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Abstract
Motivation: Bacterial  genomes are being deposited into online databases at  an increasing rate.
Genome annotation represents one of the first efforts to understand organisms and their diseases.
Some  evolutionary  relationships  that  are  capable  of  being  annotated  only  from  genomes  are
conserved gene neighbourhoods (CNs), phylogenetic profiles (PPs), and gene fusions. At present,
there is no standalone software that enables networks of interactions among proteins to be created
using these three evolutionary characteristics with efficient and effective results.
Results: We developed GENPPI software for the ab initio prediction of interaction networks using
predicted proteins from a genome.  In  our  case study,  we employed 50 genomes of  the genus
Corynebacterium. Based on the PP relationship, GENPPI differentiated genomes between the ovis
and equi biovars of the species Corynebacterium pseudotuberculosis and created groups among the
other species analysed. If  we inspected only the CN relationship, we could not entirely separate
biovars, only species. Our software GENPPI was determined to be efficient because, for example, it
creates interaction networks from the central genomes of 50 species/lineages with an average size
of 2200 genes in less than 40 minutes on a conventional computer. Our software is compelling
because the interaction networks that it creates reflect evolutionary relationships among species and
were obtained in average nucleotide identity (ANI) analyses. Additionally, this software enables the
user to define how he or she intends to explore the PP and CN characteristics through various
parameters, enabling the creation of customized interaction networks. For instance, users can set
parameters regarding the genus, metagenome, or pangenome. In addition to the parameterization of
GENPPI, it is also the user’s choice regarding which set of genomes he or she is going to study.
Availability: The source code in the Common Lisp language, binary files for different operating
systems, and GENPPI software tutorials are available at {{github.com/santosardr/genppi}}.
Contact: santosardr@ufu.br
Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction 
Producing an interaction network is relatively simple; researchers simply
need to find a reason to link pairs of entities and apply this rule for all
possible pairs of a set. However, such a reason should be trustworthy, or
else  we  could  have  messy,  random,  and  ineffective  relationships.
Considerable  time  and  resources  could  be  lost  in  explaining  a  non-
existent  solution  for  an  annotated  relation  among subjects.  Thus,  the
fundamental role of always present and useful databases becomes clear.
Some notable data sources for genome annotation include the following:

 Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) (Szklarczyk et al., 2019);

 Database  for  Annotation,  Visualization  and  Integrated
Discovery (DAVID) (Jiao et al., 2012);

 Metascape (Zhou et al., 2019);
 Kyoto  Encyclopedia  of  Genes  and  Genomes  (KEGG)

(Kanehisa et al., 2018);
 Gene  Ontology  (GO)  (“The  Gene  Ontology  Resource:  20

Years and Still GOing Strong”, 2018); and
 Gene Expression Omnibus (Clough and Barrett, 2016).

These  well-known  databases  possess  easy-to-use  enrichment  analyses
and  useful  and  user-friendly  interfaces  for  biologists.  Many  of  these
databases  allow  researchers  to  export  their  results  and  continue
additional studies using various programs, such as Python (Van Rossum
and Drake, 2009), Cytoscape (Shannon, 2003), R (R Core Team, 2013),
UALCAN (Chandrashekar  et  al.,  2017),  MCODE (Bader  and Hogue,
2003), and GEPHI (Leonard, 2004). Notably, there are a considerable
number of libraries existing and deployed annually for all this software.
For instance, such libraries enable researchers to focus on candidate hub
genes,  differentially  expressed genes (DEGs),  the  tertiary structure  of
protein interactions,  and many other  useful  features.  For  example,  in
(Sun  and  Zhang,  2020),  the  authors  studied  crucial  genes  in
hepatocellular  cancer.  The  authors  obtained  the  initial  data  from the
Gene Expression Omnibus database. The DAVID website was employed
to perform the GO and KEGG enrichment analyses before uploading the
data to the STRING database, which was utilized for further analysing
the  DEGs.  After  that  step,  the  authors  used  Cytoscape  software  to
construct a protein interaction network. Once in Cytoscape, a plugin for
MCODE was used to study the modules of DEGs. For a final analysis,
the  authors  used  the  Gene  Expression  Profiling  Interactive  Analysis
website to determine the module genes’ effects on overall survival under
hepatocellular  cancer.  (Sun  and  Zhang,  2020)  employs  a  notably
elaborate combination of several databases and software tools to produce
interesting in silico bioinformatic analyses. There are many other studies
similar to this one. A simple internet search of the main terms in this
section could retrieve dozens of thousands of similar studies.
Many  of  the  cited  databases  in  this  section  have  the  common
characteristic  of  being  sealed  databases.  We  define  sealed  as  not
accepting new data from anyone outside a trained and specialized team
of workers.  There is nothing wrong with this  approach; one does not
allow others  to  access  their  bank accounts  because  of  such  concerns
regarding unauthorized access. For instance, one cannot upload a new
genome to the STRING database. First, the database administrator must
ensure that the data are trustworthy. Second, a new genome should have
some  representativeness  level  to  acquire  a  specific  matching  of
annotation according to the genomes already in the database to reduce
the risk of producing poor annotations. Nonetheless, many users would
prefer to have their novel genomes annotated by such useful software.
Indeed, users can upload their novel genomes to the STRING database

