
1 

Transmission of one predicts another: Apathogenic proxies for transmission dynamics 1 

of a fatal virus 2 

 3 

Marie L.J. Gilbertson1†, Nicholas M. Fountain-Jones2*, Jennifer L. Malmberg3,4*, Roderick B. 4 

Gagne3,5, Justin S. Lee3, Simona Kraberger6, Sarah Kechejian3, Raegan Petch3, Elliott Chiu3, 5 

Dave Onorato7, Mark W. Cunningham8, Kevin R. Crooks9, W. Chris Funk10, Scott Carver2, Sue 6 

VandeWoude3, Kimberly VanderWaal1, Meggan E. Craft1,11  7 

†Corresponding author: jone1354@umn.edu 8 

*These authors contributed equally 9 

1Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55108. 10 

2School of Natural Sciences, University of Tasmania, Hobart Australia 7001. 11 

3Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort 12 

Collins, CO 80523 13 

4Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming 82071. 14 

5Wildlife Futures Program, Department of Pathobiology, University of Pennsylvania, 15 

Philadelphia, PA 19104 16 

6The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 17 

Tempe, Arizona, AZ 85287, USA 18 

7Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 19 

Naples, FL 34114. 20 

8Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 21 

Gainesville, FL 32601. 22 

9Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, 23 

CO 80523. 24 

10Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort 25 

Collins, CO 80523. 26 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.09.426055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426055


2 

11 Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108. 27 

 28 

Classification 29 

Biological Sciences: Ecology 30 

 31 

Keywords 32 

transmission tree; exponential random graph model; network modeling; disease model; Florida 33 

panther 34 

 35 

Abstract 36 

Identifying drivers of transmission prior to an epidemic—especially of an emerging pathogen—is 37 

a formidable challenge for proactive disease management efforts. To overcome this gap, we 38 

tested a novel approach hypothesizing that an apathogenic virus could elucidate drivers of 39 

transmission processes, and thereby predict transmission dynamics of an analogously 40 

transmitted virulent pathogen. We evaluated this hypothesis in a model system, the Florida 41 

panther (Puma concolor coryi), using apathogenic feline immunodeficiency virus (FIV) to predict 42 

transmission dynamics for another retrovirus, pathogenic feline leukemia virus (FeLV). We 43 

derived a transmission network using FIV whole genome sequences, and used exponential 44 

random graph models to determine drivers structuring this network. We used the identified 45 

drivers to predict transmission pathways among panthers; simulated FeLV transmission using 46 

these pathways and three alternate modeling approaches; and compared predictions against 47 

empirical data collected during a historical FeLV outbreak in panthers. FIV transmission was 48 

primarily driven by panther age class and distances between panther home range centroids. 49 

Prospective FIV-based predictions of FeLV transmission dynamics performed at least as well as 50 

simpler, often retrospective approaches, with evidence that FIV-based predictions could capture 51 

the spatial structuring of the observed FeLV outbreak. Our finding that an apathogenic agent 52 
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can predict transmission of an analogously transmitted pathogen is an innovative approach that 53 

warrants testing in other host-pathogen systems to determine generalizability. Use of such 54 

apathogenic agents holds promise for improving predictions of pathogen transmission in novel 55 

host populations, and can thereby revolutionize proactive pathogen management in human and 56 

animal systems.  57 

 58 

Significance Statement 59 

Predicting infectious disease transmission dynamics is fraught with assumptions which limit our 60 

ability to proactively develop targeted control strategies. We show that transmission of non-61 

disease causing (apathogenic) agents provides invaluable insight into drivers of transmission 62 

prior to outbreaks of more serious diseases. Integrating genomic and network approaches, we 63 

tested an apathogenic virus as a proxy for predicting transmission dynamics of a deadly virus in 64 

the Florida panther. We found that apathogenic virus-based predictions of pathogen 65 

transmission dynamics performed at least as well as simpler transmission models, and offered 66 

the advantage of prospectively identifying the underlying management-relevant drivers of 67 

transmission. Our innovative approach offers an opportunity to proactively design disease 68 

control strategies in at-risk animal and human populations.   69 

 70 

 71 

  72 
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Introduction 73 

Infectious disease outbreaks can have profound impacts on conservation, food security, 74 

and global health and economics. Mathematical models have proven a vital tool for 75 

understanding transmission dynamics of pathogens (1, 2), but struggle to predict the dynamics 76 

of novel or emerging agents (3, 4). This is at least partially due to the challenges associated 77 

with characterizing contacts relevant to transmission processes. Common modeling approaches 78 

that assume all hosts interact and transmit infections to the same degree ignore key drivers of 79 

transmission. Such drivers can include specific transmission-relevant behaviors including 80 

grooming or fighting in animals (5), concurrent sexual partnerships in humans (6), or assortative 81 

mixing (7), and result in flawed epidemic predictions (8, 9). Further, identifying drivers of 82 

transmission and consequent control strategies for any given pathogen is typically done 83 

reactively or retrospectively in an effort to stop or prevent further outbreaks or spatial spread 84 

