neuron morphology: the L1 
reconstruction contains the dendritic trees and the long axonal projections, while the structures of 
distal axonal arbors are annotated in the L2 reconstruction. The generation of either L1 or L2 data 
requires several rounds of checking and correction and is essentially an iterative procedure. In each 
iteration, there is a generation step (GS) and a validation step (VS) (Supplementary Fig. 7). In 
the generation step, an annotator tries to reconstruct the neuron’s morphology until the person 
considers that the reconstruction meets the standard of the current level, i.e., L1 or L2. Then, in 
the validation step, a second annotator examines the reconstruction while labeling the over-traced 
structures (false positive, FP) and missing structures (false negative, FN) and confirming the 
correct structures (true positive, TP). After that, the precision rate (P= TP/ (TP+ FP)) and recall 
rate (R= TP/ (TP + FN)) can be calculated. If the F1 score = (2*RP/ (R+P)) is greater than the 
preset threshold, the current level is considered finalized. Otherwise, another iteration is needed. 
Normally, the reconstructions of both L1 and L2 converge in two iterations. 
 
Calculation of the overall reconstruction accuracy in random-sampling simulation 
The reconstruction of a neuron’s morphology, normally starting from the soma and gradually 
extending all the way to the remote terminals, is essentially a consecutive decision-making process. 
Thus, it is likely to suffer from the problem of error propagation, i.e., the reconstruction errors at 
upstream structures will affect the downstream structures. We assume that for each primitive 
structure in neuron reconstruction, e.g., a neuronal segment, there is a constant probability p for 
error occurrence. Besides, if error occurs at some structure, it will also propagate to all its child 
structures. During the validation step, reconstruction errors could be identified and corrected. 
However, new errors would still be likely to be introduced at the given chance. Based on such 
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assumptions, we could calculate the overall reconstruction accuracy after n rounds of iterations. 
With the L1-L2 leveled protocol, we assign n/2 iterations for L1 reconstructions, and other n/2 
iterations for L2. With the one-level strategy, we simply repeat the generation-validation steps n 
times for the reconstruction of whole neuron. The simulation can be carried out several times to 
achieve stable results. 
 
L3 (bouton) generation (BoutonGenerator) 
As a typical L3 data, the bouton distributions are generated based on the guidance of L2 axonal 
arbors. Boutons are mainly located at distal axonal arbors rather than the long axonal projections. 
We used a four-step approach to extract L3 (bouton) data automatically. Firstly, the neuronal tree 
representation of L2 data is resampled using a fixed-length interval. In this work, the interval is 
set to be 4 microns. Secondly, for each node in the neuronal tree, the corresponding image intensity 
value is retrieved from the whole brain datasets. Since the nodes cannot be guaranteed to locate at 
the centers of the putative boutons, the nodes are allowed to be locally shifted to the maximum 
intensity position within a small area (e.g., 2 voxels). We assume that the intensity of imaging 
signal along axons obeys the 1-D Gaussian distribution and a bouton site tends to have intensity 
jump compared with its neighboring nodes. Thus, the third step is to calculate the intensity jump 
threshold for each small image block (e.g., 128x128x123) as the standard deviation of the block, 
and extract bouton candidate in a block-wise manner. Finally, in the last step, we remove any 
possibly duplicated bouton site if it is too close to its neighboring site (e.g., within 5 voxels). 
 
Generation of the L0 imaging data (L0Generator) 
The L0 imaging data is generated based on the corresponding morphometry data, e.g., L1 data, L2 
data, or even a dendritic arbor. The L0 data contains the image regions that cover all the anatomical 
structures of the morphometry and is organized in a TeraFly-compatible hierarchical form, just as 
the whole-brain imaging data. The approach to generate L0 data is described below. For a given 
neuron, each fundamental morphological element, i.e., nodes and edges, is examined. The local 
image block in the whole-brain dataset that contains the element is found and marked as “relevant”. 
Then, all the “relevant” images are combined into the union set from which the compact L0 data 
are finally generated by building a multi-resolution image hierarchy. 
 
Quality control workflow and public release 
The reconstructions are concurred to be released after following the single-tree criterion, which 
includes correct types, no loops, and no trifurcation or multi-furcation. Combination of manual 
modifications and automatic algorithms were used to control the quality of reconstructions. 
Automatic routines were invoked to detect any presence of gaps, loop and multi-furcation, 
followed by manual correction of such issues. Other procedures include examining the 
reconstruction quality at branch terminals and checking whether all the neurites are centered at 
image signals. After 2 to 3 rounds of checking, the reconstructions are then ready for ingestion and 
mirroring in open-source repositories such as NeuroMorpho.Org (http://neuromorpho.org/). 
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FIGURES 

