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We present Cepo, a method to generate cell-type-specific gene statistics of differentially stable 

genes from single-cell RNA-sequencing (scRNA-seq) data to define cell identity. Cepo outperforms 

current methods in assigning cell identity and enhances several cell identification applications such 

as cell-type characterisation, spatial mapping of single cells, and lineage inference of single cells. 

Defining cell identity is fundamental to understand the cellular heterogeneity in the population and 

the cell-type-specific response to environmental signals and experimental perturbations. Exploring cell 

identity has been enabled by rapid technological advances in genome-wide profiling of the molecular 

content in single cells1–3. This comprehensive lens into the molecular properties unique to each cell type 

allows defining and predicting cell identities in ways that were previously not feasible using data generated 

by bulk/population analytics technologies. The most widely used method to define genes associated with 

cell identity is differential expression (DE)4,5. Despite the advances in high-throughput scRNA-seq data that 

would provide unprecedented resolution of cell identity, none of the current approaches6 has been 

evaluated systematically for their attribute and fidelity for defining cell identity genes (CIGs) from scRNA-

seq dataset of millions of cells and consisting of hundreds of cell types.  

We developed Cepo (refers to “cell” in Korean), a method to retrieve genes defining cell identity from 

scRNA-seq data. We propose a biologically motivated metric, differential stability (DS), to identify cell-type 

specific genes on the premise that stable gene expression is a key indicator of cell identity. Our hypothesis 

implies that genes marking a cell type should be (1) expressed and (2) stable in its expression level relative 

to other cell types. We translate the criteria into a computational framework where, using pre-defined cell-

type labels, we compute cell-type-specific statistics to prioritise genes that are DS against other cell types 

in all cell-type pair comparisons (Fig. 1a, Online Methods: Cepo implementation). 

We performed a comprehensive benchmarking of Cepo with several differential analysis methods6–

9 using both simulated and experimental scRNA-seq datasets in a range of biological systems that require 

knowledge of cell identity. We tested the accuracy and efficacy of the method to detect subtle changes in 

stability against simulated DS genes with varying stability (Supplementary Fig. 1 and Online Methods). We 

show that Cepo, followed by Voom, can identify simulated DS genes with the highest accuracy relative to 

other methods (Fig. 1b and Supplementary Fig. 2, 3). 
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To determine the effectiveness of Cepo to detect DS genes, we applied Cepo on the CellBench data 

consisting of single-cell expression profiles from three human lung adenocarcinoma cell lines10. Evaluation 

of the global ranks of the differential statistics generated from each method and the two components of 

Cepo, relative CV (rCV) and relative proportion of zeros (rzprop; see Online Methods), demonstrated a 

strong correlation between the differential analysis methods and also with rCV (Supplementary Fig. 4, 5). 

In agreement with the simulation results, among the benchmarked methods, Voom demonstrated the 

strongest correlation with Cepo and rCV. Genes identified by Cepo showed stronger differential stability 

between cell types when compared to other competing methods (Fig. 1c, d and Supplementary Fig. 6). 

Consistent with prioritisation of differences in mean gene expression by other differential analysis methods, 

genes specifically prioritised in these methods showed less DS between cell types (Supplementary Fig. 6-

7). To determine whether the DS genes prioritised by Cepo enhance the assignment of cell identities, we 

performed gene set enrichment against Cancer Module database11 on the relative scores of the top ranked 

genes between Cepo and other differential analysis methods. When comparing the genes identified from 

lung adenocarcinoma (H2228) cells using Cepo and other methods, we observed a strong enrichment of 

lung cancer and the depletion of other heterogeneous cancer types from the Cancer Module Database (Fig. 

1e and Supplementary Fig. 8). These results demonstrate the ability of Cepo to prioritise relevant cell 

identity gene sets and de-prioritise the irrelevant ones. 

As the number of cells covered by the dataset increases, computational speed becomes a key factor 

in method selection. Cepo is computationally fast, requiring only seconds to analyse datasets with tens of 

thousands of single cells (Fig. 1f). Whilst dedicated single-cell methods (such as MAST) have been shown 

to be much slower than bulk methods (such as Voom)5, we demonstrate that Cepo is fastest in computation 

(Fig. 1f) and scales up effectively when applied to dataset containing millions of single cells12 (Fig. 1g). 

High throughput single-cell data is requisite for the characterisation of rare cell types. It is therefore 

imperative to develop methods that can detect genes associated with cell identity in cell types that make 

up a minor proportion of the population. To address this challenge, we devised an experiment evaluating 

the reproducibility of CIG detection in rare cell types using data subsampling (Online Methods). We found 

that whilst the global statistics was fairly reproducible across all methods (Fig. 2a and Supplementary Fig. 

9), identification of the top CIGs was most consistent by Cepo (Fig. 2b). Besides the subsampling analysis, 
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we also observed strong concordance of Cepo-derived statistics across technologies and batches in 

scRNA-seq data (Supplementary Fig. 10). 

We reasoned that the integration of Cepo with diverse applications of single-cell analysis for the 

investigation of the spectrum of cell types would enhance retrieval of cell identity. We first analysed a high-

throughput embryogenesis atlas data13 that cover multiple lineages, complex cell types, and time points 

(Fig. 2c-d) to test the ability of differential analysis methods to cluster like cell types at different time points. 