(e.g. 10–12). These constraints limit the ability to perform prospective disease management 85 

planning tailored to a given target population, increasing the risk of potentially catastrophic 86 

pathogen outbreaks, as observed in humans (13–15), domestic animals (16, 17), and species of 87 

conservation concern including Ethiopian wolves (18), African lions (19), black-footed ferrets 88 

(20), and Florida panthers (21).  89 

A handful of studies have evaluated whether common infectious agents present in the 90 

healthy animal microbiome or virome can indicate contacts between individuals that may 91 

translate to interactions promoting pathogen transmission. Such an approach circumvents some 92 

of the uncertainties associated with more traditional approaches to contact detection (8). In 93 

these cases, genetic evidence from the transmissible agent itself is used to define between-94 

individual interactions for which contact was sufficient for transmission to occur. Results of such 95 

studies show mixed success (22–27). For example, members of the same household have been 96 

found to share microbiota (28, 29), but disentangling social mechanisms of this sharing is 97 

complicated by shared diets, environments, behaviors, etc. (30). In animals, studies of 98 
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Escherichia coli in Verreaux’s sifaka and giraffe have found strain sharing relationships to be 99 

tied to social interactions (22, 23), but the same was not found in a similar study of elephants 100 

(26).  101 

These studies have, however, revealed ideal characteristics of non-disease inducing 102 

infectious agents (hereafter, apathogenic agents) for use as markers of transmission-relevant 103 

interactions. Such apathogenic agents should have rapid mutation rates to facilitate discernment 104 

of transmission relationships between individuals over time (31, 32). Furthermore, these agents 105 

should be relatively common and well-sampled in a target population, have a well-characterized 106 

mode of transmission, and feature high strain alpha-diversity (local diversity) and high strain 107 

turnover (32, 33). RNA viruses align well with these characteristics (34, 35) such that 108 

apathogenic RNA viruses could act as “proxies” of specific modes of transmission (i.e., direct 109 

transmission) and indicate which drivers underlie transmission processes (36). Such drivers, 110 

including but not limited to host demographics, relatedness, specific behaviors, or space use, 111 

would subsequently allow prediction of transmission dynamics of pathogenic agents with the 112 

same mode of transmission (32).  113 

Here, we test the feasibility of this approach using a naturally occurring host-pathogen 114 

system to test if an apathogenic RNA virus can act as a proxy for direct transmission processes 115 

and subsequently predict transmission of a pathogenic RNA virus. Florida panthers (Puma 116 

concolor coryi) are an endangered subspecies of puma found only in southern Florida and have 117 

been extensively studied and monitored for almost four decades. We have documented that this 118 

population is infected by several feline retroviruses relevant to our study questions. Feline 119 

immunodeficiency virus (FIVpco; hereafter, FIV) occurs in approximately 50% of the population 120 

and does not appear to cause significant clinical disease (37). FIV is transmitted by close 121 

contact (i.e., fighting and biting), generally has a rapid mutation rate (intra-individual evolution 122 

rate of 0.00129 substitutions/site/year; 38), and, as a chronic retrovirus infection, can be 123 

persistently detected after the time of infection. Panthers are also affected by feline leukemia 124 
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virus (FeLV), also a retrovirus, which spills over into their population following exposure of 125 

panthers to infected domestic cats (39). Once spillover occurs, FeLV is transmitted between 126 

panthers by close contact and results in progressive, regressive, or abortive infection states 127 

(21). Progressive cases are infectious and result in mortality; regressive infections are not 128 

expected to be infectious—though this is unclear in panthers—and recover (21, 40, 41). 129 

Abortive cases clear infection and are not themselves infectious (41). A high mortality FeLV 130 

outbreak was documented among panthers in 2002-2004 and has been characterized in several 131 

studies (21, 39, 42).  132 

This well-observed historical outbreak is a key advantage of this naturally-occurring 133 

system, allowing us to compare our predictions against empirical observations. The objectives 134 

of this study were therefore: (1) to determine which factors shape FIV transmission in Florida 135 

panthers, and (2) test if these factors can predict transmission dynamics of analogously-136 

transmitted FeLV in panthers. Success of this approach in our model system would pave the 137 

way for testing similar apathogenic agents in other host-pathogen systems, thereby improving 138 

our ability to predict transmission dynamics of novel agents in human and animal populations. 139 

 140 

Methods 141 

Dataset assembly 142 

We assembled an extensive dataset covering almost 40 years of Florida panther 143 

research. Ongoing panther management has documented age and sex of monitored panthers. 144 

In addition, a subset of the population is monitored using very high frequency (VHF) telemetry 145 

collars, with relocations determined via aircraft typically three times per week. Previous panther 146 

research has generated a microsatellite dataset for monitored panthers (43), and a dataset of 147 

60 full FIV genomes (proviral DNA sequenced within a tiled amplicon framework in 44). In 148 

addition, the historical FeLV outbreak in panthers was well documented (21, 39), providing key 149 

observations regarding FeLV dynamics in free-ranging panthers. To augment these 150 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.09.426055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426055