and subject them to various kinds of enrichment according to a plethora
of third-party databases but only for known genes, not for novel genes. A
researcher investigating model organisms will not face such challenges
in obtaining useful insights from all the databases mentioned earlier.
For instance, when studying H. sapiens, M. musculus, R. norvegicus, D.
rerio, D. melanogaster, C. elegans, S. cerevisiae, A. thaliana, S. pombe,
and P. falciparum, if the STRING (Szklarczyk et al., 2019), Metascape
(Zhou  et  al.,  2019),  and  DAVID  (Jiao  et  al.,  2012)  databases  are
employed, a list of genes is sufficient to provide useful data. However,
when investigating unseen or underrepresented organisms, a researcher
will  not  have  a  trustworthy  list  of  genes.  Many of  the  open  reading
frames (ORFs) will  be of unknown function. Such a scenario is more
likely  to  occur  when  studying  prokaryotes.  The  study  of  prokaryotes
yields dozens of novel genomes and thousands of novel genes daily. We
believe that these novel data, even those not curated, deserve the benefit
of doubt and further annotation, including topological annotations. We
are also confident  that  the currently utilized databases will  not  easily
manage such a massive volume of novel data. We support the parallelism
of this considerable data novelty processing by the creators of the data,
the researchers, not by centralized databases, at least in the early stages
of data generation. To achieve our vision of parallelism, we developed
GENPPI  software.  GENPPI  transfers  the  question  of  topological
annotation  from  the  centralized  databases  to  the  final  user,  the
researcher, at the initial point of research. GENPPI enables researchers to
experiment  among  better  sets  of  genomes  to  create  topological
annotation.  For  instance,  we  believe  that  the  GENPPI  topological
annotation information is directly proportional to the number of genomes
used  to  create  an  annotation.  In  contrast,  the  data  are  indirectly
proportional to the number of genomes used for a GENPPI round. As we
employ fewer  genomes in  an annotation round, GENPPI will  suggest
more  interactions  between  the  ORFs,  since  there  are  not  too  many
genomes  to  confirm  such  a  set  of  predictions  as  co-occurring.  We
constantly search for equity between data and information but are guided
by the skills of researchers regarding the organisms under study.
GENPPI  inspects  genomes  represented  as  proteins  in  the  multifasta
format, searching for a conserved neighbourhood, phylogenetic profile,
and gene fusion. This software enables the decision of how many and
what genomes to use for the construction of a protein interaction network
to be transferred to the final user. Despite the limited number of features
employed  in  GENPPI,  in  the  next  sections,  we  will  attempt  to
demonstrate  that  this  set  of  characteristics  suffices  to  produce  good-
quality networks. We will attempt to support our hypotheses based on
the construction of finely detailed phylogenetic maps for the genomes
under study. We will demonstrate that the features used by GENPPI can
distinguish  between,  for  example,  the  biovars  of  the  species
Corynebacterium pseudotuberculosis (Bernardes et al., 2020), as well as
obtaining  optimal  separation  among  the  genera  of  other  prokaryotic
organisms,  although the software is not limited to one-cell organisms.
Considering  the  quality  of  species  separation  and based  on the  three
features analysed by GENPPI, our software obtained good quality for
our topological annotations,  as well  as fewer  computational resources
needed  for  this  task.  For  instance,  for  50  genomes  of  an  organism
containing an of average 2200 genes, we spent only a matter of hours
accomplishing full topological annotation.

