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Abstract 29 

Identifying drivers of transmission prior to an epidemic—especially of an emerging pathogen—is 30 

a formidable challenge for proactive disease management efforts. We tested a novel approach 31 

in the Florida panther, hypothesizing that apathogenic feline immunodeficiency virus (FIV) 32 

transmission could predict transmission dynamics for pathogenic feline leukemia virus (FeLV). 33 

We derived a transmission network using FIV whole genome sequences, and used exponential 34 

random graph models to determine drivers structuring this network. We used these drivers to 35 

predict FeLV transmission pathways among panthers and compared predicted outbreak 36 

dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by 37 

panther age class and distances between panther home range centroids. Prospective FIV-38 

based modeling predicted FeLV dynamics at least as well as simpler, often retrospective 39 

approaches, with evidence that FIV-based predictions captured the spatial structuring of the 40 

observed FeLV outbreak. Our finding that an apathogenic agent can predict transmission of an 41 

analogously transmitted pathogen is an innovative approach that warrants testing in other host-42 

pathogen systems to determine generalizability. Use of such apathogenic agents holds promise 43 

for improving predictions of pathogen transmission in novel host populations, and could thereby 44 

provide new strategies for proactive pathogen management in human and animal systems.  45 
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Introduction 53 

Infectious disease outbreaks can have profound impacts on conservation, food security, 54 

and global health and economics. Mathematical models have proven a vital tool for 55 

understanding transmission dynamics of pathogens [1], but struggle to predict the dynamics of 56 

novel or emerging agents [2]. This is at least partially due to the challenges associated with 57 

characterizing contacts relevant to transmission processes. Common modeling approaches that 58 

assume all hosts interact and transmit infections to the same degree ignore key drivers of 59 

transmission. Such drivers can include specific transmission-relevant behaviors including 60 

grooming or fighting in animals [3], concurrent sexual partnerships in humans [4], or homophily 61 

[5], and result in flawed epidemic predictions [6,7]. Further, identifying drivers of transmission 62 

and consequent control strategies for any given pathogen is typically done reactively or 63 

retrospectively in an effort to stop or prevent further outbreaks or spatial spread (e.g. [8,9]). 64 

These constraints limit the ability to perform prospective disease management planning tailored 65 

to a given target population, increasing the risk of potentially catastrophic pathogen outbreaks, 66 

as observed in humans [10], domestic animals [11], and species of conservation concern (e.g., 67 

[12–14]).  68 

A handful of studies have evaluated whether common infectious agents present in the 69 

healthy animal microbiome or virome can indicate contacts between individuals that may 70 

translate to interactions promoting pathogen transmission [15–22]. Such an approach 71 

circumvents some of the uncertainties associated with more traditional approaches to contact 72 

detection [6]. In these cases, genetic evidence from the transmissible agent itself is used to 73 

define between-individual interactions for which contact was sufficient for transmission to occur. 74 

Results of such studies show mixed success [15–18]. For example, members of the same 75 

household [19,20] or animals with close social interactions [21,22] have been found to share 76 

microbiota, but disentangling social mechanisms of this sharing is complicated by shared diets, 77 

environments, and behaviors [23].  78 
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These studies have, however, revealed ideal characteristics of non-disease inducing 79 

infectious agents (hereafter, apathogenic agents) for use as markers of transmission-relevant 80 

interactions. Such apathogenic agents should have rapid mutation rates to facilitate discernment 81 

of transmission relationships between individuals over time [24,25]. Furthermore, these agents 82 

should be relatively common and well-sampled in a target population, have a well-characterized 83 

mode of transmission that is similar to the pathogen of interest, and feature high strain alpha-84 

diversity (local diversity) and high strain turnover [25,26]. RNA viruses align well with these 85 

characteristics [27] such that apathogenic RNA viruses could act as “proxies” of specific modes 86 

of transmission (i.e., direct transmission) and indicate which drivers underlie transmission 87 

processes. Such drivers, including but not limited to host demographics, relatedness, specific 88 

behaviors, or space use, would subsequently allow prediction of transmission dynamics of 89 

pathogenic agents with the same mode of transmission [25].  90 

Here, we test the feasibility of this approach using a naturally occurring host-pathogen 91 

system to test if an apathogenic RNA virus can act as a proxy for direct transmission processes 92 

and subsequently predict transmission of a pathogenic RNA virus. Florida panthers (Puma 93 

concolor coryi) are an endangered subspecies of puma found only in southern Florida. We have 94 

documented that this population is infected by several feline retroviruses relevant to our study 95 

questions [28,29]. Feline immunodeficiency virus (FIVpco; hereafter, FIV) occurs in 96 

approximately 50% of the population and does not appear to cause significant clinical disease 97 

