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Abstract 

 

Background & Aims:  

 

24-NorUrsodeoxycholic acid (NorUDCA) is novel therapy for 

immune-mediated liver diseases such as primary sclerosing cholangitis (PSC) 

where dysregulated T cells including CD8+ T cells cause liver 

immunopathology. We hypothesized that NorUDCA may directly modulate 

CD8+ T cell effector function thus contributing to its therapeutic efficacy 

independent of anti-cholestatic effects.  

 

Methods:  

 

NorUDCA effects on CD8+ T cell function in vivo were investigated in a hepatic 

injury model system induced by excessive CD8+ T cell immune response upon 

non-cytolytic lymphocytic choriomeningitis virus (LCMV) infection. Mechanistic 

studies included molecular and biochemical approaches, flow cytometry and 

metabolic assays in mouse CD8+ T cells in vitro. Mass spectrometry (MS) was 

used to identify potential targets modulated by NorUDCA in CD8+ T cells. 

NorUDCA signaling effects observed in murine systems were validated in 

peripheral T cells from healthy volunteers and PSC patients.  

 

Results:  

 

In vivo NorUDCA ameliorated hepatic injury and systemic inflammation upon 

LCMV infection. Mechanistically, NorUDCA demonstrated a strong 

immunomodulatory efficacy in CD8+ T cells affecting lymphoblastogenesis, 

mTORC1 signaling and glycolysis of CD8+ T cells. With MS, we identified that 

NorUDCA regulates CD8+ T cells via targeting mTORC1. NorUDCA’s impact 

on mTORC1 signaling was further confirmed in circulating human CD8+ T 

cells. 

 

Conclusions:  

 

NorUDCA possesses a yet-unrecognized direct modulatory potency on CD8+ T 

cells and attenuates excessive CD8+ T cell hepatic immunopathology. These 

findings may be relevant for treatment of immune-mediated liver diseases 

such as PSC and beyond. 
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Introduction 

 

CD8+ T cells are critical players of cell-mediated adaptive immunity and 

provide key defense mechanisms against microbial infections and cancer1. 

However, when CD8+ T cell immune responses and tissue infiltration become 

dysregulated and excessive, CD8+ T cells can turn into immunopathological 

factors driving hepatic inflammation and damage2. As such, CD8+ T 

cell-mediated cytotoxicity and tissue damage play important role in viral, 

autoimmune or immune-mediated liver diseases3, 4. Therefore identifying novel 

therapies to control detrimental CD8+ T cell inflammatory reactions is pivotal to 

counteract the increasing burden of autoimmune liver diseases and the 

corresponding need for liver transplantation, reflecting the limited effectiveness 

of current therapeutic options5 

 

24-NorUrsodeoxycholic acid (NorUDCA) is a novel therapeutic bile acid (BA) 

whose pharmacological mechanisms profoundly differ from its biochemical 

parent compound ursodeoxycholic acid (UDCA) which has been used with 

variable success in a wide range of cholestatic and metabolic liver diseases6. 

In a recent phase II study, NorUDCA has demonstrated promising results in 

treating primary sclerosing cholangitis (PSC)7, an immune-mediated 

cholestatic liver disease so far lacking effective medical therapy. Dysregulated 

T cells including CD8+ T cells play a critical role in mediating 

immunopathogenesis of PSC4. Therefore we hypothesized that NorUDCA’s 

therapeutic mechanism of action may be attributed to potential 

immunomodulatory potency on CD8+ T cells besides its well-established 

anti-cholestatic efficacy8
 .  

 

We first explored NorUDCA’s impact on CD8+ T cell effector function in vivo in 

a non-cholestatic murine model based on the non-cytolytic lymphocytic 

choriomeningitis virus (LCMV) infection, in which hepatic injury and systematic 

inflammation are predominantly mediated by excessive cytotoxicity of effector 

CD8+ T cells at early phase of infection9-11. Further mechanistic studies were 

performed using molecular and biochemical approaches, flow cytometry and 

metabolic assays in primary murine CD8+ T cells in vitro. Mass spectrometry 

(MS) was used to identify potential targets modulated by NorUDCA in CD8+ T 

cells. Human peripheral T cells from healthy volunteers and PSC patients were 

used to validate NorUDCA signaling effects observed in murine systems. 

 

Results 

 

NorUDCA reduces frequency and cell size of intrahepatic effector CD8+ T 

cells with alleviated hepatic injury in vivo 

 

First we explored the effect of NorUDCA on effector CD8+ T cell immune 
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response in a murine model induced by LCMV Clone 13 infection specifically 

focusing on the acute phase of the infection on day 10 when escalation of 

hepatic injury had been widely reported9-11, a disease phenotype being absent 

in LCMV Armstrong strain10. This allows us to assess if NorUDCA impacts on 

effector CD8+ T cell response causing hepatic injury in absence of cholestasis. 

NorUDCA’s parent compound UDCA was used in this model for comparison.  