We expect that global statistics between cell types of the same lineage should be more similar than those 

from more distant lineages. Indeed, visualisation of the pairwise correlation of differential statistics revealed 

stronger correlation with cell types from the same lineages, implying that the Cepo statistics may be more 

informative of cell identities than other methods (Supplementary Fig. 11-14). Furthermore, clustering 

analysis revealed that Cepo was able to group the major lineage/cell types more effectively than the other 

differential methods, as exemplified by the clustering of mesoderm lineage samples (Fig. 2e and 

Supplementary Fig. 15). Expression of genes specifically prioritised by Cepo and displayed in UMAP 

confirmed the differential stability of these genes was closely associated with cell identity (Supplementary 

Fig. 16). Moreover, we showed that Cepo-defined CIGs lead to more accurate classification of cell-types 

using scRNA-seq data generated by different technologies14 and for different species15 (Fig. 2f).  

Factors influencing cell identity include the spatial location and neighbourhood of the cell. We 

considered whether CIGs identified by Cepo include genes associated with the spatial environment on the 

premise that factors influencing cell identity may include the environment in which the cell resides3. When 

applied Cepo to the mapping of single cells from E6.5 and E7.5 mouse embryos14 to tissue domains in 

embryos of the corresponding timepoints16, single cells were regionalised to tighter locations in the germ 

layers (Fig. 2g and Supplementary Fig. 17a) with greater homogeneity of cell types in each location than 

the other differential analysis methods (Supplementary Fig. 17b). We further confirmed the gene expression 

of spatial markers were in agreement with prior biological knowledge (Supplementary Fig. 17c), highlighting 

the attribute of Cepo to assign high-confidence cell identities at defined locations. 

Demonstration of the utility of Cepo’s in identifying cell types led us to query the relevance of Cepo-

identified DS genes to recapitulate the underlying biology in stem cell differentiation. Current trajectory 

inference tools commonly rely on the judiciously selected genes, as inclusion of all genes may mask the 
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biology and introduce noise in data analysis. To test this, we tested whether the Cepo-selected CIGs were 

able to recapitulate the branching of the granulocyte and monocyte lineages17,18 using a scRNA-seq dataset 

profiling hematopoietic stem cell differentiation19 (Supplementary Fig. 18a). We found that trajectory 

inference on genes selected using other differential analysis methods was unable to recapitulate the 

branching of the two lineages (Fig. 2h-i). In contrast, genes selected by Cepo uncovered the underlying 

structure of the data, resulting in revealing the branching of the monocyte and granulocyte lineages (Fig. 

2h-i). We corroborated this finding by running the trajectory analysis with genes that are exclusive to each 

method as well as genes common to all four methods by showing that use of Cepo-exclusive genes alone 

is sufficient to retrieve the bifurcation event (Supplementary Fig. 18b-c). As a demonstration of robustness, 

Cepo consistently captured the bifurcation of the lineage tree across multiple trajectory inference methods 

(Supplementary Fig. 19). Gene set over-representation analysis for granulocytes revealed enrichment of 

many terms associated with the granulocyte function (Fig. 2j). Similarly, in other cell types, we found that 

Cepo prioritised genes associated with cell identity more effectively than other methods (Fig. 2k and 

Supplementary Fig. 20; see Online Methods for references). For instance, in monocytes, Cepo identified 

genes such as neuregulin-1 (NRG-1), an endogenous activator of the NRG-1/ErbB pathway, which 

regulates macrophage and monocyte function20 (Fig. 2k).  

Cepo is a biologically driven method to uncover cell identity and cell-fate decisions (Fig. 1e and Fig. 

2e-k). Inherent to the design of Cepo is the ability to scale to datasets containing millions of cells on a laptop 

(Fig 1g). Cepo is compatible with 3’ and full-length sequencing protocols (Supplementary Fig. 10). In 

contrast to DE methods, Cepo incorporates information from both highly and lowly expressed genes and 

prioritises genes more efficiently than other methods that rely on more highly or differentially expressed 

genes (Supplementary Fig. 6). As a method for CIG identification, Cepo will facilitate the mining of the 

growing resource of single-cell data and realise the potential of single-cell analytics technologies to pinpoint 

cell identities that are relevant to the cellular phenotype.  
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Figure 1. Cepo uncovers differentially stable genes in synthetic and experimental single-cell RNA-

sequencing datasets. (a) A schematic of Cepo to define the differential stability (DS) statistics. (b) AUC 

of Cepo and other differential analysis methods, Voom7, differential distribution (DD), and MAST9, in 

simulated scRNA-seq datasets containing 500 differentially stable genes between two cell types. The 

degree of DS was modulated by increasing the percentage of zeros (column) and/or by increasing the 

scaling of the standard deviation of gene expression (row). (c) Distribution of expression of example DS 

genes identified for each cell type from a scRNA-seq dataset of three lung adenocarcinoma cell lines10. 