[28]. FIV is transmitted by close contact (i.e., fighting and biting), generally has a rapid mutation 98 

rate (intra-individual evolution rate of 0.00129 substitutions/site/year; [30]), and, as a chronic 99 

retroviral infection, can be persistently detected after the time of infection. Panthers are infected 100 

with feline leukemia virus (FeLV), also a retrovirus, which caused a well documented, high 101 

mortality outbreak among panthers in 2002-2004 [29]. FeLV infrequently spills over into 102 

panthers following exposure to infected domestic cats [31]. Once spillover occurs, FeLV is 103 

transmitted between panthers by close contact and results in one of three infection states: 104 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.01.09.426055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426055


5 

progressive, regressive, or abortive infection [29]. Progressive cases are infectious and result in 105 

mortality; regressive infections are unlikely to be infectious—though this is unclear in panthers—106 

and recover [29,32,33]. Abortive cases clear infection and are not themselves infectious [32].  107 

The objectives of this study were therefore: (1) to determine which drivers shape FIV 108 

transmission in Florida panthers, and (2) test if these drivers can predict transmission dynamics 109 

of analogously transmitted FeLV in panthers. Success of this approach in our model system 110 

would pave the way for testing similar apathogenic agents in other host-pathogen systems, 111 

thereby improving our understanding of drivers of individual-level heterogeneity in transmission, 112 

and consequently our ability to predict transmission dynamics of novel agents in human and 113 

animal populations. 114 

 115 

Methods 116 

Dataset assembly 117 

We assembled an extensive dataset covering almost 40 years of Florida panther 118 

research and including panther sex and age class. A subset of the population is monitored using 119 

very high frequency (VHF) telemetry collars, with relocations determined via aircraft typically 120 

three times per week. Previous panther research has generated a microsatellite dataset for 121 

monitored panthers [34], and a dataset of 60 full FIV genomes (proviral DNA sequenced within 122 

a tiled amplicon framework in [35]). In addition, to augment observations from the 2002-04 FeLV 123 

outbreak [29], we leveraged an FeLV database which documents FeLV status (positive and 124 

negative) for 31 panthers from 2002-04 as determined by qPCR. 125 

 126 

FIV transmission inference 127 

 To determine drivers of FIV transmission, we first generated a “who transmitted to 128 

whom” transmission network using 60 panther FIV genomes collected from 1988 to 2011 129 

(average of minimum annual panther counts across this period was 62.3 panthers; [36]). We 130 
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used the program Phyloscanner [37] (see Figure 1 for workflow across all analyses), which 131 

assumes both within- and between-host evolution when inferring transmission relationships 132 

between sampled and even unsampled hosts [37]. Phyloscanner operates in a two step 133 

process, first inferring within- and between-host phylogenies in windows along the FIV genome. 134 

Then, using the within-host viral diversity gleaned from deep sequencing, Phyloscanner 135 

functionally performs ancestral state reconstruction to infer transmission relationships between 136 

hosts, outputting transmission trees or networks. For Phyloscanner’s step one, we used 150bp 137 

windows, allowing 25bp overlap between windows. To test sensitivity to this choice, we 138 

separately ran a full Phyloscanner analysis with 150bp windows, but without overlap between 139 

windows (supplementary methods). The tiled amplicon PCR approach used to generate our FIV 140 

genomic data biases for detection of one known variant, such that we did not expect detectable 141 

superinfections. In the second step of Phyloscanner, we therefore held the parameter which 142 

penalizes within-host diversity (k) equal to 0. We used a patristic distance threshold of 0.05 and 143 

allowed missing and more complex transmission relationships. Because we had uneven read 144 

depth across FIV genomes, we downsampled to a maximum of 200 reads per host. The output 145 

of the full Phyloscanner analysis was a single transmission network (hereafter, main FIV 146 

network), but see supplementary methods for details regarding analysis of the sensitivity of our 147 

results to variations in and summary across multiple transmission networks. 148 

 149 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.01.09.426055doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.09.426055


