Single cell analyses reveal distinct adaptation of typhoidal and non-typhoidal *Salmonella enterica* serovars to intracellular lifestyle

Tatjana Reuter¹, Felix Scharte¹, Rico Franzkoch¹,², Viktoria Liss¹,² and Michael Hensel¹,³

¹Abt. Mikrobiologie, ²iBiOs – integrated Bioimaging Facility Osnabrück, ³CellNanOs – Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany

ORCID: 0000-0001-9948-9560, TR; 0000-0002-6710-9524, FS; 0000-0002-1304-2512, VL; 0000-0001-6604-6253, MH.

Running title: Typhoidal *Salmonella* single cell analyses

Keywords: intracellular lifestyle, typhoidal fever, *Salmonella*-containing vacuole, fluorescent protein reporter, correlative light and electron microscopy

Address for correspondence:

Michael Hensel
Abteilung Mikrobiologie
Fachbereich Biologie/Chemie, Universität Osnabrück
Barbarastr. 11
49076 Osnabrück, Germany
Tel: ++ 49 (0)541 969 3940
E-mail: Michael.Hensel@uni-osnabrueck.de

[License Information]

This preprint is made available under a Creative Commons Attribution 4.0 International License (CC-BY 4.0) made available under a Creative Commons Attribution 4.0 International License (CC-BY 4.0) [which was not certified by peer review] is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is posted January 9, 2021. doi: bioRxiv preprint
Typhoidal *Salmonella* single cell analyses

Abstract

Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Human-restricted typhoidal *S. enterica* serovars Typhi (STY) or Paratyphi A (SPA) cause severe typhoid or paratyphoid fever, while *S. enterica* serovar Typhimurium (STM) has a broad host range and in human hosts usually lead to a self-limiting gastroenteritis. Due to restriction of STY and SPA to primate hosts, experimental systems for studying the pathogenesis of typhoid and paratyphoid fever are limited. Therefore, STM infection of susceptible mice is commonly considered as model system for studying these diseases. The type III secretion system encoded by *Salmonella* pathogenicity island 2 (SPI2-T3SS) is a key factor for intracellular survival of *Salmonella*. Inside host cells, the pathogen resides within the *Salmonella*-containing vacuole (SCV) and induces tubular structures extending from the SCV, termed *Salmonella*-induced filaments (SIF). This study applies a set of single cell analyses approaches such as dual fluorescent protein reports, effector translocation, or correlative light and electron microscopy to investigate the fate and activities of intracellular STY and SPA. The SPI2-T3SS of STY and SPA is functional in translocation of effector proteins, SCV and SIF formation. However, only a low proportion of intracellular STY and SPA are actively deploying SPI2-T3SS and STY and SPA exhibited a rapid decline of protein biosynthesis upon experimental induction. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for survival or proliferation in phagocytic host cells. Our results indicate that reduced intracellular activities are factors of the stealth strategy of STY and SPA and facilitate systemic spread and persistence of the typhoidal *Salmonella*.
Introduction

Salmonella enterica is a versatile gastrointestinal pathogen with the ability to cause diseases ranging from acute, usually self-limiting gastroenteritis due to infections by non-typhoidal Salmonella (NTS) to severe systemic infections caused by typhoidal Salmonella (TS) serovars. Infections by S. enterica serovars such as Typhi (STY) and Paratyphi A (SPA) represent a continuing threat to human health. Particular in countries with low standards of hygiene, TS infections are endemic. The global burden of disease by TS infections is continuously high with about 27,000,000 infected people and 200,000 deaths annually worldwide, and the increased frequency of multidrug-resistant strains of TS, as well as coinfections cause problems for treatment of typhoid fever (Crump, Luby, & Mintz, 2004; Saleh et al., 2019).

While NTS infections are commonly associated with a strong inflammatory response leading to effective immune defense at the intestinal epithelium, TS infections lack this response and allow the pathogen to enter circulation and lymphatic system, and ultimately infect solid organs (reviewed in Dougan & Baker, 2014). The ability to survive phagocytosis and to persist and proliferate in infected host cells is considered a key virulence trait of S. enterica (Gal-Mor, 2019).

The restriction of STY and SPA to primate host organisms limits experimental approaches to study pathogenesis of typhoid and paratyphoid fever. Infection of susceptible mice by S. enterica sv. Typhimurium (STM) is commonly considered as model system for studying the diseases caused by highly human-adapted STY and SPA. Important virulence traits of S. enterica are also investigated on the cellular level using various cell culture systems for infection.

The type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) is of central importance for systemic virulence of STM in a murine infection model, as well as for intracellular proliferation in cellular infection models with human or murine cells. Intracellular Salmonella within the SCV deploy the SPI2-T3SS to translocate into host cells a cocktail of
more than 30 effector proteins. These effector proteins manipulate various host cell functions such as vesicular transport, the actin and microtubule cytoskeleton, ubiquitination, apoptosis, releases of cytokines, antigen presentation by MHCII, and many more. Collectively, SPI2-T3SS effector proteins are required for intracellular survival and replication and the proliferation within host tissues. A remarkable difference between STM, STY and SPA is lack of a large number of SPI2-T3SS effector proteins in TS (reviewed in Jennings, Thurston, & Holden, 2017). This is due to absence of the virulence plasmid and bacteriophage genomes harboring effector genes, and the pseudogenization of effector genes. Thus, function of the SP2-T3SS and related phenotypes may be absent or altered in cells infected by STY or SPA. If findings on the role of SPI2-T3SS made in STM are also applicable to virulence of STY and SPA has not been investigated. A prior study reported that the SPI2-T3SS is not required for the intracellular survival and replication in the human macrophage cell line THP-1 which indicates that the SPI2 is not as important for STY as for STM (Forest, Ferraro, Sabbagh, & Daigle, 2010). Other studies reported requirement for SPI2-T3SS in release of typhoid toxin by cells infected by STY (Chang, Song, & Galan, 2016).

We set out to investigate the cellular microbiology of STY and SPA with focus on function of SPI2-T3SS and related phenotypes. To analyze the response of intracellular STM, STY or SPA to the host cell environment, we applied single cell-based approaches, such as fluorescence microscopy to follow translocation of effector protein, and correlative light and electron microscopy (CLEM) for ultrastructural analyses of the host cell endosomal system (Krieger et al., 2014), and potential manipulation by intracellular *S. enterica*. The fate of individual intracellular *S. enterica* is highly divergent (Birmingham, Smith, Bakowski, Yoshimori, & Brumell, 2006; Bumann, 2019; Helaine & Holden, 2013), thus we utilized various dual fluorescence reporters to determine the dynamic formation of distinct populations on single cell level.
Our analyses demonstrate that the SPI2-T3SS is functional in STY and SPA and mediate endosomal remodeling similar to STM. However, this manipulation of the host cell is only observed in a small number of host cells, and the frequency of STY and SPA showing intracellular activities is much lower compared to STM. The parsimonious deployment of virulence factors such as SPI2-T3SS can be considered as part of the stealth strategy of TS and may contribute to evade host immune responses.
09.01.2021
Typhoidal Salmonella single cell analyses

Results

Genes encoding the SPI2-T3SS are induced in intracellular SPA and STY

To investigate the response of STY and SPA to the intracellular environment in various host cells, we analyzed if genes in SPI2 encoding the T3SS are expressed. For this, we used a fluorescent protein reporter with fusion of the promoter of ssaG in WT and ΔssrB strains of STM, SPA or STY. Because ssrB is a local transcriptional regulator of genes encoding the SPI2-T3SS, we anticipated highly reduced activation of PssaG::sfGFP in ΔssrB background (Hensel et al., 1998; Tomljenovic-Berube, Mulder, Whiteside, Brinkman, & Coombes, 2010). The functionality of the reporter was tested in vitro (Fig. 1A). In LB broth and minimal media with high phosphate concentration and neutral pH, referred to as PCN (25), pH 7.4, there was no induction of PssaG::sfGFP in STY and SPA, but slight induction in STM. In SPI2-inducing minimal media with a low phosphate concentration referred to as PCN (0.4), pH 5.8, PssaG induction was detected in WT strains of the three serovars, while no induction was detected in strains with deletion of ssrB. The function of reporter PssaG::sfGFP and the role of SsrB in controlling SPI2 promoters in intracellular Salmonella was further corroborated by microscopy of STM, STY or SPA-infected host cells. Representative micrographs for HeLa infection show the expression and absence of expression in WT or ΔssrB background, respectively (Fig. S1).