 

In line with previous reports9, 11-13, we observed a significant loss of body 

weight and elevated level of hepatic injury parameters such as ALT, AST and 

AP in mice following LCMV infection, which were significantly attenuated by 

NorUDCA, while UDCA showed only minimal effects (Fig. 1A, 1B).  

 

We observed that the frequency of intrahepatic CD8+ T cells positive for the 

major LCMV epitope glycoprotein-33 (GP33) in NorUDCA-treated infected 

mice was lower compared with untreated UDCA-treated infected mice (Fig.1C, 

gating strategy see Supplementary Fig. 1). Despite the change of frequency of 

intrahepatic virus-specific CD8+ T cells in NorUDCA-treated infected mice, the 

effector function of virus-specific CD8+ T cells remained unchanged, as 

evidenced by the comparable expression of cytolytic molecules of Granzyme B 

and Perforin in intrahepatic virus-specific effector CD8+ T cells in infected mice 

treated with and without NorUDCA (Fig. 1D). This might explain why the 

hepatic viral loads were not affected by NorUDCA treatment in infected mice 

even though less intrahepatic CD8+ T cells were present (Fig. 1E). 

 

Of note, we observed that the cell size of intrahepatic CD8+ T cells isolated 

from LCMV mice treated with NorUDCA was much smaller compared to that of 

untreated LCMV mice (Fig. 1F). Since a large number of studies indicate that 

cell size of CD8+ T cells are critically controlled by mTORC1 signaling14, 15, we 

next investigated if mTORC1 signaling in intrahepatic CD8+ T cells is affected 

in NorUDCA-treated infected mice. Therefore, for the subsequent analysis of 

mTORC1 signaling, we included Rapamycin as mTORC1 inhibitor control (at a 

concentration used in a previous LCMV infection study16). We performed 

multicolor immunofluorescence microscopy of the liver sections to assess the 

phosphorylation of Ribosomal protein S6 (RPS6) RPS6Ser235/236 (a direct 

mTORC1 downstream target) as read out for mTORC1 activity. We detected 

an increase of hepatic infiltrating pRPS6Ser235/236-positive CD3+ T cells in mice 

upon LCMV infection, which were decreased when treated with Rapamycin or 

NorUDCA (Fig. 1G). This suggests that mTORC1 is repressed by Rapamycin 

and NorUDCA. In addition we also detected a downregulation of 

pRPS6Ser235/236 in hepatocytes from Rapamycin- or NorUDCA-treated infected 

mice (Fig. 1G), suggesting that the inhibitory efficacy of Rapamycin and 

NorUDCA is not limited to CD8+ T cells but also expands to other cell types. In 

contrast, pRPS6Ser235/236 levels were not altered in UDCA-treated LCMV mice, 

indicating that UDCA does not impact mTORC1 signaling in LCMV infected 
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mice (Fig. 1G). In summary, our results indicate that NorUDCA treatment 

during acute phase of LCMV infection led to a reduction in effector CD8+ T 

cell-driven inflammation and injury.  

 

NorUDCA modulates effector CD8+ T cells systemically in vivo 

 

To determine whether the observed immunomodulatory activity of NorUDCA 

observed in LCMV model is restricted to liver or can be extended to 

extrahepatic tissues, we analyzed NorUDCA’s impacts on the CD8+ T cells 

from blood and spleen. Similarly to our observation made in liver, NorUDCA 

reduced frequency of virus-specific effector CD8+ T cells in both blood and 

spleen in infected mice, while UDCA had no impact (Fig. 2A). Further we found 

that, like Rapamycin, NorUDCA decreased the phosphorylation (pSer235/236) 

of mTORC1 downstream target RPS6 in circulating effector CD8+ T cells of 

infected mice (Fig. 2B).  

 

Moreover, we also investigated if NorUDCA impacts on mTORC1 signaling in 

splenic effector CD8+ T cells ex vivo. To mimic the in vivo activation, we 

isolated splenocytes from infected mice treated with or without NorUDCA, 

UDCA or Rapamycin and re-stimulated the cells with LCMV-GP33 peptides. 

pRPS6Ser235/236 was assessed in effector CD8+ T cells (Supplementary Fig. 2A). 

pRPS6Ser235/236 levels were lower in the splenic effector CD8+ T cells displaying 

surface expression of CD107a/b (a degranulation marker indicative of effector 

CD8+ T cell function) in NorUDCA-treated infected mice upon re-stimulation 

showing a reduced mTORC1 activity (Supplementary Fig. 2B).  

 

Of note, upon ex vivo re-stimulation, splenic effector CD8+ T cells from 

NorUDCA-treated infected mice expressed reduced levels of TNFα. However,  

IFNγ expression, which is essential for maintaining efficient protective 

immunity against LCMV17, was comparable (Supplementary Fig. 2C) indicating 

a potential intact anti-viral immunity. This was further supported by the 

unchanged splenic virus titer in NorUDCA treated-infected mice 

(Supplementary Fig. 2D).  