7 

observations, we also used an FeLV database which documents FeLV status (positive and 151 

negative) for 31 panthers as determined by qPCR from 2002-04. 152 

 153 

FIV transmission inference 154 

 To determine drivers of FIV transmission, we first generated a “who transmitted to 155 

whom” transmission network using 60 panther FIV genomes collected from 1988 to 2011 (see 156 

Figure 1 for workflow across all analyses). We used the program Phyloscanner (45), which 157 

maximizes the information gleaned from next generation sequencing reads to infer transmission 158 

relationships. Phyloscanner operates in a two step process, first inferring within- and between-159 

host phylogenies in windows along the FIV genome, and then analysing those phylogenies to 160 

produce transmission trees or networks. For step one, we used 150bp windows, allowing 25bp 161 

overlap between windows. To test sensitivity to this choice, we separately ran a full 162 

Phyloscanner analysis with 150bp windows, but without overlap between windows 163 

(supplementary methods).  For step two, we held k, which penalizes within-host diversity, equal 164 

to 0. We used a patristic distance threshold of 0.05 and allowed missing and more complex 165 

transmission relationships. Because we had uneven read depth across FIV genomes, we 166 

downsampled to a maximum of 200 reads per host. The output of the full Phyloscanner analysis 167 

was a single transmission network (hereafter, main FIV network), but see supplementary 168 

methods for details regarding analysis of the sensitivity of our results to variations in and 169 

summary across multiple transmission networks (resulting in two summary FIV networks).  170 
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 171 

Figure 1: Conceptual workflow across all analysis steps. Processes are shown on the left in 172 

blue; specific outcomes are shown on the right in green; the final analysis outcome is in yellow 173 

at the bottom right. Solid lines show direct flows or outcomes. Dashed lines show processes 174 

acting on or in concert with prior outcomes: for example, exponential random graph modeling 175 

(ERGM) was performed using the FIV transmission network, and the combination of the two 176 

produced the ERGM coefficients outcome.   177 

 178 

Statistical analysis of FIV transmission networks 179 
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 We performed statistical analysis of unweighted, binary FIV transmission networks using 180 

exponential random graph models (ERGMs), which account for non-independence in network 181 

structure (46). The network structural terms we considered included an intercept-like edges term 182 

(46), geometrically weighted edgewise shared partner distribution (gwesp; representation of 183 

network triangles), alternating k-stars (altkstar; representation of star structures), and 2-paths (2 184 

step paths from i to k via j; (47).  185 

 The dyad-independent variables included panther sex (both as a node factor and node 186 

mixing variable; see supplementary methods for terminology and additional variable details). We 187 

assessed panther age as a categorical variable (both as a node factor and node mixing 188 

variable), with subadults classified as individuals between the ages of 6 months and two years, 189 

and adults classified as individuals over two years of age. We included pairwise genetic 190 

relatedness from panther microsatellite data as an edge covariate. Spatial variables included a 191 

node-matching variable for the location of panthers’ minimum convex polygon (MCP) home 192 

range centroid or capture location (hereafter centroid; see supplementary methods) north 193 

versus south of the major I-75 freeway. In addition, we included a node covariate term for the 194 

distance from the centroid to the nearest urban area (in km; USA Urban Areas layer, ArcGIS; 195 

(48). Pairwise geographic distances between panthers were calculated using distances between 196 

centroids (in km), and log-transformed for use as an edge covariate. Lastly, we included a 197 

spatial overlap edge covariate based on the pairwise utilization distribution overlap indices of 198 

95% home range kernels (49), using the adehabitat package in R (50).  199 

 Because ERGMs are prone to degeneracy with increasing complexity (46), we first 200 

performed forward selection for network structural variables, followed by forward selection of 201 

dyad-independent variables, while controlling for network structure. Model selection was based 202 

on AIC and goodness of fit, and MCMC diagnostics were assessed for the final model 203 

(supplementary methods).  204 

 205 
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Panther population simulations 206 

 To test if predictors of FIV transmission identified in the ERGM analysis can predict 207 

FeLV transmission, we next simulated FeLV transmission through a network which was based 208 

on these FIV predictors simulated populations representing panthers during the well-209 

characterized FeLV outbreak (2002-2004; 21). Hereafter, a full-simulation includes both 210 

simulation of the panther population and its network of likely transmission pathways during the 211 

historical outbreak period and simulation of FeLV transmission within that population. Below, we 212 

describe the process for a single simulation, but these procedures were repeated for each full 213 

simulation.  214 

 We first based the simulated population size on the range of empirical estimates from 215 

2002-2004 (51). Additional characteristics of the simulated population included those identified 216 

as significant variables in the ERGM analysis, which were: age category and pairwise 217 

geographic distances between panther home range centroids. We randomly assigned age 218 

categories to the simulated population based on the proportion of adults versus subadults. Age 219 

proportions were based on age distributions in the western United States (52) which 220 

qualitatively align with the historically elevated mean age of the Florida panther population (53). 221 