The ranking of each gene in their respective cell types of interest by each method are tabulated. A lower 

rank denotes higher prioritization of the gene. (d) Expression of top 200 genes identified for each of the 

three lung adenocarcinoma cell lines by the differential analysis methods. Columns correspond to cells 

and rows correspond to individual genes. For each cell type, the genes are ordered by decreasing 

differential statistics. (e) Gene set enrichment plot of Cancer Modules11 486 and 17 on the relative ranks 

of the top 3000 genes from Cepo and each of the differential analysis method (y-axes denote enrichment 

scores and x-axes denote the rank difference). (f) The median computation time to run each method in 

seconds for n = 20 independent simulations across varying number of cells and 20,000 genes are shown. 
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Error bars denote the lower and upper quantiles. (g) Computation time of Cepo on the fetal atlas data 

consisting of approximately 4 million single cells12. 

 

 

Figure 2. Cepo effectively retrieves cell identity genes and enhances interpretation of diverse 

single-cell applications associated with cell identity. (a) Scatter plot of differential analysis scores 

from the full dataset (x-axis) and the rare cell type dataset (y-axis) generated by subsampling 5% of the 

total number of cells from cell type H2228. The red line denotes the best line of fit, and the blue line 

denotes x=y. (b) Boxplot of Pearson’s correlation between ground-truth and rare cell-type scores of the 

top 40 genes repeated 50 times. (c) UMAP visualization of the embryogenesis atlas scRNA-seq data 

highlighted by 9 major lineages or cell types (left) and embryonic time-points (right). (d) Barplot of cell 

numbers for each cell type. Each bar is sub-sectioned by the proportion of cells found in each embryonic 

time point, giving a total of 196 samples. The bars are grouped into the 9 major lineages or cell types and 
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ordered by decreasing cell count. (e) Clustering of 196 samples by HOPACH trees. The terminal nodes 

are coloured by the major lineage/cell-type labels. Sections of the tree have been shaded to highlight 

clusters of the mesoderm lineage samples. (f) Cross-platform classification of E6.5 single cells from the 

mouse 10X dataset14 using a kNN trained on the mouse Smart-seq2 dataset13 (upper panel), and cross-

species classification of Carnegie Stage 7 single cells from the human Smart-seq2 dataset15 using the 

kNN trained on E6.5 single cells from the mouse Smart-seq2 dataset14 (lower panel). **P < 0.01; ***P < 

0.001, two-sided paired Wilcoxon test. (g) Spatial mapping of E7.5 single cells from the Smart-seq2 

dataset16 onto the E7.5 embryo (n = 83 spatial locations). Each dot denotes a pie chart that shows the 

proportion of cell types mapped to the location. (h) Trajectory inference of hematopoietic stem cell 

differentiation dataset using multi-spanning tree and genes identified by the differential analysis methods. 

(i) Trajectories are highlighted by expression of key marker genes. (j) Gene set over-representation 

analysis of GO terms associated with granulocytes. (k) Paired boxplots of ranked differential statistics of 

select monocyte-associated genes between Cepo and other differential analysis methods. **P < 0.01; 

***P < 0.001, two-sided paired Wilcoxon test. 
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Online Methods 

Datasets 

The following datasets were used to evaluate Cepo and demonstrate its use in extracting cell identity from 

diverse sources of single-cell data and a spatial embryo dataset generated using geographical position 

sequencing (GEO-seq). All the datasets used in this study are publicly available. 

 

• CellBench data 

The “CellBench data” collection1 was downloaded from https://github.com/LuyiTian/sc_mixology/. 

We use two scRNA-seq datasets from five human lung adenocarcinoma cell lines HCC827, H1975, 

H2228, H838, and A549, which were cultured separately. The first dataset contains the first three 

cell lines (i.e., HCC827, H1975, H2228) and the second the entire set. To generate the libraries, 

single cells from each cell line were mixed in equal proportions, and then the data were generated 

using 2-3 different protocols: CEL-seq2, Drop-seq and 10x Genomics Chromium. The resulting 

read counts were normalized using the scran package2. 

• Embryogenesis atlas data 

The “Embryogenesis atlas data”3, which profiles 48 hours of mouse embryonic development, was 

downloaded from https://github.com/MarioniLab/EmbryoTimecourse2018. Staged mouse embryos 

at 9 different time points were collected, prepared into single-suspensions, and then scRNA-seq 

libraries were generated using the 10x Genomics Chromium system. The resulting read counts 

were log-transformed and size-factor adjusted. 

• Gastrulation data 

The parsed “Gastrulation data”4, sequenced using scNMT-seq5, was downloaded from the link 

provided in  https://github.com/rargelaguet/scnmt_gastrulation. The resulting read counts were log-

transformed and size-factor adjusted. 

• Human embryo data 

The processed “Gastrulation data”6 was downloaded from http://www.human-gastrula.net. scRNA-

seq of human CS7 embryo was generated using Smart-seq2 protocol7. The data were normalized 
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using ‘quickcluster’ and ‘normalize’ functions from the scran package2. This was followed by 

pseudocount addition of 1 and natural-log transformation of the count matrix. 