We next determined PssaG induction by Salmonella in HeLa cells (Fig. 1B), U937 cells (Fig. 1C), RAW264.7 macrophages (Fig. 1D), or human primary macrophages (Fig. 1E) as host cells. In none of these host cells, the ssrB mutant strains showed PssaG induction, while induction was observed in STM, STY and SPA WT strains. In HeLa cells, the three serovars showed highest sfGFP intensities at 24 h p.i., with STM always showing higher sfGFP intensities than STY or SPA. In U937 cells, STM again showed the highest sfGFP levels at 8 h, 16 h and 24 h p.i. While the intracellular population of STM and SPA showed rather uniform induction, a heterogeneous response was observed for intracellular STY, with single cells showed various
Typhoidal *Salmonella* single cell analyses

Levels ranging from very low to high sfGFP intensities. At 24 h p.i., the distribution of the STY population changed, and sfGFP intensity increased. In the murine macrophage-like cell line RAW264.7 at 16 h p.i., the sfGFP intensities were similar for STM, STY and SPA. After activation of RAW264.7 by interferon γ (IFN-γ) STY only produced very low sfGFP fluorescence, SPA showed higher intensities, and highest signal intensities were observed for STM (Fig. 1D). In human primary macrophages, only a part of the population of SPA and STM WT showed higher sfGFP levels than the ΔssrB strains (Fig. 1E).

As a complementary approach, we analyzed U937 cells infected by STM, STY or SPA for induction of the P\textsubscript{ssaG}:sfGFP reporter (Fig. 2). While the majority of intracellular STM showed induction of P\textsubscript{ssaG}:sfGFP at 8 h p.i., a lower frequency was observed for STY and SPA under these conditions. Some U937 cells only contained P\textsubscript{ssaG}-negative STY or SPA, while a larger number of host cells harbored mixtures of P\textsubscript{ssaG}-positive as well as P\textsubscript{ssaG}-negative bacteria.

The SPI2-encoded type III secretion system is functional in STY and SPA

Mutant strains of STM deficient in SPI2-T3SS function are highly attenuated in murine models of systemic disease, as well as in intracellular survival and proliferation in various types of murine and human host cells (Hensel et al., 1995; Hensel et al., 1998; Ochman, Soncini, Solomon, & Groisman, 1996). Genes encoding the SPI2-T3SS are present in STY and SPA and are not affected by pseudogenization. However, the functionality of SPI2-T3SS in STY and SPA has not been demonstrated experimentally.

We investigated the translocation of SPI2-T3SS effector proteins by intracellular STY or SPA (Fig. 3). For this, mutant strains deficient in the core components of SPI2-T3SS were generated by Red-mediated mutagenesis. Because antisera against effector proteins of the SPI2-T3SS are limited in availability and quality, we introduced low copy number plasmids for the expression of alleles of representative effector proteins SseF, SseJ, PipB2, and SseL tagged with HA or M45 epitope tags. Prior work reported the translocation of these tagged effector proteins by STM, and their association with late endosomal/lysosomal host cell membranes (Coombes et
al., 2007; Hansen-Wester, Stecher, & Hensel, 2002; Knodler et al., 2003; Kuhle & Hensel, 2002). We observed that effector proteins were translocated into HeLa cells infected by STY or SPA WT (Fig. 3AB). No signals for translocated effector proteins were detected after infection with SPI2-T3SS-deficient strains, as shown for representative STY ΔssaK [sseF::M45] (Fig. 3C). The signal intensities of effectors translocated by STY varied, with stronger accumulation of SseF and SseL, while signals for SseJ were rather weak. After translocation by SPA, signals of similar high intensities were detected. The amounts of effector proteins detected in STY- or SPA-infected host cells were lower than for STM-infected host cells (data not shown). Also, the frequency of STY- or SPA-infected host cells that were positive of effector signals was lower.

We conclude that the SPI2-T3SS is functional in translocation of effector proteins by intracellular STY and SPA. However, a lower proportion of intracellular STY and SPA actively translocate SPI2-T3SS effector proteins. Translocation of SseJ is possible in STY and SPA, although sseJ is a pseudogene in these serovars (Jennings et al., 2017).

SPA and STY inhabit an SCV in infected host cells and remodel the endosomal system

Several prior analyses have demonstrated that STM inhabits an individual SCV (Krieger et al., 2014; Rajashekar, Liebl, Seitz, & Hensel, 2008). A representative marker for this compartment is LAMP1, a member of the family of lysosomal glycoproteins that are membrane integral in late endosomal and lysosomal membranes. Previous work described that each intracellular bacterium is complete enclosed by LAMP1-positive membranes, resulting in individual pathogen-containing compartments (Rajashekar, Liebl, Chikkaballi, Liss, & Hensel, 2014). We investigated the formation of SCV in HeLa LAMP1-GFP (Fig. 4) or RAW264.7 LAMP1-GFP cells (Fig. S 2) infected with STM, STY, or SPA.

The massive reorganization of the endosomal system was observed in mammalian host cells infected by STM. One consequence of this reorganization is the formation of extensive tubular
vesicles. *Salmonella*-induced filaments (SIF) are tubular vesicles characterized by the presence of late endosomal/lysosomal membrane markers. We investigated the formation of SIF in SPA- or STY-infected host cells. Endosomal remodeling depends on function of the SPI2-T3SS, and effector protein SifA is essential for SIF formation and integrity of the SCV (Beuzon et al., 2000; Stein, Leung, Zwick, Garcia-del Portillo, & Finlay, 1996). Infected cells were analysed for formation of SIF and we compared intracellular phenotypes of WT and ΔsifA strains of the various serovars. In infected HeLa or RAW cells, we observed formation of LAMP1-GFP-positive membrane compartments that completely enclosed individual bacteria (**Fig. 4A**). The formation of SIF was observed in host cells infected with STM, STY or SPA WT strains, while STY ΔsifA (**Fig. 4A**) or SPA ΔsifA (data not shown) strains did not induce SIF. In RAW264.7 macrophages, LAMP1-positive compartments were observed after phagocytosis of STM, STY, or SPA WT or SPI-T3SS-deficient strains (**Fig. S 2**). Since imaging was performed using fixed cells, SIF induction in macrophages was not assessed.

The frequency of SIF-positive cells infected with WT or ΔsifA strains was quantified in HeLa cells at 16 h and 24 h p.i. (**Fig. 4B**). In line with prior observations, STM WT induced SIF in the majority of infected cells, while tubular endosomes were almost absent after infection by the STM ΔsifA strain (1-2% positive cells). SIF formation in cells infected by STY or SPA was much less frequent and only 5% to 10% were scored positive. Cells infected with STY or SPA ΔsifA strains very rarely showed tubular endosomal compartments.

We further characterized the SCV using canonical markers of the endocytic pathway. The small GTPases Rab7A and Arl8A were transiently transfected in HeLa cells. To mark late endosomes and lysosomes in HeLa cells, we used fluid phase marker Dextran-Alexa647. The association of Rab7A and Arl8A with SCV and SIF was frequently observed in cells infected with STY or SPA (**Fig. S 3**).

We conclude that SPI2-T3SS and effector SifA can mediate endosomal remodeling by STY and SPA. However, the frequency of this manipulation of host cell functions by STY and SPA...
is highly reduced compared to STM. A role of SifA in maintaining the integrity of SCV containing STY or SPA cannot be deduced from our experimental data. The molecular composition of endosomal compartments modified by STM, STY or SPA is similar.

SPA and STY induce the formation of double-membrane SIF

We have recently unraveled the unique architecture of SIF induced by STM in epithelial cells and macrophages (Krieger et al., 2014). In particular, tubular compartments were delimited by vesicular single membranes, and at later time points after infection, SIF composed of double membranes were frequently observed. We analyzed if SIF induced by intracellular STY and SPA are comparable in architecture, or distinct to SIF observed in STM-infected cells. We performed CLEM analyses in order to reveal the ultrastructural features of SIF networks identified by light microscopy (Fig. 5). Although the frequency of STY- or SPA-infected cells with SIF was low, light microscopy allowed identification of these events for subsequent TEM analyses. As for STM, SCV harboring STY or SPA were continuous and in close contact to the bacterial envelope. In cells with an extensive SIF network, characteristic double-membrane SIF were observed in HeLa cells infected by STM, as well as by SPA, or STY (Fig. 5, Fig. S 4, Fig. S 5, Fig. S 6). SIF extending into the cell periphery were connected to the SCV. The morphological characteristics of the tubular compartments appeared comparable for the three serovars, as well as the diameter of app. 160 nm.