2 Methods
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2.1 Genomes studied
We obtained the genomes investigated in this  work using the  official
NCBI file transport protocol (Supplementary Method S1).

2.2 Metrics and reference genomes
To test the validity of the results observed within the GENPPI interaction
networks,  we  performed  trials  with  variations  in  the  following
parameters. We describe metrics 1 to 5 as the following:

(1) Number of nodes/vertices: number of proteins present in the
network;

(2) Average degree: number of existing interactions compared to
the number of proteins;

(3) Density: ratio between a total number of edges and possible
edges according to the number of vertices;

(4) Number  of  edges:  number  of  interactions  between  the
proteins in the network;

(5) Maximum  degree:  number  of  interactions  that  the  most
interactive protein has within the network.

We obtained the interaction networks of a set of genomes from model
organisms  from  the  STRING  database.  We  calculated  these  metrics
using the software GEPHI and ordered the columns according the level
of importance (Supplementary Table S2).

2.3 Novel heuristic for faster sequence proteins com-
paring

In our software GENPPI, we represent the proteins through an amino
acid histogram, which indicates the amino acid frequency distribution
within a protein sequence. In the process of comparing two proteins, we
applied our similarity heuristic approach, known as Histofasta checking
(Supplementary Method S3).

3 Results
Fig. 1 presents a scheme in which we attempt to explain the disposition
of the results that we obtained with GENPPI. Since the GENPPI program
can show neighbourhood conservation or phylogenetic profiles, the first
step is to produce a pangenome. The data on this pangenome are not in
this session of results but rather are results derived from the pangenome.
In possession of a pangenome, GENPPI conducts a systematic search for
neighbourhoods  and  conserved  phylogenetic  profiles.  To  direct  this
search, we start from proteins with a high identity (> 90%) or proteins
with a high chance of belonging to a central or accessory genome under
analysis.  The  point  of  this  approach  is  to  show  that  the  central
pangenome’s characteristics,  phylogenetic  profile  (PP),  and conserved
neighbourhood (CN) are reliable;  otherwise,  they would not  correctly
represent  facts  about  the  evolutionary relationship  of  known bacterial
species. Once the correction of evolutionary relationships is confirmed,
we can explore distinct ways of generating these networks. In brief, the
network creation process variations stem from limitations that we can
attribute  to  how  many  interactions  we  want  to  be  part  of  formatted
networks to answer a specific scientific question. However, regardless of
the level of data restriction imposed by the user to answer their scientific
query, we ensure that  the networks produced by GENPPI are reliable
because  they  represent,  with  a  high  degree  of  confidence,  the
evolutionary relationships of the bacterial species under analysis.

Fig.  1:  Scheme  of  an  arrangement  of  the  results. Suggesting  that
GENPPI produces reliable results.

3.1 Heat-Maps
The  analysis  of  the  difference  between  genomes  using  nucleotide
sequences, known as Average Nucleotide Identity (ANI), is presented in
Figures.  Fig.  3  depict  the  results  of  GENPPI  for  the  same genomes.
However,  the  data  used in  Fig.  3  show the  extent  of  proteins  shared
between each pair  of  genomes.  For  example,  suppose  genome A has
2200  proteins.  Of  this  total,  2000  proteins  of  genome  A  have  high
similarity to proteins of genome B. Therefore, at row A and column B of
the  heat  graph,  we have 2000/2200=0.91% protein similarity  between
genomes  A  and  B.  Note  that  in  row  B  and  column  A,  the  protein
similarity  value  between  these  genomes  is  likely  to  be  specific.  We
explain  this  difference  as  occurring  because  the  denominator  is  the
measure of B proteins,  and the numerator is  the chunk of  B proteins
found in A. The cell colours above and below the main diagonal depend
on which genome is the numerator and which is denominator. In Figures
2 and 3, we chose the colours white and black for low and high identical
genomes, respectively. The gray colour is an intermediate value between
white and black.