• Haematopoietic stem cell differentiation data 

The “HSC differentiation data”8 was downloaded from https://cytotrace.stanford.edu/. Bone marrow 

cells were harvested from euthanized mice, enriched, and FACS-sorted for generation of single-

cell libraries using the C1 Single-Cell Auto Prep System (Fluidigm). The resulting count matrix was 

TPM/FPKM normalised.  

• Fetal tissue atlas data 

The “Fetal tissue atlas data”9 was downloaded from NCBI Gene Expression Omnibus under 

accession number GSE156793. Approximately 4 million single-cell transcriptomes were generated 

using the sci-RNA-seq3 protocol10 from 121 human fetal samples, representing 15 organs. 

• GEO-seq spatial embryo data 

The “spatial embryo data”11 was downloaded from NCBI Gene Expression Omnibus under 

accession number GSE120963. The spatial data was generated using the protocol described in 

Peng et al.12 from mouse embryos dissected at 5 embryonic time points. 

 

For all datasets, only cells that passed the quality control of the original publication and assigned cell types 

were included. If only the count matrix was supplied, we performed size factor normalisation of the raw 

count matrices and then generated the log-transformed gene expression matrices using the 

‘logNormCounts’ function from the scater R package13. We otherwise used the fully processed matrix 

provided in the above links. Original cell-type labels were used as indicated in the original publication and 

doublets were removed according to the labels where provided. 

 

Cepo implementation  

A fundamental goal of single-cell biology is to identify how experimental manipulation or environmental 

signals affect individual cell-types within a population. Current approaches rely on differential gene 

expression (DE), which has been the go-to method to find genes associated with cell identity14,15. However, 

these methods often rely on the differences in mean gene expression. Whilst differences in gene expression 
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level may be a key discriminating factor between cell types, how well these differences reflect the identity 

of the cell remains unclear. In this study, we propose “differential stability (DS)”  as a new metric to define 

cell identity genes (CIGs) under the premise that stable gene expression is a key indicator of cell identity. 

DS prioritises genes that are (i) expressed and (ii) stable in its expression level relative to other cell types. 

By contrast, DE methods would prioritise genes that may be stably expressed in the cell type of interest 

and also others, as long as they are differentially expressed. We argue that for a gene to accurately 

represent a cell’s identity, stable expression of the gene in that cell type is required (or the lack of in other 

cell types).  

 

We recently proposed a computational framework for characterising stability of gene expression across 

single cells, demonstrating the concept of housekeeping genes to identify genes that are characteristic of 

individual cell types within a population17. Extending on this, here we assess DS of genes 𝑖	(𝑖 = 1,… , 𝐺) in 

each cell type 𝑗	(𝑗 = 1,… ,𝑀) by using a combination of stability features including proportion of zeros w!, 

mean expression level 𝝁!, and variation of expression 𝝈!". Specifically, we first calculate a vector of stability 

score of genes in cell type 𝑗	(𝑗 = 1,… ,𝑀) as the average of normalised ranks of w! and coefficient of 

variation (CV): 

𝒔! = 𝟏 −
𝑟2w!3 + 𝑟 5

𝝈!
𝝁!
6

2𝐺  

where 𝑟(. ) is the function that generates the ranks based on a vector of input values. This allows us to 

quantify the stability of each gene 𝑖 in cell type 𝑗 where the smaller the proportion of zeros and CV of the 

gene, the larger the value of 𝑠#!. The DS score of genes for the 𝑗th cell type is then defined as: 

𝒅𝒔! =
∑ 2𝒔! − 𝒔$3$%!

𝑀− 1  

Sorting the values of 𝒅𝒔! in decreasing order allows the most differentially stable genes to be ranked at the 

top of the list for the 𝑗th cell type. 

 

Differential analysis methods 
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We performed other differential analyses of gene expression using the Model-based Analysis of Single-cell 

Transcriptomics (MAST) method18, Voom and Limma-trend (Limma) implemented in limma R package19, 

edgeR20, differential distribution (DD) based on the Kolmogorov-Smirnov test (KS-test)21, as well as simple 

t-test and Wilcoxon test. For this study, we chose DE methods that were recently demonstrated to have 

high performance in a benchmarking study on scRNA-seq data15. We used the Benjamini-Hochberg22 

method for the adjustment of p-values. All functions used default parameters. For the CellBench 

benchmarking study, we ran edgeR quasi-likelihood (QLF) test and included the cellular detection rate (i.e. 

the fraction of detected genes per cell) as a covariate on TMM-normalised count matrix, as recommended 

in Soneson et al.15. The size-factor normalized and log-transformed expression matrix was used for other 

differential analysis methods unless otherwise stated.  

 

To compare the differential analysis statistics from the above methods against differential stability, we 

compute the two components of Cepo—coefficient of variation and proportion of zeros—individually for 

evaluation purposes only. We compute relative CV (rCV) for the	𝑖th gene in the 𝑗th cell type is below: 

𝒓𝑪𝑽! =
∑ ?𝑟 @𝝈$𝝁$

A − 𝑟 5
𝝈!
𝝁!
6B$%!

(𝑀 − 1)𝐺  

The relative proportion of zeros (rzprop) value can be defined identical to rCV by replacing the CV 

calculation with a calculation for the proportion of zeroes. 