We conclude that STY and SPA can induce tubular endosomal networks comparable to those characterized in STM-infected cells.

SCV integrity and cytosolic access of intracellular STY and SPA

Maintenance of the integrity of the SCV is important for virulence of STM, and mutant strains deficient in SPI2-T3SS effector protein SifA are more frequently released into the cytosol of host cells. Host cells respond to cytosolic STM with xenophagic clearance, or induction of pyroptotic cell death (Birmingham et al., 2006). In epithelial cells, cytosolic hyper-replication...
of STM can lead to killing of host cells, or triggers expulsion of infected cells from polarized epithelial layers (Knodler et al., 2010). In contrast to STM, the importance of SCV integrity and potential contribution of SifA is not known for TS.

We recently used a dual fluorescence reporter plasmid for analyses of exposure of intracellular bacteria to host cell cytosol as result of impaired SCV integrity (Röder & Hensel, 2020). The sensor is based on the promoter of $uhpT$, a transporter for glucose-6-phosphate (G6P). As G6P is present in the cytosol of mammalian host cells, but is rapidly metabolized in bacterial cells, specific induction of this reporter occurs in STM that are in contact with host cell cytosol.

We tested the dual fluorescence cytosolic sensor in SPA and STY using in $vitro$ growth conditions with various amounts of G6P (Fig. 6A). While STY showed a G6P concentration-dependent increase in sfGFP fluorescence similar to prior observations of STM (Röder & Hensel, 2020), no induction was observed for SPA. Analyses of the genome sequence of SPA indicated that the sensor-regulator system encoded by $uhpABC$ is defective by pseudogene formation (Holt et al., 2009), and activation of P_{uhpT} is not possible. Thus, the P_{uhpT}-based cytosolic sensor was not applied to analyses of SPA.

We compared cytosolic exposure of STM and STY in HeLa cells (Fig. 6B), or U937 macrophages (Fig. 6C). A rather large cytosolic-induced population was observed for STM, which increased over time. As a STM ΔsifA strain was reported to be deficient in maintaining the integrity of the SCV, we also determined cytosolic release of a STY ΔsifA strain. In HeLa cells infected with STM WT two populations were apparent, a sfGFP-positive population indicating cytosolic exposure, and one population without sfGFP fluorescence indicating segregation from host cell cytosol. At 16 h or 24 h p.i., STM ΔsifA was homogenously sfGFP-positive. For STY WT, only a small population was sfGFP-induced and this population decreases over time p.i. Only very low numbers of sfGFP-positive, cytosol-exposed STY ΔsifA were detected at any timepoint. In U937 cells, a sfGFP-positive population was only detected for STM ΔsifA at 16 or 24 h p.i. Cytosolic presence of $Salmonella$ in phagocytes is known to
trigger pyroptosis (Bergsbaken, Fink, & Cookson, 2009), and this response was also induced by STM ΔsifA. However, since FC was used to analyze the same number of infected cells for the various conditions, this likely revealed the subpopulation of pre-pyroptotic macrophages harboring cytosolic-induced STM ΔsifA. STM WT and STY WT and ΔsifA strain did not show sfGFP fluorescence signals, indicating very low numbers of intracellular Salmonella exposed to host cell cytosol.

The intracellular proliferation of SPI2-T3SS-deficient STY is reduced in HeLa cells

Prior work corroborated that function of SPI2-T3SS is required for intracellular proliferation of STM in various cell lines and in tissue of infected hosts (Shea, Hensel, Gleeson, & Holden, 1996). The role of SPI2-T3SS for intracellular proliferation of TS is still open. This lack of information and the functionality of the SPI2-T3SS demonstrated here prompted us to test for STM, STY and SPA intracellular proliferation as function of SPI2-T3SS by gentamicin protection assays (Fig. 7). Intracellular proliferation of SPI2-T3SS-deficient STM ΔssaV in HeLa was reduced about 10-fold. SPI2-T3SS-deficient STY ΔssaR was similar with about 8-fold attenuation compared to WT. While SPI2-T3SS-deficient STM were highly and moderately attenuated in proliferation in RAW264.7 and U937 macrophages, respectively, no attenuation was observed for STY ssaR.

The data shown in Fig. 1 and Fig. 4 indicate that only a small fraction of intracellular STY or SPA deploys the SPI2-T3SS. Thus, the intracellular proliferation of STY may be low overall, and the deficient in proliferation of a SPI2-T3SS-deficient strain may be masked by a large number of intracellular STY that survive but fail to proliferate. To address intracellular proliferation on the levels of single host cells, we deployed FC and determined mCherry-mediated fluorescence as proxy for bacterial load. We recently compared properties of various FP and identified fast-maturing, constitutively expressed mCherry as reliable indicator for proliferation of intracellular bacteria (Schulte, Olschewski, & Hensel, 2020).
Analyses of single host cells (Fig. 8, Fig. S 7) confirmed the SPI2-T3SS-dependent intracellular proliferation of STM in HeLa, RAW264.7 and U937, and of STY in HeLa. The X-means for RAW264.7 or U937 harboring STY also increased from 1 h p.i. to 24 h p.i. This increase was rather small and independent from function of the SPI2-T3SS. Interestingly, STM also showed SPI2-T3SS-independent increase of bacterial mCherry fluorescence in HeLa, RAW264.7, and U937 cells, but the increase was always reduced compared to proliferation of STM WT.

Taken together, these results support a role of SPI2-T3SS in intracellular proliferation of STY in HeLa cells, and redundancy of SPI2-T3SS function for proliferation in the phagocytic cell lines investigated.

Biosynthetic capability of intracellular STM, SPA and STY

Finally, we set out to determine the proportion of intracellular STM, SPA or STY that remain capable in protein biosynthesis upon application of an external stimulus. We anticipated that dead bacteria, and those that have entered a persister state are highly reduced in protein biosynthesis and unable to respond to an external stimulus. As experimental system, we introduced in STM, STY and SPA a dual fluorescence plasmid for constitutive expression of DsRed, and expression of sfGFP under control of the promoter of _tetA_. We recently demonstrated that _P_{tetA}_ can be efficiently activated in intracellular _Salmonella_ by external addition of the inducer anhydrotetracycline (AHT) (Schulte et al., 2019). Under culture conditions in medium, sfGFP synthesis was induced by addition of AHT in STM, SPA or STY to comparable levels (Fig. 9A). After infection of various host cell types by STM, SPA or STY, inducer AHT was added to infected cells 1.5 h prior to the end of the infection period and lysis of host cells (Fig. 9B). In HeLa cells 8 h p.i., around 80% of the bacteria showed induction, and the intensities for STY cells were higher than for STM and SPA (Fig. 9C). The proportion of induced STM remained high at 16 h and 24 h p.i., while the percentage of AHT-induced STY and SPA declined at 16 h and 24 h p.i., as well as sfGFP intensities of induced _Salmonella_.

In human U937 macrophages (Fig. 9D), a similar percentage of AHT-inducible bacteria was determined 8 h p.i. for all serovars. At later time points p.i., the amounts of AHT-inducible SPA and STY dropped, while STM remained at more than 85% AHT-inducible bacteria at all time points.

In murine RAW264.7 macrophages (Fig. 9E), we observed a high percentage of AHT-inducible STM, SPA, and STY at the early time point of 3 h p.i., however, the level of sfGFP fluorescence was lower in the induced SPA population compared to induced STM and STY. A further decrease in sfGFP expression was observed for SPA at 8 h p.i., while the percentage of induced STM and STY increased to more than 92%. At 24 h p.i. STM showed a large population of AHT-inducible cells (64%), while the population of AHT-inducible STY was decreased in size, and induced STY showed lower sfGFP intensities. For SPA, an almost complete shift to the non-inducible population was observed.