7 

 150 

Figure 1: Conceptual workflow across all analysis steps. Processes are shown on the left in 151 

blue; specific outcomes are shown on the right in green; the final analysis outcome is in yellow 152 

at the bottom right. Solid lines show direct flows or outcomes. Dashed lines show processes 153 

acting on or in concert with prior outcomes: for example, exponential random graph modeling 154 

(ERGM) was performed using the FIV transmission network, and the combination of the two 155 

produced the ERGM coefficients outcome.   156 

 157 

Statistical analysis of FIV transmission networks 158 
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  Phyloscanner transmission tree output suggests direction of transmission, but in our 159 

case, these results were often uncertain (see Results). To avoid putting undue emphasis on an 160 

uncertain direction of transmission, we simplified the transmission tree output to undirected, 161 

unweighted (binary) networks and performed statistical analysis of these networks using 162 

exponential random graph models (ERGMs; [38]). ERGMs model the edges in networks, with 163 

explanatory variables representing the potential structural drivers of the observed network [38]. 164 

By including network structural variables, ERGMs account for the inherent non-independence of 165 

network data. As such, we modeled “transmission relationships” (i.e., being connected in the 166 

transmission network) as a function of network structural variables and transmission variables 167 

we a priori expected to influence direct transmission processes in panthers. We considered 168 

several structural variables: an intercept-like edges term [38]; geometrically weighted edgewise 169 

shared partner distribution (gwesp; representation of network triangles); alternating k-stars 170 

(altkstar; representation of star structures); and 2-paths (2 step paths from i to k via j; [39]). In 171 

addition, we considered a suite of transmission variables (see supplementary methods for 172 

additional variable details): panther sex; age class (subadult or adult); pairwise genetic 173 

relatedness (panther microsatellite data from [34]); position of panther home range centroid 174 

(95% minimum convex polygon) or capture location (hereafter, centroid) relative to the major I-175 

75 freeway (locations could be north or south of this east-west freeway); distance from centroid 176 

to nearest urban area (in km; USA Urban Areas layer, ArcGIS; [40]); pairwise geographic 177 

distance between centroids (log-transformed; Figure S1); and pairwise home range overlap 178 

(utilization distribution overlap indices of 95% bivariate normal home range kernels; [41,42]).  179 

 Because ERGMs are prone to degeneracy with increasing complexity [38], we first 180 

performed forward selection for network structural variables, followed by forward selection of 181 

dyad-independent variables, while controlling for network structure. Model selection was based 182 

on AIC and goodness of fit, and MCMC diagnostics were assessed for the final model 183 

(supplementary methods). ERGMs were fit with the ergm package [43] in R (v3.6.3; [44]). 184 
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 185 

Panther population simulations 186 

 We next simulated FeLV transmission through a network representing panthers during 187 

the 2002-04 FeLV outbreak where network edges represented likely transmission pathways 188 

based on ERGM-identified predictors of FIV transmission (FIV-based model). Hereafter, a full-189 

simulation includes both simulation of the panther population with its likely transmission 190 

pathways and simulation of FeLV transmission within that population. Below, we describe the 191 

process for a single simulation, but these procedures were repeated for each full simulation.  192 

 We first based the simulated population size on the range of empirical estimates from 193 

2002-2004 (Table S1; [36]). Additional characteristics of the simulated population included those 194 

identified as significant variables in the ERGM analysis: age category and pairwise geographic 195 

distances between panther home range centroids (see Results). We randomly assigned age 196 

categories to the simulated population based on the proportion of adults versus subadults. Age 197 

proportions were based on age distributions in the western United States [45], which 198 

qualitatively align with the historically elevated mean age of the Florida panther population [46]. 199 

Pairwise geographic distances for the simulated population were generated by randomly 200 

assigning simulated home range centroids based on the distribution of observed centroids on 201 

the landscape (supplementary methods).  202 

 We then used ERGM coefficients to generate network edges among the simulated 203 

panther population using the ergm package in R [43]. The FIV transmission network spanned 15 204 

years of observations and represents a subset of the actual contact network, as it includes only 205 

those interactions that resulted in successful transmission. We therefore had a high degree of 206 

uncertainty regarding the appropriate network density for our simulations. To manage this 207 

uncertainty, we constrained density (ratio of existing edges to all possible edges) in our network 208 

simulations across a range of parameter space (net_dens, Table S1).  209 

 210 
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Simulation of FeLV transmission on FIV-based networks 211 