Pairwise geographic distances for the simulated population were generated by randomly 222 

assigning simulated home range centroids based on the distribution of observed centroids on 223 

the landscape (supplementary methods).  224 

 We then used ERGM coefficients to generate network edges in the simulated panther 225 

population representing potential transmission pathways between panthers. The FIV 226 

transmission network spanned 15 years of observations and represents a subset of the actual 227 

contact network, as it includes only those interactions that resulted in successful transmission 228 

(54). We therefore had a high degree of uncertainty regarding the appropriate network density 229 

for our simulations. To manage this uncertainty, we constrained density in our network 230 

simulations across a range of parameter space (net_dens, Table 1).  231 
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 232 

Table 1: Network and transmission simulation parameters 233 

Parameter Definition Range Reference 

Pop_size Population size 80-120 (51) 

Adult_prop Proportion adults versus subadults 0.82-0.99 (52) 

Net_dens Simulated network density 0.05-0.15 NA 

β 
Probability of transmission from progressives, 
given effective contact 0.17-0.29 (55) 

C 
Constant multiplier for probability of transmission 
from regressives, given effective contact 0, 0.1, 0.5, 1 NA 

⍵ Weekly probability of contact 0.1-0.4 (56) 

𝜇 
Weekly probability of death from progressive 
infection 1/18, 1/26* (21) 

K 
Constant multiplier for weekly probability of 
recovery from regressive infection 0.5, 1 NA 

𝜈 
Weekly probability of territory repopulation 
("respawn rate") 1/12-1/4 NA 

𝜏 Weekly probability of vaccination 0.5-1 NA 

ve Probability of vaccine efficacy 0.4-1 (21) 

P 
Proportion randomly assigned to progressive, 
regressive 0.25 (21) 

Note: Parameter gives parameter symbols or abbreviations; definition gives the description for 234 

each parameter. Range shows the continuous range or discrete values sampled from in 235 

simulations, with references giving literature supporting ranges or values. *We tested a lower 236 

death rate (prolonged duration of infection) due to the low number of observed panther cases 237 

and the generally longer infection duration in domestic cats (40).  238 

 239 

Simulation of FeLV transmission on FIV-based networks 240 

 The next step in each full simulation was to model FeLV transmission on the network 241 

generated from FIV predictors of transmission. FeLV transmission was based on a chain 242 

binomial process on the simulated networks, following a modified SIR compartmental model 243 
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(Figure 2). Simulations were initiated with one randomly selected infectious individual and 244 

proceeded in weekly time steps. Transmission simulations lasted until no infectious individuals 245 

remained or until 2.5 years, whichever came first.  246 

 247 

 248 

Figure 2: Diagram of flows of individuals between compartments in transmission model. Virus 249 

icons indicate infectious states, with the regressive infection icon darkened to represent reduced 250 

or uncertain infectiousness of this class. Note: a vaccination process was also included in the 251 

transmission model, but is not shown for simplicity. With vaccination, susceptibles could be 252 

vaccinated, and vaccinated individuals subsequently infected analogously to susceptibles, but 253 

with an additional probability of (1-ve). See Table 1 for definitions of parameters. 254 

  255 

 Transmission (Figure 2) was dependent on the following: (1) existence of an edge 256 

between two individuals, (2) the dyad in question involving a susceptible and infectious 257 

individual, and (3) a random binomial draw based on the probability of transmission given 258 

contact (β, Table 1). In addition, puma concolor generally have low expected weekly contact 259 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.09.426055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426055


13 

rates (56); we therefore included an additional weekly contact probability, represented as a 260 

random binomial draw for contact in a given week (⍵, Table 1).  261 

Upon successful transmission, infectious individuals were randomly assigned to one of 262 

three outcomes of FeLV infection (21). Progressive infections (probability P, Table 1) are 263 

infectious, develop clinical disease, and die due to infection at a mortality rate, ??. Regressive 264 

infections (also probability P) recover at a rate based on a constant, K, multiplied by the 265 

mortality rate of progressives (Table 1). Anecdotal evidence suggests regressive individuals are 266 

not infectious (21), but given ongoing uncertainty, we allowed regressives to be infectious by 267 

multiplying the probability of transmission for progressives (β) by a constant, C (Table 1). 268 

Abortive infections (probability 1-2P) are never infectious, clearing infection and joining the 269 

recovered class.  270 

A vaccination process was included in simulations as panthers were vaccinated against 271 

FeLV during the historical FeLV outbreak starting in 2003. Vaccination occurred at a rate, 𝜏, and 272 

applied to the whole population, as wildlife managers are unlikely to know if a panther is 273 

susceptible at the time of capture or darting. However, only susceptible individuals transitioned 274 

to the vaccinated class (i.e. vaccination failed in non-susceptibles). Because panthers were 275 

vaccinated in the empirical outbreak with a domestic cat vaccine with unknown efficacy in 276 

panthers, we allowed vaccinated individuals to become infected in transmission simulations by 277 

including a binomial probability for vaccine failure (1-vaccine efficacy, ve, Table 1).  278 