 

Additionally, we analyzed CD8+ T cell infiltration in the lung as another 

extrahepatic organ. Multicolor immunofluorescence microscopy revealed that 

NorUDCA not only reduced infiltrating CD8+ T cells but also T cells displaying 

pRPS6Ser235/236 in the lung parenchyma of infected mice, further suggesting a 

systemic modulatory effect of NorUDCA on mTORC1 during CD8+ T cell 

differentiation in vivo (Fig. 2C). 

 

NorUDCA reduces CD8+ T cell blasting and expansion associated with 

attenuated mTORC1 signaling in vitro 
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To gain further mechanistic insights about NorUDCA’s direct impact on CD8+ T 

cell signaling, function and metabolism (see Supplementary Fig. 3 for gating 

strategy) we activated primary murine CD8+ T cells from spleen and lymph 

nodes in vitro in the presence of NorUDCA or UDCA with the concentrations 

precisely matching the in vivo concentrations in our LCMV model system (Fig. 

1B). 

 

Upon antigen recognition, naïve CD8+ T cells undergo a complex activation, 

blasting (increasing cell size), proliferation and differentiation process leading 

to establishment of a large pool of various effector CD8+ T cells required to 

mount effective immunity1. Both NorUDCA and UDCA showed no effects on T 

cell receptor-proximal CD8+ T cell activation as reflected by unchanged 

up-regulation of T cell activation markers CD25 and CD69 and normal Ca2+ 

influx (Fig. 3A, 3B). However, CD8+ T cell blasting (Fig. 3C) and clonal 

expansion (Fig. 3D) were significantly reduced by NorUDCA without affecting 

cell viability (Fig. 3C) compared to cells without treatment or treated with 

UDCA. In accordance to our in vivo mTORC1 signaling finding, NorUDCA 

decreased the frequency of CD8+ T cells displaying high level of pRPS6S235/236 

(Fig. 3E), indicating that NorUDCA impairs mTORC1 activity by acting directly 

on CD8+ T cells during their differentiation to effector cells.  

 

NorUDCA redirects activation-induced metabolic reprograming in CD8+ T 

cells  

 

Since mTORC1 is required for the expression of glucose transporters and 

enzymes that control glycolysis in CD8+ T cells 18, we therefore explored 

whether NorUDCA alters the metabolic profile of CD8+ T cells. In vitro we 

found that NorUDCA repressed the expression of genes in activated CD8+ T 

cells that promote glycolysis. Surface GLUT1 expression on CD8+ T cells was 

also reduced by NorUDCA (Fig. 4A-C), which is in line with our in vivo 

observation. Furthermore NorUDCA reduced intracellular synthesis and output 

of lactate in CD8+ T cells, an end product of glycolytic pathway (Fig. 4D). To 

explore whether inhibition of glycolysis enforces fatty acid β-oxidation (FAO) in 

CD8+ T cells 19, we tested the expression of genes regulating FAO in CD8+ T 

cells. NorUDCA significantly upregulated carnitine palmitoyltransferase 1a 

(Cpt1a) expression (Fig. 4A), a rate-limiting enzyme in FAO 19. 

 

To further assess the functional impact of NorUDCA on glycolysis and 

mitochondria respiratory activity, we performed extracellular metabolic flux 

measurements to determine real-time changes in extracellular acidification 

rate (ECAR) and oxygen consumption rate (OCR). NorUDCA decreased the 

glycolytic activity in CD8+ T cells, indicated by a lower level of ECAR, while 

OCR (indicator for mitochondria oxidative phosphorylation (OXPHOS)) was 

not affected in this setting (Fig. 4E) 
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NorUDCA reshapes mTORC1 associated (phospho-)proteome and 

metabolic landscape in CD8+ T cells upon activation 

 

To mechanistically understand how NorUDCA impact on mTORC1, we 

performed quantitative high-resolution mass spectrometry (MS) using murine 

CD8+ T cells treated with NorUDCA or Rapamycin. We first focused on 

comparing NorUDCA with Rapamycin regarding their modulation of 

mTORC1-associated (phospho-)proteome in CD8+ T cells. In total 7,492 

proteins and 15,538 phosphorylated sites per biological replicate were 

identified (Fig. 5A). Cluster analysis of differentially expressed proteins and 

phosphopeptides demonstrated that NorUDCA had similarities with 

Rapamycin in reshaping the overall (phospho-)proteome of CD8+ T cells (Fig. 

5B). Analysis revealed that 80.1% (1,543 of 1,926 proteins) of the proteins 

significantly modulated by NorUDCA were also modulated by Rapamycin in 

the same direction, further revealing mTORC1 as a main pathway targeted by 

NorUDCA. Interestingly we noticed that still 19.1% (383 of 1,926 proteins) 

were uniquely modulated by NorUDCA (Fig. 5C). Further functional 

annotations by Hallmark, GO (gene ontology) and KEGG databases identified 

metabolic pathways shared by NorUDCA and Rapamycin, as well as pathways 

uniquely affected by NorUDCA (Supplementary Fig. 4, Supplementary Table 

1).  