Fig.  2:  Average  nucleotide  identity for  50  genomes  of  the  genus
Corynebacterium. The largest grayish square  represents the clusters of
C.  pseudotuberculosis and  Corynebacterium diphtheriae.  Both
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groupings have units that are almost black due to the high score of DNA
similarities.

Fig. 3: Pangenome similarity profile for the same 50 genomes of the
genus  Corynebacterium depicted  in  Fig.  2. The  clusters  of  C.
pseudotuberculosis and  Corynebacterium  diphtheriae are  the  most
grayish.  The  remaining  units  are  whitish  due  to  the  low  protein
similarities of their phylogenetic profiles.

Genomes of correlated species compared by ANI are differentiated by
small  percentages  and  are  generally  above  90%  (Fig.  2).  Values  of
protein similarity between the pangenome (Fig. 3) were less sharpened
than the ANI values. A rate of less than 50% can be a high similarity
value between a pair of genomes. Supplementary Result Fig. 1 displays
the  cumulative  probability  distribution  function  or  CDF  plot  for  the
similarities in Fig. 3. The majority (87%) of the possible combinations
obtained from the  50 genomes  of  the  genus  Corynebacterium have  a
similarity of less than 50%.
Fig. 4 represents the differences between the similarities of each pair of
genomes, as determined by ANI (Fig. 2) - GENPPI (Fig. 3). Importantly,
the  differences  indicated  in  Fig.  4  are  not  regarding  the  similarity
between the species but how much GENPPI and ANI on these species
agree or diverge. In Fig. 4, heat map cells with black values indicate a
very  pronounced  difference,  while  white  values  indicate  a  slightly
significant difference between ANI and GENPPI. Most of the units that
constitute the C. pseudotuberculosis grouping are white. Other units are
slightly  grayish,  representing  differences  with  little  expressiveness,
between  ANI  and  GENPPI.  Excluding  the  Cdiplaus  genome,  the
Corynebacterium diphtheriae cluster would have a colour pattern similar
to that of C. pseudotuberculosis.
Some cases are noteworthy in Figures 2-4. (i) The genome identified as
GCA_902702935.1_FRC0190  refers  to  Corynebacterium  rouxii (high
GC Gram+). This genome showed high similarity at both the nucleotide
and protein levels with the  C. diphtheriae grouping. An analysis of the
data from the heat maps of our work indicates that the genome named C.
rouxii was  C. diphtheriae.  In addition to our analyses,  the specialized
literature in these organisms confirms our recommendation to change the
nomenclature from the species C. rouxii to C. diphtheriae (Badell et al.,

2020). (ii) The genome identified as GCA_009789155.1_ASM978915v1
refers to Corynebacterium ulcerans, strain MRi49. According to the ANI
analysis,  this genome exhibited high similarity at the nucleotide level
with the clusters of C. pseudotuberculosis and C. diphtheriae. However,
the  genome exhibited a higher similarity  at the protein level with  C.
pseudotuberculosis.  Nevertheless,  given that  we can perceive  a slight
gray colour in the GENPPI heat map, we believe that this species has
some  protein  similarity  to  C.  pseudotuberculosis.  In  this  case,  the
literature  describes the  species  C.  pseudotuberculosis,  C.  diphtheriae,
and  C.  ulcerans as  being  evolutionarily  related  (Busch  et  al.,  2019)
(McNamara, Cuevas, and Songer 1995).

Fig. 4: Profile differences between Figures 2 and 3. It accounts for
the chunk of divergence about ANI and the pangenome raised by
GENPPI. Black cells  represent the maximum difference,  while  white
cells  account  for  smaller  differences,  with  grayish  units  representing
intermediate  differences.  The  majority  of  the  comparisons  are  white
because ANI and GENPPI agree on the low similarity of the compared
genomes and small differences.