 The next step in each full simulation was to model FeLV transmission through the 212 

network generated from FIV predictors of transmission. FeLV transmission was based on a 213 

stochastic chain binomial process on the simulated network, following a modified SIR 214 

compartmental model (Figure 2). Simulations were initiated with one randomly selected 215 

infectious individual and proceeded in weekly time steps. Transmission simulations lasted until 216 

no infectious individuals remained or until 2.5 years, whichever came first.  217 

 218 

 219 

Figure 2: Diagram of flows of individuals between compartments in transmission model. Virus 220 

icons indicate infectious states, with the regressive infection icon darkened to represent reduced 221 

or uncertain infectiousness of this class. Note: a vaccination process was also included in the 222 

transmission model, but is not shown for simplicity. With vaccination, susceptibles could be 223 

vaccinated, and vaccinated individuals subsequently infected as with susceptibles, but with an 224 

additional probability of (1-ve). See Table S1 for definitions of parameters. 225 

 226 
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 Transmission was dependent on the following (Figure 2; see Table S1 for parameter 227 

definitions):  (1) existence of an edge between two individuals, (2) the dyad in question involving 228 

a susceptible and infectious individual, and (3) a random binomial draw based on the probability 229 

of transmission given contact (β). In addition, Puma concolor generally have low expected 230 

weekly contact rates [47]; we therefore included a weekly contact probability, represented as a 231 

random binomial draw for contact in a given week (w).  232 

Upon successful transmission, infectious individuals were randomly assigned to one of 233 

three outcomes of FeLV infection [29]. Progressive infections (probability P) are infectious (β), 234 

develop clinical disease, and die due to infection (μ). Regressive infections (also probability P) 235 

recover from infection (K*μ, where K is a constant) and, having entered a state of viral latency, 236 

are not considered at risk of FeLV reinfection [29,48]. Using model assumptions derived from 237 

known patterns of FeLV infection in domestic cats, regressive individuals are not infectious [29], 238 

but given ongoing uncertainty, we included some transmission from regressives (C*β, where C 239 

is a constant). Abortive infections (probability 1-2P) are never infectious, clearing infection and 240 

joining the recovered class. While the duration of immunity in abortive cases has not been 241 

studied in panthers, because abortive cases clear infection through a strong immune response 242 

and develop anti-FeLV antibodies, reinfection with FeLV is considered extremely unlikely [48].   243 

A vaccination process was included in simulations as panthers were vaccinated against 244 

FeLV during the historical FeLV outbreak starting in 2003. Vaccination occurred at a rate, t, and 245 

applied to the whole population, as wildlife managers are unlikely to know if a panther is 246 

susceptible at the time of capture or darting. However, only susceptible individuals transitioned 247 

to the vaccinated class (i.e. vaccination failed in non-susceptibles). Because panthers were 248 

vaccinated in the empirical outbreak with a domestic cat vaccine with unknown efficacy in 249 

panthers, we allowed vaccinated individuals to become infected in transmission simulations by 250 

including a binomial probability for vaccine failure (1-vaccine efficacy, ve, Table S1).  251 
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 The panther population size remained roughly static through the course of the FeLV 252 

outbreak [36]. We therefore elected not to include background mortality, but did include 253 

infection-induced mortality. To maintain a consistent population size, we therefore included a 254 

birth/recruitment process. Because FIV-based simulated networks drew edges based on 255 

population characteristics, we treated births as a “respawning” process, in which territories 256 

vacated due to mortality were reoccupied by a new susceptible at rate, n. This approach allowed 257 

us to maintain the ERGM-based network structure and is biologically reasonable, as vacated 258 

panther territories are unlikely to remain unoccupied for long.  259 

 260 

Comparison of simulation predictions to observed FeLV outbreak 261 

To evaluate the performance of our FIV-based model, we also predicted FeLV 262 

transmission dynamics using three alternative models: random networks, home range overlap-263 

based networks, and a well-mixed model. The random networks model used Erdős-Rényi 264 

random networks, matching network densities from the FIV-based model (Table S1), but 265 

otherwise allowing edges to occur between any pairs of individuals. Overlap-based networks 266 

were generated using the degree distributions of panther home range overlap networks from 267 

2002-2004 and simulated annealing with the R package statnet ([49]; supplementary methods). 268 