 

We next studied mTORC1-associated metabolic proteomes modulated by 

NorUDCA in CD8+ T cells. In agreement with our findings described above, we 

detected a reduction of Hexokinase 2 and additional proteins crucial for 

glycolysis in MS data set of NorUDCA-treated CD8+ T cells (Supplementary 

Fig.5). Moreover, NorUDCA enhanced protein abundance of FA transporters 

and enzymes, such as, Long-chain FA transport protein 4 (SLC27A4), 

Fatty-acyl-CoA synthase (FACS), CPT1α and CPT2 (Supplementary Fig. 5). In 

contrast, FA synthesis was reduced as revealed by decreased abundance of 

FA synthase and increased phosphorylation of acetyl-CoA carboxylase 

(ACACA) at S117 residue whose phosphorylation inhibits enzyme activity 

(Supplementary Fig. 5). Taken together, these data indicate that NorUDCA 

redirects CD8+ T cell nutrient sensing program from glycolysis toward fatty acid 

utilization upon activation as consequence of mTORC1 suppression. 

 

Interestingly, MS analysis revealed that the abundance of several 

mTORC1-dependent mitoribosomes was reduced in NorUDCA-treated CD8+ T 

cells (Fig. 5D). Additionally, mTORC1-regulated COX10 20, which is important 

for expression and assembly of electron transport components (ETC) complex 

IV, also showed a tendency for reduction by NorUDCA (Fig. 5D). Overall, our 

MS analysis revealed a modulation of mTORC1-associated metabolism in 

CD8+ T cells by NorUDCA. 
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The activity of mTORC1 is regulated by a complex regulatory network. When 

we tested potential candidate upstream signaling molecules regulating 

mTORC1, we found that Ras-Erk-P90 RSK signaling was suppressed by 

NorUDCA, while classic mTORC1 upstream axes involving 

phosphatidylinositol-3 kinase (PI3K) and AKTT308 were not reduced 

(Supplementary Fig. 6A-C). Additionally intracellular phosphatidic acid (PA) 

that can induce direct mTORC1 activation by competing with FK506-binding 

protein 38 for binding with FK506 protein, a well-known endogenous inhibitor 

of mTORC1 21, was reduced by NorUDCA in activated CD8+ T cells 

(Supplementary Fig. 6D). Collectively, our findings demonstrate that mTORC1 

is a central hub for NorUDCA’s signaling action and that NorUDCA affects 

mTORC1 directly and its upstream activation pathways.  

 

 

NorUDCA suppresses human CD8+ T cell blasting and expansion with 

blunted mTORC1 kinase activity 

 

Finally we investigated whether some of our key findings obtained with murine 

cells apply to human peripheral CD8+ T cells, especially peripheral CD8+ T 

cells from patients of PSC, where dysregulated T cells are associated with 

disease progression4. We examined the impact of NorUDCA on CD8+ T cell 

activation, blasting, clonal expansion and mTORC1 in vitro by activating ex 

vivo isolated peripheral T cells from healthy volunteers and PSC patients in the 

absence or presence of NorUDCA (Fig. 6, gating strategy see Supplementary 

Fig. 7). UDCA was used for comparison. Rapamycin was used as control for 

mTORC1 inhibition. 

 

In line with our observations gained from the murine experiments, NorUDCA 

strongly decreased cell size and clonal expansion in CD8+ T cells from both 

PSC patients and healthy volunteers, while not affecting cell viability and 

activation. We next explored if NorUDCA affects Erk-mTORC1 signaling in 

human CD8+ T cells by assessing expression of pErk1/2T202/Y204 and 

pRPS6Ser235/236. After NorUDCA treatment, we detected a reduced 

Erk-mTORC1 signaling in proliferating CD8+ T cells of healthy volunteers and 

PSC patients as reflected by reduced frequency of pErk1/2T202/Y204+ and 

pRPS6Ser235/236+ cells, while UDCA showed no effect (Fig. 6C).  

 

Discussion 

 

The therapeutic mechanisms of NorUDCA as novel therapeutic approach to 

immune-mediated liver diseases such as PSC7 are currently of great interest 

to the scientific community. Previously we have reported that NorUDCA 

strongly reversed cholestasis and biliary fibrosis in Mdr2 KO model of 
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sclerosing cholangiopathy with pronounced repression of hepatic 

inflammation8. Since Mdr2 KO mice suffer from defective bile formation (i.e., 

the lack of biliary phospholipid secretion with consecutive toxic bile formation) 

and NorUDCA also has substantial effects on bile formation and composition 

by inducing cholehepatic shunting and subsequently a bicarbonate rich 

choleresis22, it remains unclear whether this promising compound has direct 

anti-inflammatory effect or the improved hepatic inflammation was indirectly 

due to NorUDCA’s well-established anti-cholestatic efficacy.  