Most of Fig. 4 is coloured white, meaning that the ANI enables us to
reach the same conclusion as GENPPI regarding the minor  similarity
between the majority of the possible relationships between each pair of
genomes. However, there is a considerable portion of Fig. 4 that is in
black colouration. The colour reflects similarities found at the nucleotide
level that do not sustain themselves at the amino acid level compared
with the pangenome analyses of GENPPI. It is interesting to note that for
the  clusters  of  C.  pseudotuberculosis and  diphtheriae,  the  pattern  of
similarity between ANI and GENPPI is notable, despite the presence of
other  numerical  values.  By  guarding  the  differences  in  the  similarity
quantities,  we  reach  the  same  conclusions  between  Figures  2  and  3
regarding  the  evolutionary  proximity  of  cluster  organisms.  Using  the
ANI results (Fig. 2), we can note similarities between genome sequences
not reflected in the pangenome (Fig. 3). Such closeness extends beyond
the clusters of C. diphtheriae and C. pseudotuberculosis. Therefore, our
results support the hypothesis that the similarity between species using
the protein pangenome is more useful for differentiating them compared
to  the  DNA  sequences.  This  finding  is  reasonable  because  we  have
demonstrated  in  Fig.  3  that  the  species  are  distinctive  with  distinct
pangenomes, despite having similar DNA sequences, as depicted in Fig.
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2.  The  differentiation  of  proteins  is  known  to  occur  because  of
transcription  in  the  DNA  strands.  Therefore,  a  phylogenetic  analysis
using  the  pangenome  helps  to  more  accurately  determine  differences
between  species  compared  with  an  identical  study  examining  DNA.
Nevertheless, when we analysed genomes from the same species, there
was parity between phylogenetic analyses using ANI and GENPPI.

3.2 Graph of boxes of conserved phylogenetic profiles
Fig.  5  summarizes  the  phylogenetic  profiles  present  in  each  genome
analysed (Genome) versus the bulk of genomes in which these profiles
appear (Genomes). Therefore, the Y-axis is on the scale from 0 to N,
where N is the total genome. In this graph, a median means a load of
genomes in which we found conserved phylogenetic profiles,  and the
width of a plot box is proportional to the number of profiles conserved in
a  genome.  The  analysis  of  conserved  phylogenetic  profiles  made  by
GENPPI  demonstrated  the  relationship  between  the  ovis  and  equi
biovars  of  C.  pseudotuberculosis.  The  biovar  equilinage  has  six
genomes: Cp106A, Cp162, Cp258, Cp31, Cp316, and CpCIP5297. We
employed the median and first and third quartiles of genome box plots to
demonstrate biovar equi separation. The equi biovar is represented by the
first quartile of the plot boxes of the genomes aligning near the median
of the plot boxes of genomes belonging to the biovar ovis. The genomes
of  the  biovar  equi  that  fall  into  this  scenario  are  the  following:
GCA_000265545.3_ASM26554v3  (Cp162,  from  a  camel  in  Egypt),
GCA_000263755.3_ASM26375v3  (Cp258,  from  a  horse),
GCA_000259155.4_ASM25915v4  (CpCp  31,  from  a  buffalo),
GCA_000248375.2_ASM24837v2 (Cp316,  from a horse  in  the  USA)
and  GCA_000227605.3_ASM22760v3  (CpCIP5297,  from  a  horse  in
Kenya).  The  exception  to  this  rule  was  the  genome  with  end
GCA_000233735.1_ASM23373v1 (Cp106A, from a horse in the USA),
which  presented  the  first  quartile  closest  to  the  ovis  biovar  strains.
However, the median Cp106A was observed to be closer to the biovar
equi.

Fig.  5:  Each  genome  has  a  box  plot  registering  stats  for  their
conserved  phylogenetic  profiles. The  width  of  a  box  plot  is
proportional  to  the  number  of  PPs  found.  There  is  a  numerical
expressiveness  of  genomes  from  C.  pseudotuberculosis (left)  and
diphtheriae (leftmost). For the former, the PP median enables separation
of the biovars ovis and equi (highest medians).