 
Fig 1. Multi-morphometry data generation from whole-brain imaging datasets. a An illustration 
of the multi-level reconstruction approach. From a whole-brain image containing trillions of 
voxels (top left), the Level-1 (L1), Level-2 (L2), and Level-3 (L3) data are reconstructed in 
sequence (bottom). Moreover, a concise Level-0 (L0) imaging data is also generated based on the 
reconstructed morphometry (top right). b The MorphoHub system for the generation of multi-
morphometry data, management and visualization of all related data and workflow, data sharing 
and extended functions. c Examples of the multi-morphometry data reconstructed from one Brain 
(Brain id: 18454). From top to bottom are the somata, dendrites, L1, L2, and L3 data, respectively, 
with zoom-in panels for red arrows shown on the right. 
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Fig 2. Comparisons of L1 and L2 data. a and b Two features (a: total length; b: branch number) 
of L1 and L2 data. Neurons are from three brain regions (TH (Thalamus): 705 neurons; CTX 
(Cortex): 23 neurons; STR (Striatum): 322 neurons). c Comparison of the projection targets of the 
L1-L2 pairs. Horizontal axis: number of neurons. Vertical axis: overlapping ratios of projection 
targets of L1-L2 pairs. d Random-sampling simulation of potential reconstruction errors of the 
L1-L2 leveled protocol and the brute-force one-level strategy. Horizontal axis: the assumed error 
rate for each primitive structure (e.g., a tract). Vertical axis: overall accuracy of the 
reconstructions after validation. Error bar: SD. 
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Fig 3. Mass data production of somata, dendrites, and boutons. a Number of identified somata 
and automatically reconstructed dendritic arbors from D62. b Number of detected boutons based 
on the L2 morphometry in R1050. c Distribution of the linear density of boutons along the axonal 
skeletons. Red bar highlights the range [0.05, 0.2]. d Examples of detected boutons. Upper: a local 
image region containing an axonal cluster. Bottom: putative boutons shown in distinct colors.  
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Fig 4. Visualization of the multi-morphometry data in R1050. a The color-coded joint distribution 
of dendrites, axons, and boutons. From top to bottom: horizontal view (slice no. 165), coronal 
view (slice no. 335), and sagittal view (slice no. 148). Colors indicate the densities of dendrites, 
axons, and boutons normalized to the standard RGB color space. Scale bar: 2mm. b Individual 
distributions of somata in R1050. Each inset corresponds to the combination of 25 consecutive 
coronal slices, in which the brain regions were colored according to the densities of somata. The 
darker the color, the higher the density. c-e Similar visualizations for dendrites, axons, and 
boutons in R1050, respectively. 
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Fig 5. The L0 representation of imaging data. a The L0 image (shown in horizontal, coronal, and 
sagittal views) for neuron 17782_00004, overlaid with its L2 reconstruction. b For neurons in 
R1050, the ratio of L0 image volume generated from L1 data over that generated from L2 data. c 
Comparisons of the size of whole-brain images, the average size of L0 data, and the size of the 
“super L0-data” (union of all L0 data of neurons). Error bar: SD. d Time for transferring 1050 
L0 images between two research centers in Asia (SEU-ALLEN) and America (BIL).  
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SUPPLEMENTARY TABLES 
 
 
Supplementary Table 1. Comparisons between MorphoHub and relevant software for whole 
mouse-brain imaging data 
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Supplementary Table 2. The statistics of L1 and L2 reconstructions. 
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SUPPLEMENTARY FIGURES  

 
 
 

 
Supplementary Figure 1. An illustration of our system. A petabyte hardware platform is 
constructed (bottom row), upon which the MorphoHub software package is developed (upper row). 
There are four major modules in MorphoHub, which are the MorphoHub-DBMS, 
DendriteGenerator, L0Generator, and BoutonGenerator, respectively. 
 
 
 
 
 
 

 
Supplementary Figure 2. Extended functions via the universal application interface of MorphoHub. 
a Version control tool for comparing the structural difference of two reconstruction versions. 
(white: identical structures, green: different structures). b Sholl analysis for neurons of the same 
cell type. c Monitoring of the morphometry data production. The numbers of generated neurons 
are shown for each brain and each release date. 
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Supplementary Figure 3. Comparison between the L1-L2 data pairs. a Left: a neuron 
(18465_00001) with one axonal cluster. Neurites in black are the common parts for both L1 and 
L2; neurites in red belong to L2 only. Right: Sholl analysis of the L1 and L2 data. b A neuron 
(18462_00030) with two axonal clusters. 
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Supplementary Figure 4. Validation of the bouton detection method. a A local image volume (id 
7) containing axonal boutons. b The automatically detected boutons. The detected boutons were 
compared with manual annotations and were marked by blue (true positive), yellow (false positive), 
or red (false negative) spheres. The size of the spheres indicates the level of confidence for 
detection. c Close-up views of the detected terminal-boutons (first column) and intermediate-
boutons (second column). The cropped images were centered at the boutons.  d A list of validation 
results involving 15 image blocks and 2,812 detected boutons. 
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Supplementary Figure 5. Collaborative neuron reconstruction among several TeraFly/TeraVR 
clients. a-d. L2 neurons that are reconstructed and proofread by a group of annotators. The 
portion reconstructed by each annotator is represented by a different color. The pie chart 
corresponds to the reconstruction length of distinct annotators.  
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Supplementary Figure 6. 3D-CNN based tip detection. MorphoHub is compatible for integrating 
various AI components to assist with data production, proofreading and analysis. For example, 
DeepTip is a deep learning-based component that is integrated in MorphoHub for differentiating 
true terminal tips of neurites and even automatically correcting the false ones. 
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Supplementary Figure 7. The generation of L1/L2 data. Each box stands for an iteration and 
contains a generation step and a validation step. Various colors are used for distinguishing the 
changed structures in each iteration (blue: dendrites; red: axons; cyan: increased structures from 
previous step; green: under-traced structures; black: over-traced structures). 
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