The analyzed serovars are rather distinct in their ability to respond to intracellular environments. STM appeared most robust and biosynthetic active populations of similar size were detected in all host cell types and any time point. STY showed highest percentage of biosynthetic active bacteria at early time points in all cell lines analyzed, and the proportion of AHT-inducible cells decreased in all host cell types at 16 and 24 h p.i. The level of sfGFP expression of proportion of AHT-inducible SPA was already reduced at early time points and further decreased over time, indicating a continuous loss of biosynthetic capacity over time. The effect was most pronounced in RAW264.7 cells. We conclude that STY and SPA have a lower capacity than STM to maintain a biosynthetic active state over prolonged presence in host cells.
Discussion

Our study investigated the intracellular lifestyle of STY and SPA as clinically most relevant serovars of TS. We demonstrated that SPI2-T3SS is functional in translocating effector proteins that induce endosomal remodeling, and formation and maintenance of SCV. The SPI2-T3SS-dependent remodeling of the endosomal system by STY and SPA was reminiscent of the phenotypes observed in STM-infected cells. By this, we provide formal proof of the function of the SPI2-T3SS in human-adapted TS serovars. As major difference in intracellular phenotypes of SPA and STY compared to STM, we observed the delayed activation and overall lower frequency of intracellular Salmonella showing activity of SPI2-T3SS and related phenotypes. Furthermore, the population of intracellular STY exhibits larger heterogeneity. In the following these aspects are discussed in more detail.

Low intracellular activity of TS

Compared to STM, intracellular STY and SPA formed smaller populations of bacteria with SPI2-T3SS function and more general, biosynthetic activity in response to artificial induction. SPI2-T3SS function mediated proliferation in HeLa but not in the more restrictive environment of macrophages. These observations indicate that STY and SPA are either more efficiently killed by host cells, or more frequently develop persister state. Persister bacteria are key contributors to persistent as well as recurring infections (Lewis, 2010), and both phenomena are characteristic to infectious diseases caused by TS (Gal-Mor, 2019). Future studies have to reveal the role of persister formation of intracellular STY and SPA and the contribution of persister bacteria to pathogenesis of TS infections.

Role of the SPI2-T3SS in TS

We previously demonstrated that SP2-T3SS-mediated SIF formation augments nutritional supply of STM in the SCV, and also leads to reduction of antimicrobial factors acting on bacteria in the SCV (Liss et al., 2017; Noster et al., 2019). Since SIF formation is less frequent
Typhoidal *Salmonella* single cell analyses

In host cells infected by STY or SPA compared to STM, this may indicate a restricted nutritional supply, leading to limited intracellular proliferation. As STY and SPA are auxotrophic for cysteine and tryptophan (McClelland et al., 2004) the demand for external supply with amino acids is higher than for prototrophic STM. Furthermore, exposure to effectors of host cell defense mechanisms may be increased for STY or SPA in SCV without SIF connection. Further single cell analyses can address this potential correlation between SIF formation and proliferation for intracellular TS.

Our work confirms prior reports that SPI2-T3SS is not required for net survival and proliferation of STY in infection models with human macrophages (Forest et al., 2010). Our observation that only a small percentage of bacteria synthesize SPI2-T3SS and deploy its function would also allow alternative explanations. In ensemble-based analyses such as the gentamicin protection assay, ongoing proliferation in a small number of infected host cells may be masked by the majority of infected cells that kill the pathogen or restrict its proliferation. Even if the number of permissive infected cells is low, these may play an important role for progression of a systemic infection (Brown et al., 2006). The application of single cell FC analyses will allow future in-depth analyses of the fate of TS in distinct subpopulations of host cells.

Role of SPI2-T3SS effector proteins in TS

The SPI2-T3SS in STM translocates a complex set of more than 30 effector proteins into infected host cells. These effector proteins form subsets that act on the endosomal system, affect innate immune signaling, formation of adaptive immunity, interfere with ubiquitination, or have functions still unknown (Jennings et al., 2017). The repertoire of effector proteins in STY and SPA is severely restricted, with intact genes only for 11 or 8 effectors proteins in STY and SPA, respectively (Jennings et al., 2017). This observation may reflect the adaptation to a narrow host range accompanied by loss of redundant effectors. Of note, the subset of effector proteins involved in endosomal remodeling (SseF, SseG, SifA, PipB2, SteA) is present. We showed that
SifA is required for induction of SIF formation in STY and SPA similar to STM. However, our analyses did not support a contribution of SIF in maintaining the SCV integrity in cells infected by STY. Among other sequence variations, the altered sequence of the C-terminal membrane anchoring hexapeptide (Boucrot, Beuzon, Holden, Gorvel, & Meresse, 2003) may affect function of SifA in STY.

Also present in STM, STY and SPA is SteD, an effector protein modulating adaptive immunity (Bayer-Santos et al., 2016). The activation of CD4+ T cells is very important for the elimination of Salmonella in mice and human. In STM, SteD stimulates the ubiquitination of MHCII, leading to its degradation and therefore prevention of antigen presentation by MHCII (Bayer-Santos et al., 2016). SteD is present in STY and SPA, but shows subtle differences in amino acid sequence. Thus, it is not certain whether SteD exhibits the same function in STY or SPA as in STM. Because interference with host adaptive immunity is of central importance of persistent infections as caused by TS, the function of SteD in STY and SPA deserves further investigation.

It was reported that effector protein SteE of STM directs macrophage polarization towards an anti-inflammatory M2 state (Stapels et al., 2018). However, STY and SPA lack SteE and are unlikely to manipulate the activation state of macrophages by this mechanism. Uptake by macrophages may be fatal for individual STY or SPA during infection, and phagocytic cells with other properties, such as dendritic cells, could form important vehicles of systemic distribution of TS. Again, host specificity and low numbers of STY- or SPA-infected cells in human blood are obstacles to more detailed analyses.

Additional effector proteins that are specific to STY and SPA may be present and mediate serovar-specific properties. One example is StoD, an E3/E4 ubiquitin ligase that is translocated by the SPI1-T3SS (McDowell et al., 2019). A systematic screen by bioinformatics tools and experimental validation may identify TS-specific effector proteins of SPI2-T3SS.

Need of suitable infection models for TS
We observed distinct intracellular phenotypes in the various cell lines and primary cells used in this study. However, the specific virulence properties of TS and the contribution of SPI2-T3SS require analyses in improved infection models. Of specific interest will be organoids of human origin that are capable to simulate tissues that are infected by STY or SPA. In the human body, STY persistently colonizes gallbladder and bone marrow. Salmonella is resistant to high concentrations of bile and bile also has an influence on the invasion of epithelial cells by Salmonella (Prouty, Schwesinger, & Gunn, 2002). Bile induces persister cell formation of STY and an associated tolerance to antibiotics (Walawalkar, Vaidya, & Nayak, 2016). It is also known that STY forms biofilm in the gallbladder and on gallstones. This could lead to constant inflammation of gallbladder tissue, and during persistent infection to development of gallbladder cancer (Di Domenico, Cavallo, Pontone, Toma, & Ensoli, 2017). The formation of biofilm enables STY to adapt a carrier state in the host, which occurs in about 3 – 5% of the infected people (Prouty et al., 2002). For example, a recently organoid model to human gallbladder epithelium may provide new options to study TS in a setting of a persistent infection (Sepe et al., 2020). If SPI2-T3SS effector functions beyond intracellular survival and proliferation should be analyzed, even more complex experimental systems with human immune cells are required. As alternative, a humanized mouse model based on transplantation of human immune cells may be considered (Karlinsey et al., 2019). A genome-wide screen for genes required for survival in STY in humanized mice did not reveal contributions of SPI2-T3SS or effector protein. Since the initial screen was performed using an infection period of 24 h, identification of STY factors affecting formation of adaptive immune responses were not identified. Future analyses in the humanized mouse model under conditions allowing persistent infection will be of interest, but the high demands of the complex model may compromise more frequent applications.

Concluding remarks
This study demonstrated that the functionality of SPI2-T3SS in STY and SPA, and future studies with improved infection models have to reveal the contribution of this virulence factor to pathogenesis of infectious diseases by TS. We applied a set of single cell approaches to study the intracellular adaptation strategies of STM as NTS serovar in comparison to TS serovars STY and SPA. These analytic tools enabled a detailed view on the specific intracellular activities of NTS and TS, and will enable future in-depth characterization of bacterial heterogeneity and adaptation strategies.

Acknowledgements

This work was supported by BMBF grant within the Infect-ERA consortium SalHostTrop. We thank Dr. Ohad Gal-Mor for providing STY and SPA strains, and the members of the SalHostTrop consortium for fruitful discussions.
Materials and Methods

Bacterial strains and culture conditions

For this study *Salmonella enterica* serovar Typhimurium (STM) NCTC12023, *S. enterica* serovar Typhi (STY), and *S. enterica* serovar Paratyphi A (SPA) were used as wild-type (WT) strains. All mutant strains are isogenic to the respective WT and Table 1 shows characteristics of strains used in this study. STM, STY and SPA strains were routinely grown on Luria-Bertani broth (LB) agar or in LB broth containing 50 µg x ml\(^{-1}\) carbenicillin for maintenance of plasmids at 37 °C using a roller drum. As synthetic media, PCN (Phosphate, Carbon, Nitrogen) was used as described before (Löber, Jäckel, Kaiser, & Hensel, 2006) with the indicated pH concentrations of inorganic phosphate. For culture of STY and SPA, PCN media were supplemented with 20 µg x ml\(^{-1}\) of each cysteine and tryptophan.