The  expanded  box  plots  are  sixteen  and  comprise  the  species  C.
pseudotuberculosis.  The  box  plots  of  the  genomes  of  the  species  C.
diphtheriae are  seven  and  have  a  smaller  width  than  that  of  C.
pseudotuberculosis. Even because these box plots are less represented in

this  set  of  genomes,  the  other  species  did  not  show  expressive
phylogenetic  conservation,  and we presented plot  boxes with  a  small
width. These other species have only one genome representing them in
this set of 50 from the genus  Corynebacterium. Genomes numerically
underrepresented compared to C. pseudotuberculosis and C. diphtheriae
account  for  phylogenetic  profiles  preserved  solely  for  the  genus
Corynebacterium.  The  C.  diphtheriae and  C.  pseudotuberculosis
clusters,  on  the  other  hand,  dominate  the  number  of  conserved
phylogenetic profiles.
We utilized the species C. diphtheriae as a reference genome to assemble
the  first  fifteen  genomes  of  C.  pseudotuberculosis.  At  the  time,  we
believed that the species C. diphtheriae and C. pseudotuberculosis were
very similar. At the end of the first assembly, we concluded that these
species had a similarity level above 60% at the protein level. For the first
automatic annotation transfer,  this  level of similarity  was satisfactory.
However, in Fig. 3, the colouration of protein similarity between Cp1002
and Cdip can be observed to be intense white staining, which reflects
2.4% protein similarity with a confidence level greater than 90% of the
pangenome. This similarity is low because we set the program to raise
the pangenome between these two strains to consider proteins similar
only if they had more than 90% identity at the amino acid level. If we
had decreased the  criterion for  determining resemblance,  there  would
probably be a greater affinity between these two species. However, if we
had diminished  the  stringency  for  proteins’  identity  to  nearby levels,
60% GENPPI would not  translate  such a set,  given the  pangenome’s
reliability. With low levels of similarity, preserved protein domains that
are present in many proteins with distinct functions could lead to false
positive results regarding the pangenome’s central genome.
The previous section showed the utility of generating a central genome
with  the  ability  to  create  phylogenetic  clusters  consistent  with  our
biological knowledge of bacterial species. The analysis of the box chart
results in Fig. 5 shows that phylogenetic profiles made by GENPPI are
also consistent with the previous findings regarding species and biovars.
Thus,  the  interaction  networks  created  by  GENPPI  using  the
conservation  of  phylogenetic  profiles  can  help  us  to  identify  a
topological structure with biological significance.