 The panther population size remained roughly static through the course of the FeLV 279 

outbreak (51, 57). We therefore elected not to include background mortality, but did include 280 

infection-induced mortality. To maintain a consistent population size, we therefore included a 281 

birth/recruitment process. Because FIV-based simulated networks drew edges based on 282 

population characteristics, we treated births as a “respawning” process, in which territories 283 

vacated due to mortality were reoccupied by a new susceptible at rate, 𝜈. This approach allowed 284 
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us to maintain the ERGM-based network structure and is biologically reasonable, as vacated 285 

panther territories are unlikely to remain unoccupied for long.  286 

 FeLV infection is uncommon in puma as a species, resulting in a high degree of 287 

uncertainty regarding differences in within-individual infection dynamics in panthers (e.g., 288 

epidemiological parameters such as infectious period). Given these uncertainties, we performed 289 

all simulations across a range of parameter space. To more efficiently cover this parameter 290 

space, we generated parameter sets using a Latin hypercube design (LHS), using the lhs 291 

package in R (58). We generated 150 parameter sets, conducting 50 full simulations per 292 

parameter set.  293 

 294 

Comparison of simulation predictions to observed FeLV outbreak 295 

 We compared FIV-based simulation predictions to the observed FeLV outbreak as well 296 

as predictions from three simpler types of models: random networks, home range overlap-based 297 

networks, and a well-mixed model. All models used the parameterizations from our LHS 298 

parameter sets, as relevant.  299 

 For our random networks model, we generated Erdős-Rényi random networks, with the 300 

simulated network densities from our LHS parameter sets (Table 1). Overlap-based networks 301 

were generated using the degree distributions of panther home range overlap networks from 302 

2002-2004 and simulated annealing with the R package statnet (59, 60; supplementary 303 

methods). These overlap-based networks were not spatially explicit, as they were based only on 304 

the degree distributions from real spatial overlap networks. For both random and overlap-based 305 

networks, FeLV transmission was simulated as in the FIV-based simulations. The well-mixed 306 

model was a Gillespie algorithm (stochastic, continuous time compartmental model), with rate 307 

functions aligning with the chain binomial FeLV transmission probabilities (supplementary 308 

methods). 309 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 19, 2021. ; https://doi.org/10.1101/2021.01.09.426055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426055


15 

 Target ranges for predicted outcomes were based on observed FeLV dynamics (21), 310 

with ranges to account for uncertainty in observations and population size in this cryptic species 311 

(supplementary methods). The primary outcomes of interest were (1) duration of outbreak: 78-312 

117 weeks, (2) total number of progressive infections: 5-20, and (3) presence of spatial 313 

clustering (see below). While our primary focus was progressive infections, we also included an 314 

expectation that at least 5 individuals were abortive infections. Empirically, these individuals 315 

were the most numerous, but as they were not clinically ill, abortive infections were less likely to 316 

be detected in normal panther management; we therefore did not include an upper bound for 317 

this target.  318 

Using our database of qPCR results for FeLV in panthers (positive and negative tests), 319 

we performed a local spatial clustering analysis of FeLV cases and controls using SaTScan 320 

(50% maximum, circular window; 61), and a global cluster analysis with Cuzick and Edward’s 321 

test in the R package smacpod (1, 3, 5, 7, 9, and 11 nearest neighbors; 999 iterations; 62, 63). 322 

These analyses found evidence of local (weak) and global clustering (at 3, 5, and 7 323 

neighborhood levels) among progressive and regressive cases (see results, supplementary 324 

methods and results). In simulations, we therefore included spatial clustering of progressive and 325 

regressive cases as a target outcome.  326 

 For the duration of outbreaks and total number of progressives, we calculated median 327 

values of both outcomes for each parameter set (i.e., 50 simulations) within each model type. If 328 

a parameter set’s medians were within the target ranges for both of these outcomes, it was 329 

considered feasible. To quantify differences in model prediction performance, we fit a binomial 330 

generalized linear mixed model (GLMM), assuming a logistic regression with “feasible” (vs 331 

“unfeasible”) as the outcome, model type as a predictor variable, and a random intercept for 332 

LHS parameter set.  333 

 To determine if simulated results demonstrated spatial clustering, we performed 334 

SaTScan spatial cluster analysis (50% maximum, circular window) and Cuzick and Edward’s 335 
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tests (at 3, 5, and 7 nearest neighbors) on simulation results. Only FIV-based simulations were 336 

spatially explicit, and we performed spatial analyses only on those parameter sets that were 337 

classified as feasible. To determine if any detected clustering in FIV simulations was simply 338 

based on our respawning protocol, we also performed both spatial analyses with feasible 339 

overlap-based simulation results. For these, we assigned the same geographic locations to 340 

nodes in the overlap-based networks from the corresponding FIV-based networks (i.e., 341 

matching simulation number from matching parameter set). 342 

 343 

Results 344 

FIV transmission network analysis 345 

 The main FIV network included 19 nodes (individuals) with 42 edges (representing 346 

potential transmission events; network density = 0.25) after removing 9 edges that were 347 

between individuals known not to be alive at the same time (Figure S1). ERGM results for the 348 

main FIV network identified geometrically weighted edgewise shared partner distribution 349 