 

Here we report that NorUDCA is able to exert direct immunomodulatory and 

anti-inflammatory efficacy in a non-cholestatic immune-mediated model of 

hepatic and systematic immunopathology upon acute LCMV infection. Given 

the complexity of how the immune network functions upon infection, we 

certainly cannot rule out other possible beneficial mechanisms induced by 

NorUDCA such as modulation of innate and humoral immunity, especially as 

mTORC1 inhibition was also observed in other cell types than CD8+ T cells, 

namely hepatocytes, we can assume that also other immune cells like antigen 

presenting cells might be regulated by NorUDCA. However, in this study we 

uncovered one potential key mechanism by demonstrating that NorUDCA 

modulates mTORC1 signaling in effector CD8+ T cells (a cell type 

predominantly accounting for the disease phenotype in this model9-11) which 

subsequently influenced on cell frequency, metabolism and function. Whether 

NorUDCA impacts on antigen presenting cells which mounts subsequent CD8+ 

T cell immune response requires future full-scale study. However, following in 

vitro study and MS analysis, we confirmed NorUDCA has a direct impact on 

CD8+ T cell blasting, proliferation and metabolism and identified mTORC1 as 

one of the potential targets for its mode of actions, which we believe should 

advance our mechanistic understandings about this novel compound and 

extension of future clinical applications.   

 

mTORC1 inhibition provides a critical immunometabolic link controlling CD8+ T 

cell immune response 18, 23, regulating glycolysis and FAO 24. NorUDCA 

inhibited glycolysis and enhanced the FAO machinery in CD8+ T cells, as 

reflected by an increased expression of key regulators of FAO. In addition, we 

observed that OCR of NorUDCA-treated CD8+ T cells was unchanged. 

Mitoribosome plays a critical role in translation of mitochondria-encoded 

electron transport components to facilitate OXPHOS during T cell quiescence 

exit 20. Our MS data showed that mitoribosome biogenesis and complex IV 

were disrupted by NorUDCA, which might counteract the up-regulated FAO 

machinery, and might explain why OCR remained unchanged by NorUDCA. 

 

Although NorUDCA effects share many similarities with classic mTORC1 

inhibitor Rapamycin in modulating mTORC1 associated (phospho-)proteome, 

we detected important differences between the activities of NorUDCA and 
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Rapamycin in modulating CD8+ T cell proteomes. Firstly, NorUDCA affects 

less proteins than Rapamycin. Secondly, an array of metabolic pathways is 

uniquely altered by NorUDCA, such as metabolism of organic acids, 

organonitrogen compounds and cellular catabolic processes. Therefore, 

although the mTORC1 pathway is a potential target of NorUDCA, NorUDCA 

shows immunometabolic properties that are not exclusively the consequence 

of a direct mTORC1 inhibition. This indicates exciting entry points for future 

relevant full-scale metabolic studies. 

 

Notably, UDCA, the structurally closest related clinically used bile acid6 and 

parent compound of NorUDCA, entirely lacked the signaling effects and 

immunometabolic modulatory functions throughout our comprehensive study 

comparing NorUDCA and UDCA in vivo and in vitro. When we tested if our 

signaling finding could be translated into circulating CD8+ T cells of PSC 

patients, we found that NorUDCA, but not UDCA, suppressed mTORC1 

signaling following the concentrations achieved in vivo in murine model system 

since in vivo concentrations of patients are currently unknown. We fully 

acknowledge that this observation is far from firmly revealing the mechanisms 

explaining the discrepant therapeutic activities of UDCA and NorUDCA in 

patients6, but our findings may at least in part offer interesting mechanistic 

insights and indicate new pathways by which NorUDCA regulates hepatic 

inflammation. Therefore future clinical trials for NorUDCA and UDCA should 

include assessment of in vivo concentrations both compounds could achieve 

and biomarkers or tests evaluating their effects on T cells. Additionally, it raises 

exciting possibilities that targeted manipulation of bile acid chemical structures 

(e.g. removal of a single methyl group in NorUDCA25, 26) may add on novel 

signaling and immunomodulatory activities to bile acid and creates additional 

future therapeutic avenues.  

 

Overall, our findings may have imminent therapeutic implications for treatment 

of PSC, where NorUDCA has shown promising results 7 while UDCA has no 

established efficacy 6. Further studies may be warranted to explore the array of 

potential therapeutic applications of NorUDCA in immune-mediated liver 

diseases . 

 

Materials and Methods 

 

CD8+ T cell Isolation, Activation and Proliferation Assay 

CD8+ T cells were isolated from peripheral lymph nodes and spleens of 

C57BL/6J male mice (bred in the mouse facility of Medical University of Vienna) 

and purified by negative depletion. The purity of the cells was assessed by flow 

cytometry and was routinely >90%. CD8+ T cells were labeled with 

eBioscience cell proliferation dye eFluor450 as recommended by the 

manufacturer, stimulated in vitro with plate-bound anti-CD3 (1µg/ml) and 
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anti-CD28 (3µg/ml) Ab and expanded in RPMI 1640 medium containing 10% 

fetal calf serum (FCS), GlutaMAX (2mM, ThermoFisher), β-mercaptoethanol 

(50µM, ThermoFisher) and Penicillin-Streptomycin (ThermoFisher). To test the 

impacts of BAs on CD8+ T cell activation and proliferation, culture medium was 

supplemented ± UDCA or NorUDCA for indicated durations and concentrations. 