Generation of bacterial strains

Mutant strains harboring deletions in various virulence genes were generated by λ Red recombineering for insertion of the kanamycin resistance cassette amplified from template plasmid pKD13 basically as described before (Chakravortty, Hansen-Wester, & Hensel, 2002; Datsenko & Wanner, 2000) using oligonucleotides listed in Table S 2. The proper insertion was confirmed by colony PCR. If required, the *aph* cassette was removed by introduction of pE-FLP and FLP-mediated recombination. Plasmids used in this study are listed in Table 2 and were introduced into various WT and mutant strains by electroporation.

Host cell culture and infection

The murine macrophage cell line RAW264.7 (American Type Culture Collection, ATCC no. TIB-71) was cultured in high-glucose (4.5 g x ml\(^{-1}\)) Dulbecco’s modified Eagle’s medium (DMEM) containing 4 mM stable glutamine (Merck) and supplemented with 6% inactivated fetal calf serum (iFCS, Sigma). The human macrophage-like cell line U937 (ATCC no. CRL-1593.2) was cultured in RPMI-1640 medium (Merck) supplemented with 10% iFCS. Human
primary macrophages isolated from buffy coat were cultured in RPMI-1640 medium supplemented with 20% iFCS. The non-polarized epithelial cell line HeLa (ATCC no. CCL-2) was cultured in high-glucose DMEM containing 4 mM stable glutamine, sodium pyruvate and supplemented with 10% iFCS. Stably transfected HeLa cell lines expressing LAMP1-GFP were cultured under the same conditions. All cells were cultured at 37 °C in an atmosphere containing 5% CO₂ and absolute humidity.

Gentamicin protection assay

The assay was performed as described before (Kuhle & Hensel, 2002). Briefly, RAW264.7 cells were seeded 24 or 48 h prior infection in a surface-treated 24 well plate (TPP) to reach confluency (~4 x 10⁵ cells per well) on the day of infection. U937 cells were seeded 72 h prior in infection in surface-treated 24 well plates (TPP) to reach confluency (~4 x 10⁵ cells per well) on the day of infection and were treated with 50 ng x µl⁻¹ PMA for differentiation and cell attachment. HeLa cells were seeded 48 h prior infection in surface-treated 24 well plates (TPP) to reach confluency (~2 x 10⁵ cells per well) on the day of infection. For infection of RAW264.7 and U937 cells, bacteria were grown overnight (~ 20 h) aerobically in LB medium. For infection of HeLa cells, fresh LB medium was inoculated 1:31 with overnight cultures of STM and incubated for 2.5 h with agitation. For subculture of STY and SPA, 10 ml fresh LB medium was inoculated 1:100 with aerobic over day cultures and grown static under microaerophilic conditions for 16 h (Elhadad, Desai, Rahav, McClelland, & Gal-Mor, 2015). Then the bacteria were adjusted to an OD₆₀₀ of 0.2 in PBS and further diluted in DMEM (RAW and HeLa cells) or RPMI medium (U937 cells) for infection of cells at a MOI of 1. Bacteria were centrifuged onto the cells for 5 min at 500 x g, and the infection was allowed to proceed for 25 min. After three washing steps with PBS, medium containing 100 µg x ml⁻¹ gentamicin was added for 1 h to kill extracellular bacteria. Afterwards the cells were incubated with medium containing 10 µg x ml⁻¹ gentamicin for the ongoing experiment. Cells were washed three times with PBS and lysed using 0.1% Triton X-100 at 2 and 24 h post infection (p.i.). Colony forming units (CFU)
were determined by plating serial dilutions of lysates and inoculum on Mueller-Hinton II agar and incubated overnight at 37 °C. The percentage of phagocytosed bacteria as well as the replication rate was calculated.

Infection experiments for microscopy

HeLa cells stably transfected and expressing LAMP1-GFP were seeded in 24 well plates (TPP) on coverslips. The cells were grown to 80% confluency (≈ 1.8 x 10^5) on the day of infection. The cells were infected with STM, STY and SPA strains as described above with aerobic 2.5 h (for STM) and microaerobic, static 16 h (for STY, SPA) bacterial subcultures. For detection SPI2-T3SS effector protein translocation, MOI of 75 was used for infection and cells were analyzed 9 h p.i. For visualization of bacteria harboring reporter plasmids, MOI 50 was used for STM and SPA, and MOI 75 was used for STY. Afterwards the cells were washed three times with PBS and fixed with 3% paraformaldehyde (PFA) in PBS.

Transfection

HeLa cells were cultured in 8-well dishes (ibidi) for one day. One μg of plasmid DNA of various transfection vectors was diluted in 25 μl DMEM without iFCS and mixed with 1 μl FUGENE reagent (ratio of 1:2 for DNA to FUGENE). The transfection mix was incubated for 10 min at room temperature (RT) and added to the cells in DMEM with 10% iFCS for at least 18 h. Before infection, the cells were treated with fresh medium.

Pulse-chase with fluid phase markers

The fluid phase marker AlexaFluor 647-conjugated dextran (dextran-A647), molecular weight 10,000 (Molecular Probes) was used for tracing the endocytic pathway. HeLa cells were incubated with 100 μg x ml⁻¹ dextran-A647 1 h p.i. until fixation of the cells. Subsequently, cells were washed and prepared for microscopy.

Immuno-staining and fluorescence microscopy
Cells fixed with 3% PFA were washed three times with PBS and incubated in blocking solution (2% goat serum, 2% BSA and 0.1% saponin in PBS) for 30 min. Next, cells were stained for 1 h at RT with primary antibodies against Salmonella O-Ag of STM, STY and SPA (1:500), anti-HA (1:500) or anti-M45 (1:10). Accordingly, secondary antibodies were selected and samples were incubated for 1 h. Antiseria and antibodies used in this study are listed in Table S 1. Coverslips were mounted with Fluoroprep (Biomerieux) and sealed with Entellan (Merck). The microscopy was performed with the confocal laser-scanning microscope Leica SP5 using the 100x objective (HCX PL APO CS 100 x, NA 1.4-0.7) and the polychroic mirror TD 488/543/633 for the three channels GFP, TMR/Alexa568, Cy5 (Leica, Wetzlar, Germany). For image processing, the LAS-AF software (Leica, Wetzlar, Germany) was used.

Flow cytometry analyses

Cells were seeded in 12-well plates (TPP) 48 h (HeLa and RAW264.7), or 72 h (U937) prior infection to reach confluency on the day of infection (HeLa cells: 4 x 10^5 cells/well, RAW264.7: 8 x 10^5 cells/well, U937: 7 x 10^5 cells/well). U937 cells were treated with 50 ng x µl^-1 PMA. RAW264.7, HeLa or U937 cells were infected with STM, STY and SPA WT or ΔssrB and ΔsifA strains at MOI of 30 as described before. The bacterial strains harbored plasmids constitutively expressed RFP (p3776, p4928) or DsRed (p4889), and expressed sfGFP after activation of respective promotors. To determine metabolic activity, cells infected with Salmonella harboring plasmid p4928 were induced 2 h before fixation by addition of AHT to 50 ng x ml^-1. At 8, 16, or 24 h p.i., cells were washed with PBS, detached from the culture plates, lysed with 0.1% Triton X-100, fixed with 3% PFA and analyzed by flow cytometry using an Attune NxT cytometer (Life Technologies, Thermo Fischer). At least 10,000 RFP- or DsRed-positive cells were measured and the cells expressing red and green fluorescence were analyzed.

Flow cytometry analyses of whole cells
Cells were seeded in 6 well plates (TPP) 48 h (HeLa and RAW264.7), or 72 h (U937) prior infection to reach confluency on the day of infection (HeLa cells: 8 x 10^5 cells/well, RAW264.7: 1.6 x 10^6 cells/well, U937: 1.4 x 10^6 cells/well). U937 cells were treated with 50 ng x μl\(^{-1}\) PMA. RAW264.7, HeLa or U937 cells were infected with STM, STY and SPA WT or SPI2-T3SS-deficient strains (ΔssaV, ΔssaK, or ΔssaR) at MOI 10 as described before. The bacterial strains harbored plasmids constitutively expressing mCherry. At 1 h and 24 h p.i., cells were washed with PBS, detached form the culture plates, fixed with 3% PFA and analyzed by flow cytometry using an Attune NxT cytometer. At least 10,000 mCherry-positive cells were measured and intensities of mCherry fluorescence signals per host cell were quantified.