3.3 Box plot of preserved gene neighbourhoods
GENPPI does not  work with the  genomic  DNA sequence  but  with a
report  exported  from  the  DNA  encoding  proteins.  However,  the
conservation of a gene’s DNA sequence location influences the box plot
of preserved gene neighbourhoods. We assume that protein sequences
tend to enter a multifasta file in an order similar to that observed when
they  were  when  extracted  from a  DNA  sequence.  GENPPI  software
receives  as  input  a  multifasta  file  of  proteins  ordered  similar  to  the
corresponding genes arranged on the DNA sequence. Given this premise,
in  Fig.  6,  we use  a window of  size w to count  how many genes are
conserved according to at least some other N genomes under analysis.
We store a conservation pattern if that pattern occurs in two or more
genomes. Two very similar  genomes may have almost  identical gene
neighbourhoods. For an example of two genomes evolutionarily  close
and  assuming  a  value  of  w  <  10,  the  median  of  a  conserved
neighbourhood (CN), the first quartile and the third quartile, as well as
the maximum number of conserved genes, are all equal to w, except for
several outliers. The greater the extent of a box plot is, the greater the
number of genes with CN characteristics in a genome is. In a CN graph,
there is no way to know which genomes are very similar. It is possible to
know that there are very similar genomes with a minimum of two.
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Fig.  6:  Better  possible  separation  of  the  genus  Corynebacterium
achieved using the conserved neighbourhood. We achieved splitting
via the expansion of a window of pitch three. The stopping criterion was
a  reduction  by  more  than  half  in  the  number  of  conserved  loci  for
window  size.  In  this  query,  we  did  not  ensure  a  full  split  of  C.
pseudotuberculosis biovars ovis  and equi  but of  the  main represented
species.
When the GENPPI program runs without the restriction of the threshold
window  for  conserved  neighbourhood  analysis  with  progressive
increases of -ws until  the conservation quality decreases,  we call  this
process a dynamic expansion. In Fig. 6, the measure of genes conserved
in  a  neighbourhood  (dynamic  extension  with  -ws  3)  showed  a  high
similarity  between  the  genomes  of  the  biovar  equi  of  the  species  C.
pseudotuberculosis, strains Cp106A, Cp162, Cp258, Cp31, Cp316, and
CpCIP5297. The median of the six equine genomes remained below 25
genes.  Within  this  graph,  three  out  of  sixteen  genomes  of  C.
pseudotuberculosis have  box  plots  with  the  median  below  25  not
belonging  to  the  biovar  equi,  the  genomes  Cp267,  Cp3995,  and
CpString. We know the genomic relations between the biovars ovis and
equi from the literature of  C. pseudotuberculosis (Soares  et al., 2013).
When the dynamic expansion step -ws is equal to 1, we have seven out
of  ten genomes  of  C.  pseudotuberculosis biovar  ovis  whose  medians
approach  those  of  the  biovar  equi  genomes  (data  not  displayed).
However,  if  we  increase  the  neighbourhood  conservation  window’s
pitch, for example, to -ws 5 and -ws 7, there will be no changes against
the  result  with  -ws  3  (data  not  displayed).  Thus,  the  value  that  best
created the separation of the biovars ovis and equi regarding the gene
neighbourhood’s  conservation  was  a  dynamic  extension  step  with
window  size  equal  to  3,  value  derived  from  experimentation  and
comparison between results.
Nevertheless, in Fig. 6, when we utilized dynamic expansion, the seven
genomes of  C. diphtheriae had medians lower than the lowest median
obtained for most  C. pseudotuberculosis strains. The median of the  C.
diphtheriae species  remained  lower  than  the  average  of  most  of  the
species  C. pseudotuberculosis. The Cdiplaus genome was at a median
well  below  those  of  the  other  analysed  genomes  of  C.  diphtheriae.
Considering that the literature reports Cdiplaus as a heterotypic synonym
of  Corynebacterium belfantii (Badell  et  al.,  2020),  we have  evidence
indicating that  our analysis  of  the  median genomes of  C. diphtheriae
would provide a correct classification of all genomes of the species  C.
diphtheriae analysed in this study. In addition, the difference between
the  CpString  median  compared  to  all  other  genomes  of  C.
pseudotuberculosis and  even  with  C.  diphtheriae is  noteworthy.  In
graphs of the number of genes per conserved neighbourhood generated

by GENPPI, medians with values close to zero are found for genomes
that have only one specimen per species among the analysed set.

The GENPPI's dynamic expansion to CN makes us pay the price for 

more accurate mappings. The number of protein comparisons is similar 

to compound interests; we have a principal multiplied by interest, but a 

power of ws. The interest is a factor we named ρ and depends on the av-

erage number of proteins among the genomes analyzed. To Corynebac-

terium, ρ is equal to 1.15. The result is 2 hours to finish considering a 

window size equal to three and 50 genomes. However, for Staphylococ-

cus, with ρ=1.33 and 57 genomes, we spent 32 hours on the same win-

dow pitch. We present a more thorough analysis in Supplementary 

Method S5. The counterpart of the dynamic expansion algorithm to CN 

is the fixed retraction. Instead of exponential complexity, we have a log-

arithmic one, which takes about 40 minutes to process the same 50 

Corynebacterium genomes, considering an initial window of size 10. Al-

though the dynamic expansion to CN showed the best possible result in 

distinguishing between species and biovars, we also made analyses with 

fixed retraction with an initial window size equal to 10 (Supplementary 

Result Fig. 2).