Viability of the cells was monitored by a fixable viability dye eFluor 506 

(ThermoFisher). Dilution of cell proliferation dye was evaluated by flow 

cytometry (LSRII Fortessa, BD Biosciences).  

 

Compound Treatments 

Concentrations of NorUDCA (500μM) and UDCA (50μM) for in vitro 

experiments were selected to mimic the in vivo serum bile acid level of mice on 

0.5% (wt/wt) NorUDCA or UDCA-supplemented diet for 10 days8 

(supplementary Fig. 3). Concentrations of NorUDCA and UDCA selected for in 

vitro experiments were assessed by viability staining on CD8+ T cells. All the 

other compounds were used at the indicated concentrations: Rapamycin 

(mTOR inhibitor; 100 nM, Cell signaling), Ly294002 (PI3K inhibitor; 10 μM, Cell 

signaling), 2-Deoxy-D-glucose (2-DG; 2 mM, Sigma-Aldrich). 

 

Flow Cytometric Analysis  

Murine CD8+ T cells cultured for 48h with plate-bound anti-CD3/anti-CD28 Abs 

were stimulated with 2ng/ml PMA (Sigma-Aldrich) and 1μg/ml ionomycin 

(Sigma-Aldrich) in the presence of Golgi stop (BD) for cytokine and 

transcription factor studies, and subjected to intracellular staining using 

Cytofix/Cytoperm (BD) and permeabilization buffer (BD) for phosphorylation 

studies. CD8+ T cells were fixed 10 min at 37 °C with Cytofix (BD), 

permeabilized 20 min on ice with methanol and stained with the indicated 

phospho-Abs for 30 min in the dark at 4°C in PBS/2% FCS. For extracellular 

staining, CD8+ T cells were incubated with Abs for 30 min on ice.  

 

Single cell suspensions of spleen and liver were obtained through mechanical 

disruption through 70 μm cell strainers. Intrahepatic T cells were enriched 

following gradient separation27. Total cell count was quantified using a 

Beckman Coulter Counter and normalized to tissue weight. For circulating 

immune cells assessment, blood was pipetted into Heparin containing tubes 

and treated with RBC lysis buffer (eBioscience). Samples were then treated 

with FcR-Block (clone 93, eBioscience), and subsequently stained with the 

respective antibodies as indicated in each experiment. 

 

Tetramer staining (GP33/GP276/NP396-specific tetramers from NIH Tetramer 

Core Facility, US) was performed at 37°C for 15min prior to FcR-block 

treatment.  

 

Murine peripheral blood was treated by Lyse/Fix buffer (BD) for 10min at 37 °C 
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and cells permeabilized with Perm/Wash I buffer (BD) for 30min on ice. 

Staining with anti-pRPS6 Abs (Cell Signaling) was performed for 30min on ice. 

Antibodies are listed in Supplementary Table 2. 

 

Immunoblot Analysis  

Immunoblot analysis was performed using standard protocols as previously 

described using antibodies shown in Supplementary Table 2. 

 

Phosphatidic Acid (PA) Analysis  

Murine CD8+ T cells were activated for 24h ± NorUDCA or Rapamycin and 

harvested for the measurement of intracellular PA using the fluorometric 

PicoProbeTM PA Assay Kit (Biovision) following manufacturer’s instructions. 

 

Seahorse Metabolic Assay  

Oxygen consumption rates and extracellular acidification rates of activated 

CD8+ T cells ± NorUDCA treatment were measured as previously described13.  

 

Lactate Measurements  

Supernatants and cells were collected from 24h murine CD8+ T cell culture ± 

NorUDCA or Rapamycin upon activation and processed following the 

manufacturer’s instructions (Cayman). Final concentrations of lactate were 

normalized to cell counts. 

 

LCMV Clone13 Mouse Model 

8 weeks old C57BL/6J male mice (Janvier labs, France) were pre-fed with 

standard chow or 0.5% (wt/wt) NorUDCA or UDCA-supplemented diet for 10 

days or treated with Rapamycin (600 μg/Kg) i.p. 1 day before infection16, 28 with 

2x106 focus-forming units (FFU) of LCMV strain clone13 intravenously12. Mice 

were continued on NorUDCA or UDCA-containing diet or standard chow or 

treated with Rapamycin i.p. daily16, 28 and sacrificed at day10 following 

infection, a time point when CD8+ T cell inflammation response reaches a peak 

in vivo10. Uninfected naive mice on standard chow diet were studied as control. 

Virus titers were determined by focus-forming assay as previously described12. 

Experiments were approved by the Federal Ministry for Science and Research 

at Medical University of Vienna (BMWFW-66.009/0361-WF/V/3b/2017). 