(gwesp) and alternating k-stars (altkstar) as key structural variables, and age category (as a 350 

node-level factor) and log transformed pairwise geographic distance as key dyad-independent 351 

variables (Table 2). Though altkstar was not statistically significant, inclusion of this variable 352 

contributed to improved AIC and goodness of fit outcomes. Adults were more likely to be 353 

involved in transmission events (but see discussion of sample size limitations) and inferred 354 

transmission events were more likely between individuals which were geographically closer to 355 

each other. The fitted model showed reasonable goodness of fit (Figure S2). ERGM results 356 

were largely consistent across two replicate analyses with alternative transmission networks 357 

formed by summarizing across four single Phyloscanner outputs (see supplementary results for 358 

further details). 359 

 360 

Table 2: Main FIV transmission network exponential random graph model results 361 
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Variable Estimate SE p-value 

Edges (intercept) -2.56 1.33 0.055 

gwesp 0.98 0.26 <0.001 

altkstar -0.70 0.96 0.47 

Age (Adult) 0.93 0.44 0.03 

Log pairwise distance -0.45 0.21 0.03 

Note: “gwesp” is geometrically weighted edgewise shared partner distribution and “altkstar” is 362 

alternating k-stars. Age classes were subadult and adult; pairwise distances were between 363 

home range centroids. Only those variables from the final model are shown. Estimates shown 364 

are untransformed; SE represents standard error; p-values less than 0.05 were considered 365 

statistically significant.  366 

 367 

FeLV simulations 368 

  SaTScan analysis of observed FeLV status found weak evidence of local spatial 369 

clustering (two clusters detected, but not statistically significant with p=0.165 and 0.997, 370 

respectively; Figure S4). Cuzick and Edward’s tests found evidence of global clustering at 3, 5, 371 

and 7 nearest neighbor levels (test statistic Tk where k is number of nearest neighbors 372 

considered: T3 = 20, p = 0.049; T5 = 32, p = 0.028; T7 = 43, p = 0.023). Both sets of spatial 373 

analysis results were then compared against FeLV predictions from FIV and overlap-based 374 

models.  375 

About 9% of parameter sets across all model types were classified as feasible (Figures 376 

3, S5-S6). The GLMM for model type performance (i.e., FIV-based, random, overlap-based, or 377 

well-mixed) did not find statistically significant differences between odds of generating feasible 378 

simulation outcomes, though the FIV-based model had the highest odds of feasibility 379 

(exponentiated estimate = 1.55, though p  = 0.30; Table S2). Feasible parameter sets from both 380 
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the FIV-based and overlap-based models produced some evidence of local and global spatial 381 

clustering of simulated FeLV cases (Figures 4, S7). However, the FIV-based model was better 382 

able to capture the size and strength (observed/expected FeLV cases) of predicted local 383 

clusters (Figure 4) and was moderately better at capturing global spatial patterns (Figure S7).  384 

In order to determine if certain transmission parameters were particularly important for 385 

feasible performance, we performed post hoc random forest analyses using the R package 386 

randomForest (64, 65) for each of the four model types (see supplementary results). While 387 

random forests typically showed poor balanced accuracy and area under the curve (AUC) 388 

results, the parameter shaping transmission from regressively infected individuals (C), showed 389 

support for weak to moderate transmission from regressives (i.e., C = 0.1 or 0.5; Figure S10).  390 

 391 

 392 

Figure 3: FIV-based networks perform at least as well as other models in predicting number of 393 

progressive infections, as seen in violin plots of median total number of progressive infections 394 
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from parameter sets classified as “feasible.” To be feasible, medians needed to fall between 5 395 

and 20 progressive infections, while also having median epidemic duration between 78-117 396 

weeks, and a median of at least 5 abortive infections. Gray points show median values from 397 

each feasible parameter set; black points are the median value within each violin plot. Model 398 

types are given on the x-axis.  399 

 400 

 401 

 402 

Figure 4: SaTScan cluster analysis for feasible FIV-based and overlap-based network 403 

simulations show stronger agreement between empirical observations (red horizontal lines) and 404 

FIV-based predictions for (A) predicted FeLV cluster size and (B) Observed/Expected FeLV 405 

cases associated with the top detected cluster. Shown are feasible simulation results in which at 406 

least one cluster was detected with p-value less than or equal to 0.1; further, only the results 407 

from the top cluster are shown. 408 

 409 
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Discussion 410 

 In this study we develop a new approach whereby we leveraged knowledge of 411 

transmission dynamics of a common apathogenic agent to prospectively predict dynamics of an 412 

uncommon and virulent pathogen. Our approach was distinctly different from simpler models we 413 

tested, as the apathogenic (FIV)--based approach could be used to prospectively identify 414 

predictors of transmission and develop disease control plans prior to an outbreak of a virulent 415 

pathogen (FeLV), while other approaches either make broad assumptions about transmission-416 

relevant contacts (e.g., homogeneous mixing), or rely on retrospective or reactive modeling. We 417 

found that FIV transmission in panthers is primarily driven by distance between home range 418 

centroids and age class, and that our prospective FIV-based approach predicted FeLV 419 

transmission dynamics at least as well as simpler or more reactive approaches. While we do not 420 

propose that this apathogenic agent approach could accurately predict exactly when, where, 421 

and to whom transmission might occur, our results support the role of apathogenic agents as 422 

novel tools for prospectively identifying relevant drivers of transmission and consequently 423 

improving proactive disease management.   424 

 425 

Pairwise geographic distances and panther age class predict FIV transmission 426 

 Combining genomic and network approaches, we determined that pairwise geographic 427 

distances and age category structure FIV transmission in the Florida panther. Because FIV is a 428 

persistent infection, we would expect cumulative risk of transmission to increase over an 429 

individual’s lifetime and adults would consequently be involved in more transmission events. 430 