Bender, J. K., Wille, T., Blank, K., Lange, A., & Gerlach, R. G. (2013). LPS structure and PhoQ activity are important for Salmonella Typhimurium virulence in the Galleria mellonella infection model [corrected]. PLoS One, 8(8), e73287. doi:10.1371/journal.pone.0073287

Typhoidal Salmonella single cell analyses

09.01.2021

Typhoidal Salmonella single cell analyses

Typhoidal Salmonella single cell analyses

28
<table>
<thead>
<tr>
<th>Designation relevant characteristics</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. enterica serovar Typhimurium</td>
<td></td>
</tr>
<tr>
<td>NCTC12023 wild type</td>
<td>Lab collection</td>
</tr>
<tr>
<td>P2D6 ssaV::mTn5</td>
<td>(Shea et al., 1996)</td>
</tr>
<tr>
<td>MvP503 ΔsifA::FRT</td>
<td>(Kuhle & Hensel, 2002)</td>
</tr>
<tr>
<td>S. enterica serovar Typhi</td>
<td></td>
</tr>
<tr>
<td>120130191 wild type</td>
<td>clinical isolate, SalHostTrop consortium</td>
</tr>
<tr>
<td>STY101 ΔssaR::aph</td>
<td>this study</td>
</tr>
<tr>
<td>STY118 ΔssaR::FRT</td>
<td>this study</td>
</tr>
<tr>
<td>STY110 ΔsifA::aph</td>
<td>this study</td>
</tr>
<tr>
<td>STY123 ΔsifA::FRT</td>
<td>this study</td>
</tr>
<tr>
<td>STY132 ΔssrB::aph</td>
<td>this study</td>
</tr>
<tr>
<td>STY134 ΔssaK::aph</td>
<td>this study</td>
</tr>
<tr>
<td>STY137 ΔssaK::FRT</td>
<td>this study</td>
</tr>
<tr>
<td>S. enterica serovar Paratyphi A</td>
<td></td>
</tr>
<tr>
<td>45157 wild type</td>
<td>clinical isolate, SalHostTrop consortium</td>
</tr>
<tr>
<td>SPA118 ΔssaR::FRT</td>
<td>this study</td>
</tr>
<tr>
<td>SPA110 ΔsifA::aph</td>
<td>this study</td>
</tr>
<tr>
<td>SPA132 ΔssrB::aph</td>
<td>this study</td>
</tr>
</tbody>
</table>
Table 2. Plasmids used in this study

<table>
<thead>
<tr>
<th>Designation</th>
<th>Relevant characteristics</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pFPV-mCherry</td>
<td>const. mCherry</td>
<td>(Drecktrah et al., 2008)</td>
</tr>
<tr>
<td>pWRG167</td>
<td>P<sub>EM7</sub>::sfGFP in pWRG81</td>
<td>(Bender, Wille, Blank, Lange, & Gerlach, 2013)</td>
</tr>
<tr>
<td>pMW211</td>
<td>const. DsRed T3_S4T</td>
<td>(Sorensen et al., 2003)</td>
</tr>
<tr>
<td>pWRG730</td>
<td>Red recombinase expression</td>
<td>(Hoffmann, Schmidt, Walter, Bender, & Gerlach, 2017)</td>
</tr>
<tr>
<td>pE-FLP</td>
<td>FLP recombinase expression</td>
<td>(St-Pierre et al., 2013)</td>
</tr>
<tr>
<td>pGL-Rab7 wt</td>
<td>Rab7α::GFP</td>
<td>(Vorwerk, Krieger, Deiwick, Hensel, & Hansmeier, 2015)</td>
</tr>
<tr>
<td>p2095</td>
<td>P<sub>sseA</sub> sscB sseF::M45</td>
<td>(Hansen-Wester et al., 2002)</td>
</tr>
<tr>
<td>p2129</td>
<td>P<sub>sseL</sub> sseL::M45</td>
<td>(Hansen-Wester et al., 2002)</td>
</tr>
<tr>
<td>p2621</td>
<td>P<sub>pipB2</sub> pipB2::M45</td>
<td>(Knodler et al., 2003)</td>
</tr>
<tr>
<td>p3301</td>
<td>P<sub>sseL</sub>. sseL::HA</td>
<td>Lab collection</td>
</tr>
<tr>
<td>p3774</td>
<td>const. RFP</td>
<td>Lab collection</td>
</tr>
<tr>
<td>p3776</td>
<td>P<sub>EM7</sub>::RFP P<sub>sstG</sub>::sfGFP</td>
<td>(Röder & Hensel, 2020)</td>
</tr>
<tr>
<td>p4514</td>
<td>Arl8A::eGFP</td>
<td>this study</td>
</tr>
<tr>
<td>p4889</td>
<td>P<sub>EM7</sub>::DsRed P<sub>uhpT</sub>::sfGFP</td>
<td>(Röder & Hensel, 2020)</td>
</tr>
<tr>
<td>p4928</td>
<td>P<sub>EM7</sub>::RFP tetR P<sub>let4</sub>::sfGFP</td>
<td>(Schulte et al., 2019)</td>
</tr>
</tbody>
</table>
09.01.2021

Typhoidal Salmonella single cell analyses

Figure and Figure Legends

A in vitro

<table>
<thead>
<tr>
<th></th>
<th>LB</th>
<th>PCN+P</th>
<th>PCN-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>X̄ median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>100</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>ssrB</td>
<td>207</td>
<td>161</td>
<td>257</td>
</tr>
<tr>
<td>WT</td>
<td>147</td>
<td>178</td>
<td>157</td>
</tr>
</tbody>
</table>

STM

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssrB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPA

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssrB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STY

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ssrB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STM (green), SPA (blue), or STY (red) WT (solid lines) or ssrB mutant (dashed lines) strains were used, all harboring plasmid p3776 for constitutive expression of DsRed, and sfGFP under control of the ssaG promoter. A) Various strains were grown in non-inducing PCN medium (PCN pH 7.4, 25 mM Pi), or inducing PCN medium (PCN pH 5.8, 0.4 mM Pi). After culture o/n with aeration by rotation at 60 rpm in a roller drum, aliquots of cultures were fixed, and

Fig. 1. Expression of genes encoding the SPI2-T3SS by intracellular STM, SPA and STY.

STM (green), SPA (blue), or STY (red) WT (solid lines) or ssrB mutant (dashed lines) strains were used, all harboring plasmid p3776 for constitutive expression of DsRed, and sfGFP under control of the ssaG promoter. A) Various strains were grown in non-inducing PCN medium (PCN pH 7.4, 25 mM Pi), or inducing PCN medium (PCN pH 5.8, 0.4 mM Pi). After culture o/n with aeration by rotation at 60 rpm in a roller drum, aliquots of cultures were fixed, and
bacteria were analyzed by flow cytometry (FC). The median values for the sfGFP-positive bacteria are indicated. Various strains were used to infect HeLa cells (B), U937 macrophages (C), RAW264.7 macrophages (D) without or with activation by γ-interferon (IFNγ), or human primary macrophages (E). At 8 h, 16 h, or 24 h p.i. as indicated, host cells were lysed in order to release bacteria. For FC, at least 10,000 bacteria-sized particles with DsRed fluorescence were gated and GFP intensities were quantified. The percentage of intracellular bacteria with induction of P:ssaG::sfGFP is indicated for WT and ΔssrB strains. The data set shown is representative for three independent experiments with similar outcome.
Fig. 2. Heterogeneity of P_{ssaG} induction by intracellular STM, SPA and STY. U937 cells were infected at MOI 50 with STM, STY, or SPA WT strains all harboring plasmid p3776 for constitutive expression of RFP (red), and sfGFP (green) under control of the ssaG promoter. To label the endosomal system, cells were pulsed with dextran-Alexa647 (dextran-A647, blue) from 1 h p.i. until fixation. Cells were fixed with PFA 8 h p.i. and microscopy was performed by CLSM on a Leica SP5 using a 40x objective. Red arrowheads indicate representative, P_{ssaG}::sfGFP-negative intracellular Salmonella. Scale bars: 10 µm.
Fig. 3. The SPI2-T3SS of SPA and STY is functional in translocation of effector proteins.