 

Simulations 

We perform a formal assessment on the ability of the benchmarked differential analysis methods to detect 

DS genes using simulation. We first take the CellBench data1 and subset it to only contain the H1975 and 

H2228 cell types. We then use the Splatter package23 to both (1) estimate distributional parameters in this 

dataset and (2) simulate a new single-cell (log-transformed counts) data using the estimated parameters 

by fixing the number of genes to 10,000.  

 

We simulate DS genes with distributional differences between two randomly assigned cell types, named A 

and B. We first calculate 𝑝#, defined as the product between the mean and proportion of non-zero 
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expression values for a given gene, 𝑖. We then define 𝑞# =	
&!	–	)*+(&)

)./(&)	–	)*+(&)
, which scales all 𝑝#’s to be in the 

interval [0, 1]. We then sample 100 genes proportional to the weights 𝑤#, where 𝑤# is defined as 𝑞# if 𝑞# >

0.2	and 0 otherwise. This allows the sampling of genes with lower proportion of zeros as candidates for DS 

genes before we induce distributional differences. We then introduce DS genes in the two cell types (where 

cell type A is regarded as the cell type of interest) by performing the following steps for each DS gene: 

1. For all non-zero expression values, we calculate the mean, 𝑚, and standard deviation, 𝑠. 

2. Generate 𝑋 = (𝑥0, … , 𝑥12) where 𝑛𝑧 is the number of cells with non-zero expression value for that 

gene. Each 𝑥3 is an independently generated normal random variable with mean	𝑚	and standard 

deviation 𝛼𝑠, where 𝛼 is a scaling factor equally spaced between 1 and 4. Any non-positive value 

of 𝑥3 is then set to zero to induce sparsity. 

3. We take the remaining non-zero values from step 2 and replace 𝛽 percent of these values with 

zero. This 𝛽 is an additional proportion of zeroes and we choose it to be equally spaced between 

0% and 14%.  

This procedure is an attempt to: (1) increase the spread of the simulated DS gene through the parameter 

𝛼, and; (2) increase the sparsity in cell type B through the thresholding in step 2 and the 𝛽 parameter in 

step 3. In Supplementary Fig. 1, the values of 𝛼 and 𝛽 as rows and columns, respectively. 

 

Given that we have 100 DS genes out of a total of 10,000 genes, we then calculate the area under the 

receiver operating characteristic curve (AUC-ROC) based on the ranks of the genes by all four differential 

statistics using the yardstick package24. The heatmaps in Fig. 1b and Supplementary Fig. 3 show the AUC-

ROC value averaged across 100 such simulation for each of all differential methods. 

 

Computational time benchmarking 

Fixing the number of cell types to 3 and the number of genes to 20,000, we simulate matrices with 500, 

1000, 5000 and 10,000 cells. These matrices are then evaluated by Cepo, Voom, DD and MAST using R 

with 20 repetitions. The computational times are presented in Fig. 1f. 
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To highlight the performance of Cepo in the computation of data with very large number of cells, we used 

Cepo to perform out-of-memory computation of a human fetal tissue atlas comprising over 4 million single-

cell transcriptomes9. In particular, Cepo handles matrices in the class of ‘DelayedArray’ using 

‘HDF5Array’25, which allows out-of-memory computation. Although this would slow down computational 

speed compared to in-memory computation, out-of-memory computation has a desirable advantage of 

enabling computations on data that is much larger than what the computer RAM can fit at once. This 

eliminates the issue of memory wall when performing Cepo on ultra-high-throughput data. All evaluation 

was performed on a research server with dual Intel(R) Xeon(R) Gold 6148 Processor (40 total cores, 768 

GB total memory) and dual RTX2080TI GPUs. 

 

Rare cell-type and reproducibility analysis 

Large-scale single-cell technologies have enabled discovery of rare cell subpopulations26. To assess the 

capacity of Cepo to generate consistent results for rare cell types, we devised an experiment to evaluate 

the reproducibility of CIG detection in subsampled data. For each cell type, we performed subsampling of 

the cell type to 5% of its original size, whilst leaving the sample size for the other cell types as they are. We 

performed this subsampling 50 times for each differential analysis method and compared the results to 

those generated from the full dataset. To evaluate the concordance of the highly ranked genes, we used 

Pearson’s correlation to calculate the concordance of the top 40 genes, identified using full sample data, 

for the 50 subsampling runs and for each cell type.  

To test the reproducibility of the Cepo with regards to both single-cell sequencing technology and batch, 

we compared the differential stability statistics from scRNA-seq data generated from different sequencing 

technologies and batch. We used the CellBench datasets27, which are particularly amenable for such 

benchmarking analyses. The CellBench scRNA-seq mixology experimental design enables both cross-

technology (CEL-seq2, 10x Genomics Chromium, and Drop-seq) and cross-batch analysis of three cell 

types, H2228, H1975, and HCC827. The second batch was sequenced on the 10x Genomics Chromium 

platform and contained two more cell types (H838 and A549). 
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Clustering of differential analysis statistics  

We performed hierarchical ordered partitioning and collapsing hybrid (HOPACH) clustering28 to evaluate 

sub-cluster relatedness. We used the distance matrix generated from the rank-transformed differential 

analysis statistics. For the HOPACH clustering, we set a value of 10 for ‘kmax’, which controls the maximum 

number of children at each node, whilst keeping the default settings for all other parameters. Visualisation 

of the correlation between the differential analysis statistics was generated using the pheatmap R package29 

on the correlation matrix. Spearman’s correlation was used to calculate the correlation between the 

statistics.  