The low number of subadult individuals in our dataset, however, means that this finding must be 431 

interpreted with caution.  432 

 Panthers are wide-ranging animals but maintain home ranges, and this appears to 433 

translate to increased transmission between individuals that are close geographically. This 434 

finding is further supported by the tendency for FIV phylogenies to show distinct geographic 435 
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clustering (66, 67), but is in contrast to other infectious agents of puma. An additional feline 436 

retrovirus, feline foamy virus (FFV), does not show distinct geographic clustering but is 437 

commonly transmitted between domestic cats and puma (68). A prior study of several 438 

pathogens in puma across the United States rarely identified spatial autocorrelation in pathogen 439 

exposures, but notably found that FIV infection status approached statistical significance 440 

specifically in Florida panthers (69). The wide-ranging nature of puma appears to limit 441 

geographic clustering of many infectious agents, with FIV a notable exception to this pattern. 442 

Multi-host agents such as FFV are presumably more able to escape geographical limitations 443 

and/or may be transmitted prior to dispersal and thereby lack spatial structuring. More generally, 444 

the importance of distance rather than panther relatedness in structuring transmission may 445 

support the resource dispersion or land tenure hypotheses as drivers of spatial and social 446 

structuring in panthers, rather than kinship. The high inbreeding among panthers (53) may limit 447 

our power for identifying a relationship between relatedness and FIV transmission, but support 448 

for resource dispersion or land tenure would be in agreement with findings in other puma 449 

systems (70) and even other territorial carnivores (71). 450 

Surprisingly, sex was not a significant predictor of FIV transmission. FIV force of 451 

infection is generally higher in male panthers, likely due to their increased fighting behaviors 452 

(72). However, studies in other felid species have found mixed importance of sex for FIV 453 

transmission, ranging from little to no importance (puma in the western United States: 73; 454 

bobcat: 74) to importance only among certain FIV subtypes (African lions: 75). Our results add 455 

to this body of research to suggest that the relationship between host sex and FIV transmission 456 

is more complex than can be explained by sex-specific behaviors or susceptibility alone. 457 

 458 

An FIV-based model captures FeLV transmission dynamics 459 

 In our study, a network model based on principles of FIV transmission produced FeLV 460 

outbreak predictions consistent with the observed FeLV outbreak. The FIV-based approach 461 
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performed at least as well as simpler models, per our GLMM analysis, with evidence that FIV 462 

better predicted the observed spatial dynamics for FeLV transmission. A key difference between 463 

the FIV-based approach and other spatially-explicit methods is that FIV allowed us to determine 464 

the importance of spatial dynamics prospectively and then translate to predictions of FeLV 465 

transmission, rather than relying on retrospective FeLV spatial analyses. Furthermore, while 466 

more complex potential drivers of transmission (e.g., host relatedness or assortative mixing by 467 

age or sex) were not found to be important for FIV transmission, these may yet be key factors 468 

structuring transmission in other systems. Simpler model types like random networks or 469 

metapopulation models may struggle to make transmission predictions that incorporate these 470 

factors as drivers of transmission-relevant contact. The predictive power we observed here 471 

using an apathogenic virus could thus significantly shape proactive epidemic management 472 

strategies for pathogens such as FeLV. 473 

 FIV and FeLV have different epidemiologies (e.g., progressive versus regressive 474 

infections, duration of infectiousness); despite this, FIV-based predictors of transmission were 475 

able to capture dynamics of FeLV transmission. Here, FIV determined the key drivers of close, 476 

direct contact transmission in panthers, fundamentally acting as a proxy for this type of contact. 477 

FeLV simulations were then able to independently account for differences in epidemiology to 478 

produce appropriate predictions for a different but analogously transmitted virus. Key 479 

components of this success are likely that (1) FIV is a largely species-specific virus with 480 

transmission pathways closely matching intra-species transmission of FeLV, and (2) both FIV 481 

and FeLV, perhaps unusually for infectious agents of puma, display spatial clustering of 482 

infection. If, for example, FIV also exhibited strong vertical or environmental transmission, we 483 

would no longer expect the predictive success for FeLV we observed here.  484 

Domestic cats are the reservoir host for FeLV (39) and panthers are subject to repeated 485 

spillover events from domestic cats (42). Determining the predictors and frequency of these 486 

spillover events would be less feasible with FIVpco, which adapted to the puma host (76–78). 487 
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Rather, targeted investigation of spillover dynamics could draw on studies of other apathogenic 488 

viral candidates that are frequently transmitted from domestic cats to puma, such as FFV (68). 489 