HeLa cells constitutively expressing LAMP1-GFP (green) were infected with STY WT (A) or SPA WT (B) harboring plasmids for expression of sseF::M45, sseJ::M45, pipB2::M45, or sseL::HA as indicated. At 9 h p.i., cells were fixed, permeabilized by Saponin and immunolabeled for M45 or HA epitope tags (red) to localize translocated effector proteins, and with serovar-specific anti O-Ag antibodies to label bacteria (blue). C) Micrographs of cells infected with SPI2-T3SS-deficient STY strain ΔssaK harboring a plasmid for expression of sseF::M45. Microscopy was performed by CLSM using a Leica SP5 with 100x objective. Scale bars: 10 µm.
Fig. 4. Endosomal remodeling in host cells infected with STM, SPA, or STY is dependent on function of SifA.

A HeLa LAMP1-GFP cells were infected with WT or ΔsifA strains of STM, STY or SPA as indicated, constitutively expression mCherry (red) at MOI 50. Cells were fixed at 8 h p.i. and microscopy was performed by CLSM on a Leica SP5 using a 40x objective. Scale bar, 10 µm.

B Quantification of SIF formation in HeLa cell infected by STM, STY, or SPA. HeLa LAMP1-GFP cells were infected with WT or sifA mutant strains of STM, STY, or SPA at MOI 50. Cell were fixed 16 or 24 h p.i., and microscopy was performed with CLSM using a Leica SP5 with 40x objective. At least 100 cells per strain and time point were counted, and infected cells were scored for appearance of SIF. Statistical analysis was performed by One-way ANOVA and are indicated as follows: n.s., not significant; *, P< 0.05; **, P< 0.001.
Fig. 5. Ultrastructure of endosomal compartments remodeled by intracellular STM, STY, or SPA. HeLa cells expressing LAMP1-GFP (green) were infected with STM (A), STY (B), or SPA (C).
or SPA (C) WT, each expressing mCherry (red). Cell were fixed 7 h p.i. and processed for confocal fluorescence microscopy (FM) and transmission electron microscopy (TEM) of ultrathin sections. FM and TEM modalities were superimposed (inserts) for correlation, and details of the ultrastructure of tubular LAMP1-positive membrane compartment are shown at higher magnification. Double membrane SIF with inner (black arrowhead) and outer (blue arrowhead) membrane. Scale bars: 200 nm (details), 2 μm (inserts for overview).
Fig. 6. SCV integrity and cytosolic release of STM and STY. STM (green), SPA (blue), or STY (red), WT (solid lines) or ΔsifA (dashed lines) strains were used as indicated, each harboring plasmid p4889 for constitutive expression of DsRed, and P_{uphT}-controlled expression of sfGFP as sensor for cytosolic exposure. A) Induction of P_{uphT}:sfGFP by glucose-6-phosphate (G6P) in SPA and STY. SPA or STY WT harboring p4889 were grown in LB broth without or with addition of 0.2% G6P. Samples were collected at various time points of subculture as indicated by various colors. Bacteria constitutively expressing DsRed were analysed by FC for levels of sfGFP expression. B, C) WT (solid lines) or sifA mutant (dashed lines) strains of STM (green) or STY (red), each harboring plasmid p4889 were used to infect HeLa cells (B), or U937 cells (C). At 8 h, 16 h, or 24 h.p.i. as indicated, host cells were lysed in order to release bacteria. For FC, at least 10,000 bacteria-sized particles with DsRed fluorescence were gated and the GFP intensity was quantified. The percentage of bacterial cells with induction of
Typhoidal *Salmonella* single cell analyses

P_{uphT}::sfGFP is indicated for WT and *sifA* mutant strains. The data sets shown are representative for three independent experiments with similar outcome.
Fig. 7. SPI2-T3SS-deficient STY are reduced in intracellular replication in HeLa cells.

Hosts cells were infected with WT (open bars) or SPI2-T3SS-deficient (hatched bars, \(ssaV \) and \(ssaR \) encode subunits of the SPI2-T3SS) strains of STM (green) or STY (red) at MOI 1. Intracellular replication was determined by gentamicin protection assays comparing intracellular CFU recovered 1 h p.i. and 24 h p.i. A) Intracellular replication in HeLa cells. STM was cultured overnight, diluted 1:31 in fresh LB broth, subcultured 2.5 h, and used for infection. STY was incubated in 3 ml LB broth for 8 h, reinoculated 1:100 in 10 ml fresh LB broth and grown for 16 h under microaerophilic conditions before use as inoculum in infection B, C) Bacterial strains were grown overnight in LB and aliquots were used to infect macrophages. B) Intracellular replication of STM and STY in RAW264.7 macrophages. C) Intracellular replication of STM and STY in U937 cells. Assays were performed in three biological replicates, and one representative assay is shown. Student’s \(t \)-test was used for statistical analysis and significance is indicated as follows: n.s., not significant; *, \(P > 0.05 \); **, \(P > 0.01 \).
09.01.2021

Typhoidal *Salmonella* single cell analyses

Fig. 8. Intracellular proliferation of STM and STY in HeLa cells, RAW264.7 macrophages, or U937 macrophages determined flow cytometry. For infection of HeLa cells (A) STM was cultured overnight in 3 ml LB broth and reinoculated 1:31 in fresh LB broth for 3.5 h. STY was incubated in 3 ml LB broth for 8 h and reinoculated 1:100 in 10 ml fresh LB broth for 16 h under microaerophilic conditions. For infection of RAW264.7 macrophages (B), or U937 macrophages (C), overnight cultures were used. At 1 h or 24 h p.i. as indicated, cells were washed, fixed and detached. The cell populations were analysed by flow cytometry and gating was set to cells harboring intracellular *Salmonella* as indicated by polygons. At least 10,000 *Salmonella*-infected host cells were scored. Overlays of dot plots show WT *Salmonella* at 1 h or 24 h p.i. in red and blue, respectively, and ΔssaV/ΔssaK *Salmonella* at 1 h or 24 h p.i. in orange and green, respectively. The X-mean values for mCherry fluorescence intensities of infected cells are shown in same colors above each overlay. Individual dot plots are shown in **Fig. S 7**. Assays were performed in three biological replicates, one representative replicate is shown.
Fig. 9. Biosynthetic capability of intracellular STM, SPA and STY. A) STM (green), SPA (blue), and STY (red) WT strains, each harboring plasmid p4928 for constitutive expression of RFP, and sfGFP under control of the **tetA** promoter were subcultured in LB broth with aeration by rotation at 60 rpm in der roller drum. Various amounts of AHT as indicated were added after 1.5 h of culture. Culture was continued for 2 h, bacterial cells were fixed and the sfGFP fluorescence intensity was determined by FC for at least 50,000 DsRed-positive bacteria per
Typhoidal *Salmonella* single cell analyses

condition. The X-median values are shown for a representative experiment. **B** STM, SPA, or STY WT strains harboring p4928 were used to infect HeLa cells (**C**), U937 cells (**D**), or RAW264.7 cells (**E**). After infection for 1 h, medium was exchanged against medium containing 100 µg x ml⁻¹ gentamicin (G100) for 1 h, followed by medium containing 10 µg x ml⁻¹ gentamicin for the rest of the experiment. For induction of sfGFP expression, 50 ng x ml⁻¹ AHT was added to infected cells 1.5 h prior lysis of host cells. At the time points p.i. indicated, host cells were lysed in order to release intracellular bacteria. For FC, at least 10,000 bacteria-sized particles were gated based on DsRed fluorescence, and the sfGFP intensity was quantified. The percentage of sfGFP-positive bacteria is indicated and values in brackets show the non-induced controls. The data sets shown are representative for three independent experiments with similar outcome.
Suppl. Tables