 

Classification of single cells 

We assessed the utility of genes identified using Cepo, MAST, Voom, and DD on classifying single cells to 

their respective cell types across different scRNA-seq profiling technologies and species. Specifically, we 

first trained a k-nearest neighbour (kNN) classifier to classify cells to the three cell types of Visceral 

Endoderm, Epiblast, and Primitive Streak from the mouse embryos at Embryonic day 6.5 (E6.5) profiled 

using Smart-seq24 and 10x Genomics Chromium3 scRNA-seq technologies. Next, we trained the kNN using 

the cells from mouse embryos at E6.54 and classified the cells profiled from human embryos from the 

corresponding developmental stage (Carnegie stage 7)6. The Pearson’s correlation-based similarity metric 

and the k value of 10 were used for kNN classifiers given their good performance across a large number of 

datasets in our previous work30 and the union of top 25 genes selected from each of all cell types by each 

of the four methods were used as learning features of kNN. To assess the classification accuracy, we 

performed cell type-stratified subsampling using 80% of the cells from each cell type and calculated the 

average accuracy across the three cell types. We repeated this subsampling procedure 10 times to estimate 

the performance variability. 

 

Spatial mapping of single cells to spatial embryo data 

We used the single cells profiled using Smart-seq2 scRNA-seq from the mouse embryos at E6.5 and E7.54 

and the corresponding spatial transcriptomes of mouse embryos at these two development stages11 to 

assess the utility of genes selected from Cepo, Voom, DD, and MAST on mapping single cells to their 
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spatial locations. In particular, we first obtained the union of the top 100 genes selected from each of the 

three cell types (Visceral Endoderm, Epiblast, and Primitive Streak for E6.5; Ectoderm, Endoderm, and 

Mesoderm for E7.5) and then assigned each single cell to the best matched spatial location based on 

Spearman’s correlation of the expression of the selected genes. To quantify the performance of the four 

differential analysis methods (i.e., Cepo, Voom, DD, and MAST) on mapping single cells to spatial 

transcriptomes of the embryos, we calculated the purity of spatial locations based on the assigned single 

cells. Specifically, we define the purity of a spatial location 𝑙	(𝑙 = 1,… , 𝐿) as 𝑝𝑢𝑟𝑖𝑡𝑦4 = max	(𝑝0, 𝑝", … , 𝑝5), 

where 𝑝! =
1"#
6"
(𝑗 = 1,… ,𝑀) is the percentage of cell type	𝑗 at that spatial location of the embryo, 𝑛4! is the 

number of cells in that cell type assigned to 𝑙 and 𝑁4 is the total number of cells assigned to 𝑙. The overall 

purity of single-cell mapping to spatial transcriptomes can then be quantified as ∑ (𝑝𝑢𝑟𝑖𝑡𝑦4 × log"(𝑁4))7
480 , 

where the term log"(𝑁4) accounts for the number of cells assigned to each spatial location. 

 

Trajectory analysis 

To evaluate the relevance of Cepo-identified DS genes to recapitulate the underlying biology in stem cell 

differentiation, we performed trajectory analysis using the marker genes defined by the differential analysis 

methods. To perform the trajectory analyses, we employed the dynverse framework31, which facilitate 

benchmarking of trajectory inference tools. We inferred trajectories using the following tools: 1) the multi-

spanning tree (MST) approach. MST requires the dimensionality reduced matrix as input, for which we used 

multi-dimensional scaling; 2) Slingshot32; 3) projected Monocle233; 4) Monocle233 with DDR-TREE, a 

scalable reversed graph embedding algorithm for dimensionality reduction; 5) CellTree34 using the maptpx 

method35 for latent Dirichlet allocation (LDA); 6) Slice; 7) CellTree34 using the variational expectation-

maximisation (vem) method for LDA; and 8) Monocle233 with ICA for dimensionality reduction. In each case, 

the default settings were used. The top 200 genes with the highest differential statistics from each cell type 

were pooled and used to build the trajectories. The original cell type labels were used where cluster 

assignments were required as input. To determine whether the resulting trajectories has recapitulated the 

correct bifurcation event, we first calculated the pseudotime of differentiation on the basis of the inferred 

trajectories, setting a random cell in the HSCP cell type as “root” cell. We then considered a tree or 

bifurcation as a trajectory with a correct bifurcation event when the terminal cell types included Myelocytes 
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or MDPs. The terminal cell types were defined as cells found between 0.7 and 1 of the pseudotime, where 

1 denotes the terminal cell and 0 the root cell.  