 

Ex vivo re-stimulation of splenocytes 

Splenocytes from LCMV clone13-infected mice were isolated and incubated 

with gp33-41 peptide (0.4μg/mL) for 5h at 37 °C in the presence of CD107a/b 

Ab and stained with the phospho-RPS6 (Cell Signaling) anti–IFN-γ and anti–

TNF-α Abs (BD) using Cytofix/Cytoperm (BD) according to manufacturer’s 

recommendations. Analysis was performed by using FlowJo software (Tree 

Star). Clones of antibodies used are shown in Supplementary Table 2.  
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Histopathology and Multicolor-Immunofluorescence Staining  

Fixed liver tissues were embedded in paraffin, sectioned, and stained with 

immunofluorescent Abs to determine the distribution and frequency of tissue 

infiltrating CD3+CD8+ T cells and pRPS6Ser235/236+CD3+ T cells. 5 representative 

images (magnification, 400x) were captured from each mouse liver slide for 

quantitative analysis using ImageJ software V.1.47v (National Institute of 

Health).  

 

Serum Analysis  

Serum biochemistry was performed as described previously8. 

 

Gene Expression Analysis  

RNA isolation from liver, cDNA synthesis and real-time PCR were performed 

as described previously8. Gene expression was calculated relative to Hprt. 

Primer sequences are provided in Supplementary Table 3. 

 

Human T cell experiments  

3 independent experiments with peripheral T cells obtained from 3 PSC 

patients (also suffering from associated inflammatory bowel disease) and 3 

age and gender matched healthy volunteers and  were performed following 

the Declaration of Helsinki and approved by the Ethics Committee of the MUV: 

747/2011 and 2001/2018. Bulk T cells from peripheral blood mononuclear cells 

(PBMCs) were isolated by negative depletion29, labeled with 1μM CFSE and 

rested overnight in RPMI 1640 medium with 5% heat-inactivated FCS, 2mM 

L-glutamine, 100μg/ml streptomycin and 100U/ml penicillin. T cells were 

stimulated with plate-bound anti-CD3 (1μg/ml) plus soluble anti-CD28 

(0.5μg/ml) Abs ± NorUDCA or UDCA or Rapamycin. Lymphoblastogenesis, 

proliferation and activity of mTORC1 were assessed on day 3. Effector 

function of CD8+ T cells was assessed on day 6 on a Fortessa flow cytometer 

(BD Biosciences) and quantified according to the CFSE peaks with FlowJo 

(Tree Star)29. Clones/antibodies are shown in Supplementary Table 2. 

 

Quantification and statistical analysis  

All values are expressed as mean ± standard error of the mean and were 

statistically analyzed as detailed in the figure legends using GraphPad Prism 

v.7.0 (La Jolla, CA, USA). A P value of less than 0.5 was considered 

statistically significant and indicated as follows: *= P<0.05, **= P<0.01, ***= 

P<0.001, ****=P<0.0001. 
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Figure legends 

 

Fig. 1. NorUDCA suppresses cell size and frequency of intrahepatic 

effector CD8+ T cells in LCMV model. (A) Changes in body weight over time. 

(B) Serum liver enzymes ALT, AST, AP, BA. (C) Representative plots and 

quantitative analysis of intrahepatic virus-specific CD8+ T cells. (D) 

Representative plots of intrahepatic virus-specific CD8+ expressing cytolytic 

molecules. Quantitative analysis is shown alongside. (E) Liver LCMV virus titer. 

(F) Representative plots and quantitative analysis of intrahepatic CD8+ T 

lymphoblasts. (G) Representative high power field 

multicolor-immunofluorescence staining of CD3 and pRPS6Ser235/236 of liver 

slides of indicated groups. Data are summary of 3 independent experiments. 

At least 3 biologically independent animals were used per group during 

experiments. Quantitative data are presented as mean±SE. P values were 

calculated by one-way ANOVA corrected with Tukey post-hoc test and in A 

were calculated by two way ANOVA. *=P<0.05, **=P<0.01, ***=P<0.001, 

***=P<0.001, ****=P<0.0001. ALT, alanine aminotransferase; AST, aspartate 

transaminase; AP, alkaline phosphatase; BA, bile acid; PV, portal vein; Rapa, 

Rapamycin; Dapi, 4’, 6-diamidino-2-phenylindole; AF, Alexa Fluor. 

 

Fig. 2. NorUDCA exerts strong systemic immunometabolic modulatory 

properties in vivo. (A) Representative plots of virus-specific CD8+ T cells from 

peripheral blood and spleen. Quantitative analysis is shown alongside. (B) 

pRPS6Ser235/236 expression on blood CD8+ T cells. (d) Quantitative analysis of 

is shown alongside. (C) Representative high power field 

multicolor-immunofluorescence staining of CD3 and pRPS6Ser235/236 (upper) 

and CD3 and CD8 of lung slides of indicated groups. Data are pooled from 3 

independent experiments. At least 3 biologically independent animals were 

used per group during experiments. Quantitative data are presented as 

mean±SE. P values were calculated by one-way ANOVA corrected with Tukey 

post-hoc test. *=P<0.05, **=P<0.01, ***=P<0.001, ***=P<0.001, 

****=P<0.0001. 

 

Fig. 3. NorUDCA attenuates murine CD8+ T cells blasting and expansion 

with blunted mTORC1 signaling.  