Using such agents to identify drivers of spillover events could be key for better understanding 490 

the dynamics of “pathogen release from reservoir hosts” (4), which is of profound relevance 491 

across wildlife, domestic animal, and human systems.  492 

While few parameter sets were classified as feasible across all model types, this 493 

appears to be predominantly the result of the wide range of parameter space explored through 494 

our LHS sampling design. This limitation was fundamentally due to uncertainties in FeLV 495 

transmission parameters, and is representative of the uncertainties experienced in predicting 496 

transmission of emerging or understudied pathogens. Key here were the interacting 497 

uncertainties regarding infectiousness of regressives, the number of introductions of FeLV to the 498 

panther population, and the duration of FeLV infection in panthers. All three of these dynamics 499 

can have significant impacts on the duration of a simulated epidemic, allowing an epidemic to 500 

continue to “stutter” along at low levels (79), much as was observed in the empirical FeLV 501 

outbreak. Our post hoc random forest analysis provided some evidence of weak transmission 502 

from regressive individuals, but this finding would need to be validated with additional research, 503 

as it is in stark contrast to FeLV dynamics in domestic cats. Reducing uncertainties in these 504 

three key dynamics would significantly narrow the range of our predictions, and even assist in 505 

ongoing management efforts for FeLV in endangered panthers.  506 

 Furthermore, the effect of transmission parameter uncertainties underscores the 507 

importance of linking laboratory and model-based research to generate more accurate 508 

transmission forecasts (80). Experimental research could help to narrow the range of parameter 509 

space for FeLV—or other emerging pathogens—to produce more consistent and accurate 510 

model predictions. This necessity is all the more apparent during the current COVID-19 511 

pandemic, in which mathematical models have benefited from rapid laboratory and 512 

epidemiological research to reduce uncertainty in model parameters.  513 
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 514 

Limitations and future directions 515 

 This study found evidence for the utility of an apathogenic agent to predict transmission 516 

of a related pathogenic agent, but this approach must now be tested in additional host-pathogen 517 

systems. The mixed results when using commensal agents to identify close social relationships 518 

in other systems (22–27) highlights that some host-apathogenic agent combinations will work 519 

better than others for determining drivers of transmission. More research is therefore necessary 520 

to determine which apathogenic agents may be most suitable as markers of transmission, and 521 

how divergent an apathogenic agent may be from a pathogen of interest while still predicting 522 

transmission dynamics.   523 

 The suite of tools for inferring transmission networks from infectious agent genomes is 524 

rapidly expanding (31, 81). In this study, we used the program Phyloscanner as it maximized 525 

the information from our next generation sequencing viral data. However, our FIV sequences 526 

were generated within a tiled amplicon framework (44, 82), which biases intrahost diversity and 527 

likely limits viral haplotypes (83). Phyloscanner was originally designed to analyze RNA from 528 

virions and not proviral DNA, as we have done here. We have attempted to mitigate the effects 529 

of these limitations by analyzing several different Phyloscanner outputs to confirm consistency 530 

in our results, and by using only binary networks to avoid putting undue emphasis on 531 

transmission network edge probabilities, as these are likely highly uncertain. Further, our 532 

primary conclusions from the transmission networks—that age and pairwise distance are 533 

important for transmission—are biologically plausible and supported by other literature, as 534 

discussed above. Nevertheless, future work should evaluate additional or alternative 535 

transmission network inference platforms. 536 

In addition, ERGMs assume the presence of the “full network” and it is as yet unclear 537 

how missing data may affect transmission inferences (46). ERGMs are also prone to 538 

degeneracy with increased complexity and do not easily capture uncertainty in transmission 539 
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events, as most weighted network ERGM (or generalized ERGM) approaches have been 540 

tailored for count data (e.g., 84). ERGMs may therefore not be the ideal solution for identifying 541 

drivers of transmission networks in all systems. Alternatives may include advancing dyad-based 542 

modeling strategies (85), which may more easily manage weighted networks and instances of 543 

missing data.  544 

 Our FIV-based approach required extensive field sampling, and many disciplines from 545 

viral genomics through simulation modeling. However, with increasing availability of virome data 546 

and even field-based sequencing technology, our approach may become more accessible with 547 

time. Further, the predictive benefits seen here, while needing further testing and validation, 548 

could become a key strategy for proactive pathogen management in species of conservation 549 

concern, populations of high economic value (e.g. production animals), or populations at high 550 

risk of spillover, all of which may most benefit from rapid, efficient epidemic responses.  551 

 552 

Conclusions 553 

 Here, we integrated genomic and network approaches to identify drivers of FIV 554 

transmission in the Florida panther. This apathogenic agent acted as a marker of close, direct 555 

contact transmission, and was subsequently successful in predicting the observed transmission 556 

dynamics of the related pathogen, FeLV. Further testing of apathogenic agents as markers of 557 

transmission and their ability to predict transmission of related pathogenic agents is needed, but 558 

holds great promise for revolutionizing proactive epidemic management across host-pathogen 559 

systems.  560 
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