 

To investigate whether the genes specifically identified by Cepo are responsible for the observed 

bifurcation, we repeated the above trajectory analysis on a refined gene set wherein genes that are 

specifically identified by each method were used. Briefly, the top 200 genes with the highest differential 

statistics were selected from each cell type as before. Before pooling the genes together, we excluded any 

genes that were not part of (1) the common gene set of genes identified by all four differential analysis 

methods (Cepo, Voom, DD, and MAST) and (2) the method-specific genes that were specifically identified 

by the method-of-interest. These method-specific gene sets were then used in the trajectory analysis under 

the same conditions as above.  

 

Functional enrichment analyses  

Gene set enrichment analysis was performed using the fgsea R package36 using pathway annotations from 

the MSigDB database37 and in particular the Cancer Gene Co-expression Modules38. We use the relative 

ranks between the differential analysis statistics to assess the relative enrichment of gene sets between 

two methods. The relative enrichment analysis was performed on the top 3000 genes. Amongst the most 

significantly enriched cancer modules were 486 and 17. Each cancer module in the Cancer Gene Co-

expression Modules are characterised by up- and down-regulated clinical annotations. Because each 

differential analysis method prioritises genes that demonstrate increased differential stability, expression or 

distribution in the cell type of interest with respect to other cell types, we considered only the up-regulated 

clinical annotations when characterising the cancer modules. The cancer types associated with the up-

regulated clinical annotations in Cancer module 486 include lung (6) and liver (3) cancers. Those associated 

with the up-regulated clinical annotations in Cancer Module 17 are liver cancer (11), stimulated PBMCs (6), 

stimulated immune (4), breast cancer (2), B lymphoma (1), and neuro tumours (1). The number inside the 

brackets denotes the total number of annotations for each cancer type. Lastly, the enrichment analyses 

were visualised using the ‘plotEnrichment’ function.  
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Pathway over-representation analyses were performed using the ‘enrichGO’ function in ClusterProfiler R 

package39. The biological process ontologies were used, and the P values were adjusted for multiple testing 

using Benjamini-Hochberg FDR correction at 𝛼 = 0.05. To perform the over-representation analysis, we 

used 100 genes with the highest statistics. 

 

Data availability 

The count or expression matrices used in this study can be found at the links provided at the “Datasets” 

section of the article or the raw data can be found at Gene Expression Omnibus under the accession 

numbers described in “Datasets”. 

 

Code availability 

The source code used to perform the analyses presented here is available at 

https://github.com/PYangLab/CepoMauscript. Cepo R package and the detailed vignette are available at 

https://github.com/PYangLab/Cepo. 
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Supplementary Figure 1. Simulation of differential stability genes. In each simulated scRNA-seq 

dataset, DS genes in Cell type 1 were simulated by varying the proportion of zeros (columns) and 

standard deviation (rows) of gene expression in Cell type 2. These two parameters correspond to the 

! and " parameter in Online Methods. The densities of gene expression for one exemplar gene are 

shown above.  
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Supplementary Figure 2. ROC curves of differential stability gene detection. The ROC curves 

were used to assess the capacity of each method to detect DS genes between two cell types. The 

curves are colour-coded by method. The 1-specificity and sensitivity of DS gene detection are plotted 

on the x- and y-axes, respectively. The dashed diagonal lines denote the identity (y = x) lines. 
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Supplementary Figure 3. Heatmap of AUCs from each differential analysis method. The area under the ROC curve (AUC) denotes the accuracy of DS 

gene detection for simulated scRNA-seq datasets are visualised as a heatmap for each differential analysis method.  
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Supplementary Figure 4. Pairwise scatter plot of ranked differential statistics for H2228. The 

statistics generated for H2228 by the eight differential analysis methods were transformed into ranks 

and plotted for pairwise comparison. Variants of the two components of Cepo—rCV and rzprop—were 

included for comparison. Spearman’s correlation was used to calculate the correlation between the 

ranks. ***P < 0.001. The scatter points are coloured by the proportion of zeros found in the gene 

expression across all cells.  

Ranks of differential statistics in H2228

R
an

ks
 o

f d
iff

er
en

tia
l s

ta
tis

tic
s 

in
 H

22
28

0 10000 0 10000 0 10000 0 10000 0 10000 10000 0 10000 10000 0 10000

0

5000

10000

0

5000

10000

0

5000

10000

0

5000

10000

5000

10000

0

5000

10000

5000

10000

0

5000

10000

0

5000

10000

0

1

P
ro

po
rti

on
 o

f z
er

os

Corr:
0.901***

Corr:
0.888***

Corr:
0.995***

Corr:
0.885***

Corr:
0.996***

Corr:
0.999***

Corr:
0.872***

Corr:
0.980***

Corr:
0.987***

Corr:
0.987***

Corr:
0.872***

Corr:
0.976***

Corr:
0.982***

Corr:
0.982***

Corr:
0.976***

Corr:
0.873***

Corr:
0.984***

Corr:
0.993***

Corr:
0.991***

Corr:
0.974***

Corr:
0.976***

Corr:
0.874***

Corr:
0.952***

Corr:
0.947***

Corr:
0.949***

Corr:
0.925***

Corr:
0.928***

Corr:
0.934***

Corr:
0.994***

Corr:
0.910***

Corr:
0.898***

Corr:
0.895***

Corr:
0.880***

Corr:
0.882***

Corr:
0.885***

Corr:
0.883***

Corr:
0.994***

Corr:
0.910***

Corr:
0.898***

Corr:
0.895***

Corr:
0.880***

Corr:
0.882***

Corr:
0.885***

Corr:
0.883***

Corr:
1.000***

Cepo Voom Limma t-test EdgeR MAST Wilcoxon DD rCV rzprop
C

epo
V

oom
Lim

m
a

t-test
E

dgeR
M

A
S

T
W

ilcoxon
D

D
rC

V
rzprop

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.10.426138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Supplementary Figure 5. Correlation plot of ranked differential statistics for lung adenocarcinoma cell lines. Correlation plot showing the pairwise 