 

(A) Primary murine CD8+ T cells were stimulated for 24h using anti-CD3 and 

anti-CD28 mAbs ± compound treatment as indicated. Histograms show CD25 

and CD69 expression. Quantification is shown alongside. (B) Graph 

represents calcium influx in activated CD8+ T cells ± NorUDCA. (C) Primary 

murine CD8+ T cells were stimulated for 36h under indicated condition. 

Numbers indicate frequencies of viable cells or lymphoblasts. Quantitative 

analysis is shown alongside. (D) Proliferation of primary murine CD8+ T cells 

treated as in (C) by dilution of intracellular proliferation dye. Numbers show 
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frequency of proliferated cells. Quantitative analysis is shown alongside. (E) 

Histograms depict pRPS6S235/236 in CD8+ T cells treated as in (C). Numbers in 

the histograms indicate frequencies of cells with high pRPS6S235/236 expression. 

Quantitative analysis is shown alongside. Data are representative of 3 

independent experiments. Quantitative data are presented as mean±SE. P 

values were calculated by one-way ANOVA corrected with Tukey post-hoc test. 

*=P<0.05, **=P<0.01. Unstim, unstimulated, Stim,stimulated, Rapa, 

Rapamycin. 

 

Fig. 4. NorUDCA demonstrates immunometabolic actions in modulating 

murine CD8+ T cell in vitro. (A) Quantitative RT-qPCR analysis of expression 

of indicated genes (normalized to Hprt and untreated groups) in primary 

murine CD8+ T cells stimulated for 24h ± compound treatments as indicated. 

(B) Representative histograms depicting GLUT1 extracellular expression of 

cells cultured as in (A) and treated as indicated. Quantitative analysis is shown 

alongside. (C) Quantification of intra- and extra-cellular output of lactate from 

cells cultured as in (A). (D) Real time changes in the extracellular acidification 

rate (ECAR; top) and oxygen consumption rate (OCR; bottom) of activated 

CD8+ T cells after treatment with oligomycin (Oligo), Carbonyl 

cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), and rotenone (Rot) ± 

NorUDCA. Data are either representative or show the summary of 3 

independent experiments. Summary data are presented as mean±SE. P 

values were calculated by one-way ANOVA corrected with Tukey post-hoc test. 

*= P<0.05, **=P<0.01. Rapa, Rapamycin. 

 

Fig. 5. NorUDCA shows similar impacts on CD8+ T cell proteomic profile 

and reduces mitoribosome protein abundance in CD8+ T cells like 

Rapamycin. (A) Scheme depicting the experimental approach. (B) 

Hierarchical cluster analysis of differentially regulated proteins under indicated 

conditions are shown in the heat map represented color-coded expression 

levels following Log2 value of ratio between protein content of NorUDCA- or 

Rapamycin-treated CD8+ T cells and that of untreated cells (n=3). (C) Venn 

diagrams display the overlap of identified proteins between NorUDCA and 

Rapamycin treated groups. (D) Heat map of mitoribosome protein abundance 

changes upon NorUDCA or Rapamycin treatment (both normalized to 

untreated group) of CD8+ T cells cultured as in (A). Data were obtained from 

proteomics analysis using biological replicates from 3 independent 

experiments. Asterisks next to protein labeling represent significance of 

comparison between NorUDCA and untreated groups. Data show the 

summary of 3 independent experiments. P values in were calculated by 

one-way ANOVA corrected with Tukey post-hoc test. P values in (D) were 

calculated among the comparison between untreated and NorUDCA by 

two-way Anova. *= P<0.05, **=P<0.01. Rapa, Rapamycin. 
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Fig. 6. NorUDCA reduces human CD8+ T cells lymphoblastogenesis and 

proliferation with suppressed mTORC1 kinase activities. (A) Peripheral 

human T cells from age and gender matched healthy volunteers and primary 

sclerosing cholangitis (PSC) patients were activated under indicated 

conditions. Representative plots showing lymphoblastogenesis on gated CD8+ 

T cells under indicated conditions. Numbers indicate frequencies of 

lymphoblasts. Quantitative analysis is shown alongside. (B) Plots display 

proliferation. Quantitative analysis is shown alongside. (C) pErk1/2T202/Y204 and 

pRPS6Ser235/236 on proliferated human CD8+ T cells as indicated. Numbers 

show frequency of positive cells. Quantitative analysis is shown alongside. 

Data are summary of 3 independent experiments. Quantitative data are 

presented as mean±SE. P values were calculated by one-way ANOVA 

corrected with Tukey post-hoc test. *=P<0.05, **=P<0.01, ***=P<0.001, 

***=P<0.001. Unstim, unstimulated, Stim,stimulated, PSC, primary sclerosing 

cholangitis, Rapa, Rapamycin. 
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