For both random and overlap-based networks, FeLV transmission was simulated as in the FIV-269 

based simulations. The well-mixed model was a stochastic, continuous time compartmental 270 

model (Gillespie algorithm), with rate functions aligning with the chain binomial FeLV 271 

transmission probabilities (see supplementary methods). 272 

We performed transmission simulations for all model types (FIV-based, overlap-based, 273 

random, and well-mixed) across a range of reasonable parameter space (Table S1), using a 274 

Latin hypercube design (LHS) to generate 150 parameter sets that efficiently sampled 275 

parameter space [50,51]. For each parameter set and model type, we performed 50 simulations 276 

(30,000 total). In each simulation, we recorded the number of mortalities and the duration of 277 
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outbreaks, which were each summarized (medians) across each parameter set. For each model 278 

type, we determined if each parameter set’s predicted median mortalities, duration of outbreaks, 279 

and abortive cases were within a reasonable range based on the observed FeLV outbreak (5-20 280 

mortalities, 78-117 week duration, at least 5 abortive infections; [29]). If so, a parameter set was 281 

deemed “feasible” for that model type. Ranges were used to account for uncertainty in 282 

observations and population size in this cryptic species (supplementary methods). To test for 283 

differences in the frequency of feasible FeLV predictions between model types, we fit a binomial 284 

generalized linear mixed model (GLMM), assuming a logistic regression with “feasible” (vs 285 

“unfeasible”) as the outcome, model type as a predictor variable, and a random intercept for 286 

parameter set.  287 

We tested for spatial clustering of cases in the observed FeLV outbreak by leveraging 288 

our database of qPCR-based FeLV status. We performed a local spatial clustering analysis of 289 

FeLV cases and controls using SaTScan (50% maximum, circular window; [52]). A SaTScan 290 

analysis seeks to identify clusters of cases in which the observed cases within a particular 291 

cluster exceed random expectation; this analysis reports the observed/expected ratio and radius 292 

of any significant clusters. In addition, we performed a global cluster analysis with Cuzick and 293 

Edward’s test (global cluster detection with case-control data) in the R package smacpod (1, 3, 294 

5, 7, 9, and 11 nearest neighbors; 999 iterations; [53–55]). To determine if simulated FeLV 295 

cases likewise demonstrated spatial clustering, we repeated SaTScan local cluster analysis and 296 

Cuzick and Edward’s tests (at 3, 5, and 7 nearest neighbors) with feasible FIV-based simulation 297 

results. To determine if detected clustering in FIV-based simulations was simply based on our 298 

respawning protocol, we also performed both spatial analyses with feasible overlap-based 299 

simulation results as a “negative control.” Because the overlap-based model was not spatially 300 

explicit, we assigned the same geographic locations to nodes in the overlap-based networks 301 

from the corresponding FIV-based networks. 302 
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 To determine if certain transmission parameters were important for feasible outcomes, 303 

we performed post hoc random forest variable importance analyses for each of the four model 304 

types with “feasible” as the binary response variable (using the R package randomForest 305 

[56,57]; see supplementary results). 306 

 307 

Results 308 

FIV transmission network analysis 309 

 In the main FIV network, Phyloscanner inferred 42 potential transmission relationships 310 

(edges) between 19 individuals (nodes; network density = 0.25), after removing 9 edges that 311 

were between individuals known not to be alive at the same time (Figure 3). Panther FIV 312 

genomes missing from the transmission network were those for whom transmission 313 

relationships could not be inferred by Phyloscanner (see Discussion). ERGM results for the 314 

main FIV network identified triangle (gwesp) and star structures (altkstar) as key structural 315 

variables, and age category and log transformed pairwise geographic distance as key 316 

transmission variables (Tables 1, S2). Though altkstar was not statistically significant, inclusion 317 

of this variable contributed to improved AIC and goodness of fit outcomes. Adults were more 318 

likely to be involved in transmission events (but see discussion of sample size limitations) and 319 

inferred transmission events were more likely between individuals which were geographically 320 

closer to each other. The fitted model showed reasonable goodness of fit (Figures S2-3). 321 

 322 
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 323 

Figure 3: Phyloscanner-derived main FIV transmission network. Node shape indicates panther 324 

age class (square = subadult; circle = adult). Node color indicates panther sex (blue =  male; 325 

red = female). Edge weight represents Phyloscanner tree support for each edge (thicker edge = 326 

increased support); for visualization purposes, edges are displayed as the inverse of the 327 

absolute value of the log of these support values. While pictured as a directed and weighted 328 

network, statistical analyses used binary, undirected networks. 329 

 330 

Table 1: Main FIV transmission network exponential random graph model results 331 