3.4 Interaction networks created with GENPPI for 
Corynebacterium

We submitted a set of 50 genomes of C. pseudotuberculosis to several 

combinations of GENPPI parameters. The analyses were divided be-

tween the two types of window sets for a conserved neighbourhood 

(fixed or dynamic) versus the seven possible types of configurations for 

a boundary of phylogenetic profiles , including an option that does not 

restrict the load of interactions mapped in the final report.

It is important to note that the algorithms employed for assessing con-

served PP and CN work independently. Each algorithm generates variant

sets of interactions that can occur for the same pair of genes. We chose 

to explore CN execution variations without changing the PP execution 

mode. The objective was to facilitate the comparison between results. 

The most relevant results produced by GENPPI, considering the purpose 

of studying centrality measures, are presented in Table 1. We employed 

a network generated by STRING software for the genome of C. pseudo-

tuberculosis as a reference (Ref) for the metrics.

Table 1. Metric values obtained for interaction networks by CN and PP.

Id CN

expansion

Nodes Medium
degree

Density Edges Maximum
degree

Ref - 2213 180.83 0.082 200088 901

f1 fixed 2149 319.859 0.398 943553 1343

f3 fixed 2073 287.354 0.139 297842 714

f2 fixed 2066 70.421 0.034 72745 713

f4 fixed 1999 132.719 0.066 132653 410

d1 dynamic 2150 897.189 0.417 964478 1387

d3 dynamic 2075 317.163 0.153 329057 807

d2 dynamic 2027 72.109 0.036 73082 706

d4 dynamic 1999 165.843 0.083 16576 546
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d5 dynamic 2058 272.208 0.132 280102 713

Compared to the fixed expansion, the values of the metrics for dynamic
expansion  in  Table  1  were  approximate  with  point  exceptions.  The
highlight is observed because of the average degree of execution with the
f1 id.  If  we exchange only the expansion from fixed to dynamic, we
obtain a significant increase in the medium degree’s conservation, with
an increase from 320 to 897 being observed. This increase is probably
observed because of evolutionary conservation in the  genomes of  the
genus Corynebacterium.
The particular web created by d5 Id has a density and average degree
above  what  we  consider  ideal  for  the  study  of  centrality  measures
compared to the STRING reference. However, this network generated
the best phylogenetic separation between species via CN (Fig. 6). This
result is an example of the flexibility of network generation provided by
GENPPI.  Our  software  enables  the  creation  of  interaction  networks
customized for a user’s specific need, such as the study of measures of
centrality  (lower  density)  or  the  study  of  protein  clusters  (higher
density).  Regardless  of  the  end-user  objective  and  considering  that
interactions have a valid biological meaning, we guarantee the correction
of the networks obtained in further studies.
Given the variations in the bulk of vertices and edges that can compose
each network created by GENPPI, we expect to experience diversity in
the topology of nets created by our software. We present the results of an
examination of topology's variety in Supplementary Result Fig. 3.

4 Conclusion
The study of bacterial network topologies based on evolutionarily pre-

dicted relationships is a promising area of research. Until this study was 

conducted, few studies had performed such a query for a genome. A pos-

sible cause for this limitation is the absence of software to predict inter-

action networks from protein sequences alone. Our software presented in

this report is a useful tool for any researcher to use. GENPPI can help fill

the gap concerning the considerable number of novel genomes assem-

bled monthly and our ability to process interaction networks considering 

the noncore genes for all completed genome versions. With GENPPI, a 

user dictates how many and how evolutionarily correlated the genomes 

are in order to answer a specific scientific query. We offer various con-

figuration modes to employ, ranging from fast and lightweight to more 

careful and intense computations. However, we should warn users of the 

usual traps of extensive computational inquiries. Regardless of the cho-

sen processing method, the user can be assured of obtaining a mostly 

reasonable answer, at least (Esch and Merkl, 2020). We are confident in 

the GENPPI software because the majority of the necessary relationships

that it provided were determined to be correct by CN and PP, as phyloge-

netic analyses of these relations correctly separated bacterial species. Our

software is open-source, and we can compile it for different operational 

systems.
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