Table S 1. Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Designation</th>
<th>Sequence 5’ – 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red mutagenesis primer</td>
<td></td>
</tr>
<tr>
<td>ssaK-Del13-For</td>
<td>TCTTCATGGAGCATTGTAGAGTGTCTTCACTTCC</td>
</tr>
<tr>
<td></td>
<td>TATTCCGGGATCCGACC</td>
</tr>
<tr>
<td>ssaK-Del13-Rev</td>
<td>CATTACGTAACCATTTCAGTAACGCATTGAAATGACGAG</td>
</tr>
<tr>
<td></td>
<td>ATGTAGGCTGGAGCTGCTTCC</td>
</tr>
<tr>
<td>ssaR Del13 For</td>
<td>ATAATAGCGTTCCAGGTCGTCGTAGAGGAGGATAC</td>
</tr>
<tr>
<td></td>
<td>AGTATGATTCCGGGGATCCGTCGACC</td>
</tr>
<tr>
<td>ssaR Del13 Rev</td>
<td>GAATCATTCATGAAAAAGCTCTGTACCAATTGCGCC</td>
</tr>
<tr>
<td></td>
<td>AGTGTTGTAGGCTGGAGCTGCTTCC</td>
</tr>
<tr>
<td>STY ssrB Del13 For</td>
<td>ATATTATCTTAATTTCGCGAGGGCAGGAAAATGAAAGAA</td>
</tr>
<tr>
<td></td>
<td>ATTCGGGGATCCGTCGACC</td>
</tr>
<tr>
<td>STY ssrB Del13 Rev</td>
<td>ACCAATGCTTTAATACCAATTGGAGGAGGATGCCCCCTTGGTTAATAATAT</td>
</tr>
<tr>
<td>Check PCR primer</td>
<td></td>
</tr>
<tr>
<td>ssaK-DelCheck-For</td>
<td>CGTATACCTTGCCGAAGAC</td>
</tr>
<tr>
<td></td>
<td>TCTCTGAACCTTGGAGAGGC</td>
</tr>
<tr>
<td>ssaR DelCheck For</td>
<td>TGGTGCTATTCACGTTGG</td>
</tr>
<tr>
<td></td>
<td>TGAGTCAAGGCTGACCAAG</td>
</tr>
<tr>
<td>ssaR DelCheck Rev</td>
<td>CCCACAGGCAATCACTCAC</td>
</tr>
<tr>
<td></td>
<td>GTGAGTTGATTGCTGCTTGG</td>
</tr>
<tr>
<td>STY ssrB DelCheck For</td>
<td>GGGCAGACTGAATGTTAGTTG</td>
</tr>
<tr>
<td></td>
<td>TAGCTGCGGCGATTGATG</td>
</tr>
<tr>
<td>Antibody or antiserum</td>
<td>Characteristics</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Group B Factors 1, 4, 5, 12</td>
<td>Rabbit anti-STM O antiserum</td>
</tr>
<tr>
<td>Group D1 Factors 1,9,12</td>
<td>Rabbit anti-STY O antiserum</td>
</tr>
<tr>
<td>Group A Factors 1,2,12</td>
<td>Rabbit anti-SPA O antiserum</td>
</tr>
<tr>
<td>Anti-M45</td>
<td>Mouse anti-M45 epitope tag</td>
</tr>
<tr>
<td>Anti-HA</td>
<td>Rat anti-HA epitope tag</td>
</tr>
<tr>
<td>Anti-mouse IgG Alexa 568</td>
<td>Goat anti-mouse IgG Alexa 568</td>
</tr>
<tr>
<td>Anti-rat IgG Alexa 568</td>
<td>Goat anti-rat IgG Alexa 568</td>
</tr>
<tr>
<td>Anti-rabbit IgG Cy5</td>
<td>Goat anti-rabbit IgG Cy5</td>
</tr>
<tr>
<td>Anti-rat IgG Cy5</td>
<td>Goat anti-rat IgG Cy5</td>
</tr>
</tbody>
</table>
954 Suppl. Figure and Figure Legends

955 Fig. S 1. Induction of P_{ssaG} by intracellular STM, STY or SPA. HeLa cells were infected at MOI 75 with STM (A), STY (B), or SPA (C), WT or $\Delta ssrB$ strains all harboring plasmid p3776 for constitutive expression of RFP (red), and sfGFP (green) under control of the $ssaG$ promoter.
To label the endosomal system, cells were pulsed with dextran-Alexa647 (dextran-A647, blue) from 1 h p.i. until fixation. Cells were fixed with PFA 8 h p.i. and microscopy was performed by CLSM on a Leica SP5 using the 100x objective. Scale bars, 10 µm.
Fig. S 2. Formation of SCV in RAW264.7 macrophages infected with STM, STY, or SPA cells compared to STM. RAW264.7 cells constitutively expressing LAMP1-GFP were infected by WT or SPI2-T3SS-deficient strains (ΔssaV, ΔssaK, or ΔssaV) of STM, STY, or SPA as indicated, each constitutively expressing mCherry. Cells were fixed 8 h p.i. and subjected to CLSM on a Leica SP5. 3D reconstructions of Z stacks are shown. Scale bars, 5 µm.
Fig. S 3. Vesicular compartments harboring STY or SPA are positive for canonical SCV markers Arl8A and Rab7. HeLa cells were transiently transfected with plasmids for the expression of Arl8A-eGFP or Rab7A-eGFP as indicated, and infected with STY (A) or SPA (B) at MOI 75 (for STY) or 50 (for SPA). Infected cells were pulsed-chased with Dextran-Alexa647 from 1 h p.i. until fixation. Microscopy was performed by CLSM on a Leica SP5 using a 100 x objective. Scale bars, 10 µm (overview); 5 µm (detail).
Fig. S 4. CLEM of intracellular STM. HeLa cells expressing LAMP1-GFP (green) were infected with STM WT expressing mCherry (red). Cells were fixed 7 h p.i. and processed for confocal microscopy (A, C) and TEM of ultrathin sections (B, D, E, F, G). A) An infected cell showing a distinct LAMP1-GFP-positive SIF network was identified and further analyzed (maximum intensity projection, MIP). B) TEM overview image of a host cell harboring several salmonellae. Ci, ii, iii, Di, ii) For correlation, TEM and CLSM images were superimposed. E)
Detail of individual STM cells in SCV with single membrane (red arrowhead, white arrow). F, G) Detail views of small sections of double membrane SIF with inner (black arrowhead) and outer (blue arrowhead) membrane. Scale bars: 10 μm (A), 7 μm (B), 2 μm (D), 750 nm (E), 200 nm (F).
Fig. S 5. CLEM of intracellular STY. HeLa cells expressing LAMP1-GFP (green) were infected with STY WT expressing mCherry (red). Cells were fixed 7 h p.i. and processed for confocal microscopy (A, C) and TEM of ultrathin sections (B, D, E, F). A) An infected cell showing a distinct LAMP1-GFP-positive SIF network was identified and further analyzed (MIP). B) TEM overview image of a host cell harboring several salmonellae. Ci, ii, iii, Di, ii) For correlation, TEM and CLSM images were superimposed. E) Detail of individual STY cells in SCV with single membrane (red arrowhead, white arrow). F) Detail view of a small section
09.01.2021
Typhoidal *Salmonella* single cell analyses

998 of a double membrane SIF with inner (black arrowhead) and outer (blue arrowhead) membrane.

999 Scale bars: 10 μm (A), 7 μm (B), 2 μm (D), 750 nm (E), 200 nm (F).
Fig. S 6. CLEM of intracellular SPA. HeLa cells expressing LAMP1-GFP (green) were infected with SPA WT expressing mCherry (red). Cells were fixed 7 h p.i. and processed for confocal microscopy (A, C) and TEM of ultrathin sections (B, D, E, F, G, H). A) An infected cell showing a distinct LAMP1-GFP-positive SIF network was identified and further analyzed (MIP). B) TEM overview image of a host cell harboring several salmonellae (red box). Ci, ii, iii, Di, ii) For correlation, TEM and CLSM images were superimposed. H) Detail of individual
SPA cells in SCV with single membrane (red arrowhead). D, F) Overviews showing SIF distal to the SCV, regions shown in details are indicated by light or dark blue boxes. E, G) Corresponding detail views of double membrane SIF with inner (black arrowhead) and outer (light blue, dark blue arrowheads) membranes. Scale bars: 10 μm (A), 7 μm (B), 2 μm (D), 250 nm (E, G), 3 μm (F), 500 nm (H).
Typhoidal Salmonella single cell analyses
Fig. S 7. Intracellular proliferation of STM and STY determined by flow cytometry. The single dot plots of the experiment shown in Fig. 8 are displayed. HeLa cells (A), RAW264.7 macrophages (B), or U937 macrophages (C) were used as host cells. Gating for infected host cells was made using non-infected cells (grey dots) as control. Overlays of dot plots show WT Salmonella at 1 h or 24 h p.i. in red and blue, respectively, and ΔssaV or ΔssaK Salmonella at 1 h or 24 h p.i. in orange and green, respectively. The X-mean values for mCherry fluorescence intensities of infected cells are indicated the gates for infected host cells. Assays were performed in three biological replicates, one representative replicate is shown.