Variable Estimate SE p-value 

Edges (intercept) -2.56 1.33 0.055 

gwesp 0.98 0.26 <0.001 

altkstar -0.70 0.96 0.47 

Age (Adult) 0.93 0.44 0.03 

Log pairwise distance -0.45 0.21 0.03 
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Note: “gwesp” is geometrically weighted edgewise shared partner distribution (a representation 332 

of triangle structures) and “altkstar” is alternating k-stars (a representation of star structures). 333 

Age classes were subadult and adult, with subadults the reference level; pairwise distances 334 

were between home range centroids and log-transformed. Only those variables from the final 335 

model are shown. Estimates shown are untransformed; SE represents standard error; p-values 336 

less than 0.05 were considered statistically significant.  337 

 338 

FeLV simulations 339 

About 9% of parameter sets across all model types were classified as feasible (Figures 340 

S6-S7). The FIV-based model had the highest odds of feasibility, though this difference did not 341 

achieve statistical significance (Table 2). SaTScan analysis of observed FeLV status found 342 

weak evidence of local spatial clustering (two clusters detected, but not statistically significant 343 

with p=0.165 and 0.997, respectively; Figure S5). Cuzick and Edward’s tests found evidence of 344 

global clustering at 3, 5, and 7 nearest neighbor levels (test statistic Tk where k is number of 345 

nearest neighbors considered: T3 = 20, p = 0.049; T5 = 32, p = 0.028; T7 = 43, p = 0.023). 346 

Feasible parameter sets from both the FIV-based and overlap-based models produced some 347 

evidence of local and global spatial clustering of simulated FeLV cases (Figures 4, S8). 348 

However, the FIV-based model better captured the size and strength of predicted local clusters 349 

(SaTScan radius and observed/expected cases, respectively; Figure 4) and was moderately 350 

better at capturing global spatial patterns (Figure S8).  351 

The post-hoc random forest analyses typically showed poor balanced accuracy and area 352 

under the curve (AUC) results. However, the parameter shaping transmission from regressively 353 

infected individuals (C), consistently showed support for weak to moderate transmission from 354 

regressives (i.e., C = 0.1 or 0.5; Figure S11).  355 

 356 

Table 2: Fixed effects results from model-type performance GLMM*  357 
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Variable Estimate SE p-value 

Intercept 0.055 0.40 <0.001 

FIV-based network model 1.55 0.42 0.30 

Random network model 1.32 0.43 0.52 

Overlap-based network 
model 1.21 0.44 0.66 
*Note: estimates provided are exponentiated; the well-mixed model was the reference group 358 

and none of the model-type results achieved statistical significance. 359 

 360 

 361 

Figure 4: SaTScan cluster analysis for feasible FIV-based and overlap-based network 362 

simulations show stronger agreement for the FIV-based model, compared to the overlap-based 363 

model, between empirical observations (red horizontal lines) and model predictions for (A) FeLV 364 

cluster size and (B) Observed/Expected FeLV cases associated with the top detected cluster. 365 

Shown are feasible simulation results in which at least one cluster was detected with p-values 366 

less than or equal to 0.1; further, only the results from the top cluster are shown. 367 

 368 
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Discussion 369 

 In this study we develop a new approach whereby we leverage knowledge of 370 

transmission dynamics of a common apathogenic agent to prospectively predict dynamics of an 371 

uncommon and virulent pathogen. Our approach was distinctly different from simpler models we 372 

tested, as the apathogenic (FIV)-based approach focused on underlying drivers or mechanisms 373 

of transmission and could be used to prospectively identify predictors of transmission and 374 

develop disease control plans prior to an outbreak of a virulent pathogen (FeLV). We found that 375 

FIV transmission in panthers is primarily driven by distance between home range centroids and 376 

age class, and that our prospective FIV-based approach predicted FeLV transmission dynamics 377 

at least as well as simpler or more reactive approaches. While we do not propose that this 378 

apathogenic agent approach could accurately predict exactly when, where, and to whom 379 

transmission might occur, our results support the role of apathogenic agents as novel tools for 380 

prospectively determining sources of individual-level heterogeneity in transmission and 381 

consequently improving proactive disease management.   382 

 383 

An FIV-based model captures FeLV transmission dynamics 384 

 We found that our network model based on drivers of FIV transmission produced FeLV 385 

outbreak predictions consistent with the observed FeLV outbreak. The FIV-based approach 386 

performed at least as well as simpler models, per our GLMM analysis, with evidence that FIV 387 

better predicted the observed spatial dynamics for FeLV transmission. A key difference between 388 

the FIV-based approach and other spatially explicit methods is that FIV allowed us to determine 389 

the importance of spatial dynamics prospectively and then translate to predictions of FeLV 390 

transmission, rather than relying on retrospective FeLV spatial analyses. Furthermore, while 391 

more complex potential drivers of transmission (e.g., host relatedness or assortative mixing by 392 

age or sex) were not found to be important for FIV transmission, these may yet be key for 393 

structuring transmission in other systems. Simpler model types like random networks or 394 
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metapopulation models may struggle to make transmission predictions that incorporate these 395 

drivers of transmission-relevant contact. The predictive power we observed here using an 396 

apathogenic virus could thus open new opportunities to determine behavioral and ecological 397 

drivers of individual-level heterogeneity in the context of pathogen transmission, and even 398 

shape proactive epidemic management strategies for pathogens such as FeLV. 399 

 Our network statistical analysis (ERGMs) determined that pairwise geographic distances 400 

and age category structure FIV transmission in the Florida panther. These findings are well 401 

supported by panther and FIV biology, providing confidence in the functioning of our 402 

apathogenic agent workflow. For example, panthers are wide-ranging animals but maintain 403 

home ranges, and this appears to translate to increased transmission between individuals that 404 

are close geographically. This finding is supported by the tendency for FIV phylogenies to show 405 

distinct broad [58] and fine scale [59] geographic clustering in Puma concolor. Further, 406 

specifically among Florida panthers, spatial autocorrelation of FIV exposure status was 407 

previously found to approach statistical significance [60]. The wide-ranging nature of puma 408 

appears to limit geographic clustering of many infectious agents [60], with FIV a notable 409 

exception to this pattern. In addition, because FIV is a persistent infection, we would expect 410 

cumulative risk of transmission to increase over an individual’s lifetime and adults would 411 

consequently be involved in more transmission events. The low number of subadult individuals 412 

in our dataset, however, means that this finding must be interpreted with some caution.  413 

 With these ERGM results in mind, key components of the success of our apathogenic 414 

agent approach are likely that (1) FIV is a largely species-specific virus with transmission 415 

pathways closely matching intraspecific transmission of FeLV, and (2) both FIV and FeLV, 416 

perhaps unusually for infectious agents of puma, display spatial clustering of infection. Here, 417 

FIV fundamentally acted as a proxy for close, direct contact in panthers, and could consequently 418 

determine drivers of such contacts. If, for example, FIV also exhibited strong vertical or 419 

environmental transmission, we would no longer expect the predictive success for FeLV we 420 
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observed here. This consideration highlights the importance of careful apathogenic agent 421 

selection when attempting to predict pathogen transmission, a workflow which must now be 422 

tested in additional host-pathogen systems. For example, the mixed results when using 423 

commensal agents to identify close social relationships in other systems [15–18,21,22] 424 

highlights that some host-apathogenic agent combinations will work better than others for 425 

determining drivers of transmission. Within our study, Phyloscanner struggled to elucidate 426 

transmission relationships between many of our FIV genomes, likely due to unusually low 427 

genetic diversity among our FIV isolates, or our use of proviral DNA (which has lower diversity 428 

than circulating RNA) [35]. While the drivers of transmission we identified are biologically 429 

reasonable, we may have lacked the power to identify more complex relationships (e.g., 430 

homophily) due to the low number of individuals in our transmission network.  431 

Elaborating on agent selection suggestions outlined in the introduction, we propose that 432 

apathogenic agent selection should carefully consider agent genetic diversity within a target 433 

population—not just expected diversity based on typical mutation rates, as in our case—and 434 

favor those agents with high diversity to facilitate transmission inference. We also propose that 435 

apathogenic agents should represent the timescales of transmission for the pathogen of 436 

interest. For example, FeLV produces long, slow epidemics, such that FIV transmission 437 

relationships may be most representative across the longer timescales we evaluated here. In 438 

contrast, short, acute pathogen epidemics would likely best be represented by apathogenic 439 

agent transmission over shorter timescales. Our results highlight that, perhaps most importantly, 440 

an apathogenic agent should have a well characterized mode of transmission that closely 441 

matches transmission of the pathogen of interest, as this was likely key to our success with FIV 442 

and FeLV. Future research should determine how divergent an apathogenic agent may be from 443 

a pathogen of interest while still predicting transmission dynamics.   444 

While few parameter sets in our simulations were classified as feasible, this appears to 445 

be predominantly the result of the wide range of parameter space explored through our LHS 446 
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sampling design. This limitation was fundamentally due to uncertainties in FeLV transmission 447 

parameters, and is representative of the uncertainties experienced in predicting transmission of 448 

emerging or understudied pathogens. Infectiousness of regressives, the number of introductions 449 

of FeLV to the panther population, and the duration of FeLV infection in panthers were all 450 

important sources of uncertainty in our models. All three of these dynamics can have significant 451 

impacts on the duration of a simulated epidemic, allowing an epidemic to continue to “stutter” 452 

along at low levels [61], much as was observed in the empirical FeLV outbreak. Our post hoc 453 

random forest analysis provided some evidence of weak transmission from regressive 454 

individuals, but this finding would need to be validated with additional research, as it is in stark 455 

contrast to FeLV dynamics in domestic cats. Reducing uncertainties in these three key 456 

dynamics would significantly narrow the range of our predictions, and even assist in ongoing 457 

management efforts for FeLV in endangered panthers. The effect of transmission parameter 458 

uncertainties underscores the importance of linking laboratory and model-based research to 459 

generate more accurate transmission forecasts [62]. 460 

 461 

Limitations and future directions  462 

 The suite of tools for inferring transmission networks from infectious agent genomes is 463 

rapidly expanding [24]. In this study, we used the program Phyloscanner as it maximized the 464 

information from our deep sequencing viral data. However, our FIV sequences were generated 465 

within a tiled amplicon framework [35,63], which biases intrahost diversity and limits viral 466 

haplotypes [64]. Phyloscanner was originally designed to analyze RNA from virions and not 467 

proviral DNA, as we have done here. We have attempted to mitigate the effects of these 468 

limitations by analyzing several different Phyloscanner outputs to confirm consistency in our 469 

results, and by using only binary networks to avoid putting undue emphasis on transmission 470 

network edge probabilities, as these are likely uncertain. Further, our primary conclusions from 471 

the transmission networks—that age and pairwise distance are important for transmission—are 472 
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biologically plausible and supported by other literature, as discussed above. Nevertheless, 473 

future work should evaluate additional or alternative transmission network inference platforms. 474 

In addition, ERGMs assume the presence of the “full network” and it is as yet unclear 475 

how missing data may affect transmission inferences [38]. ERGMs are also prone to 476 

degeneracy with increased complexity and do not easily capture uncertainty in transmission 477 

events, as most weighted network ERGM (or generalized ERGM) approaches have been 478 

tailored for count data (e.g., [65]). ERGMs may therefore not be the ideal solution for identifying 479 

drivers of transmission networks in all systems. Alternatives may include advancing dyad-based 480 

modeling strategies [66], which may more easily manage weighted networks and instances of 481 

missing data.  482 

 Our FIV-based approach required extensive field sampling, and many disciplines from 483 

viral genomics through simulation modeling. However, with increasing availability of virome data 484 

and even field-based sequencing technology, our approach may become more accessible with 485 

time. Further, the predictive benefits seen here, while needing further testing and validation, 486 

could become a key strategy for proactive pathogen management in species of conservation 487 

concern, populations of high economic value (e.g. production animals), populations with 488 

infrequent pathogen outbreaks that make targeted surveillance more difficult, or populations at 489 

high risk of spillover, all of which may most benefit from rapid, efficient epidemic responses.  490 

 491 

Conclusions 492 

 Here, we integrated genomic and network approaches to identify drivers of FIV 493 

transmission in the Florida panther. This apathogenic agent acted as a marker of close, direct 494 

contact transmission, and was subsequently successful in predicting the observed transmission 495 

dynamics of the related pathogen, FeLV. Further testing of apathogenic agents as markers of 496 

transmission and their ability to predict transmission of related pathogens is needed, but holds 497 

promise for revolutionizing proactive epidemic management across host-pathogen systems.   498 
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