Spearman’s correlation between the differential statistics derived from the eight benchmarked differential analysis methods and the two components of Cepo, 

rCV and rzprop, for (a) HCC827, (b) H2228 and (c) H1975. 

  

HCC827a H2228 H1975b c

0.84 10.86 10.85 1

Ce
po

Vo
om

Lim
ma

t-te
st

Ed
ge
R

MA
ST

W
ilc
ox
on

DD

rC
V

rzp
rop

Cepo

Voom

Limma

t-test

EdgeR

MAST

Wilcoxon

DD

rCV

rzprop

1

0.9

0.88

0.88

0.86

0.86

0.86

0.88

0.99

0.99

1

0.99

0.99

0.97

0.97

0.98

0.94

0.91

0.89

1

1

0.99

0.98

0.99

0.93

0.89

0.87

1

0.99

0.98

0.99

0.93

0.89

0.87

1

0.97

0.97

0.93

0.87

0.85

1

0.98

0.92

0.86

0.84

1

0.92

0.87

0.85

1

0.88

0.87

1

0.98 1

Ce
po

Vo
om

Lim
ma

t-te
st

Ed
ge
R

MA
ST

W
ilc
ox
on

DD

rC
V

rzp
rop

Cepo

Voom

Limma

t-test

EdgeR

MAST

Wilcoxon

DD

rCV

rzprop

1

0.91

0.9

0.89

0.88

0.88

0.88

0.91

1

1

1

1

1

0.99

0.98

0.99

0.95

0.91

0.89

1

1

0.99

0.98

0.99

0.96

0.9

0.88

1

0.99

0.98

0.99

0.96

0.9

0.88

1

0.98

0.98

0.94

0.88

0.86

1

0.98

0.94

0.89

0.87

1

0.95

0.89

0.86

1

0.91

0.89

1

0.98 1

Ce
po

Vo
om

Lim
ma

t-te
st

Ed
ge
R

MA
ST

W
ilc
ox
on

DD

rC
V

rzp
rop

Cepo

Voom

Limma

t-test

EdgeR

MAST

Wilcoxon

DD

rCV

rzprop

1

0.9

0.89

0.89

0.87

0.87

0.87

0.87

0.99

0.99

1

0.99

1

0.98

0.98

0.98

0.95

0.91

0.88

1

1

0.99

0.98

0.99

0.95

0.9

0.87

1

0.99

0.98

0.99

0.95

0.9

0.86

1

0.98

0.97

0.92

0.88

0.85

1

0.98

0.93

0.88

0.85

1

0.93

0.88

0.85

1

0.88

0.85

1

0.98 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2021. ; https://doi.org/10.1101/2021.01.10.426138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.10.426138
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Figure 6. Differential patterns of the two components of Cepo—coefficient of variation and proportion of zeros—between cell 
types. Scatter plot of (a) the coefficient of variation (y-axis) and (b) proportion of zeros (y-axis) of top 50 differential analysis genes identified for each cell type 

(rows) by each method (columns). The genes are ordered by rank (x-axis), where a lower rank denotes a higher score. In each plot, the coefficient of variation 
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and proportion of zeros of the genes were calculated and plotted by cell type, and vertical lines were drawn connecting the anchor point to the furthest non-

anchor point, coloured using the anchor cell-type colour label. Boxplot of mean difference in (c) coefficient of variation and (d) proportion of zeros between the 

anchor cell type and the non-anchor cell types. **P < 0.01; ***P < 0.001, two-sided t-test. 

 

 
Supplementary Figure 7. Distribution of top ranked DE genes with low differential stability. Distribution of example DE genes with low differential 
stability for each cell type. The ranking of each gene in their respective cell types of interest by each method are tabulated. A lower rank denotes higher 

prioritization of the gene. 
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Supplementary Figure 8. Visualisation of the top enriched and depleted pathways in the relative gene set enrichment analysis.
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Supplementary Figure 9. Scatter plot of differential analysis scores between rare and abundant 
cell types. Scatter plot of differential analysis scores from the full dataset (x-axis) and the rare cell 

type dataset (y-axis) for (a) H1975 and (b) HCC827. Rare cell types were artificially introduced by 

subsampling 5% of the total number of cells from each cell type. The red line denotes the best line of 

fit, and the blue line denotes ! = #. 
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Supplementary Figure 10. Reproducibility of Cepo across technology and batch. Correlation 

heatmap demonstrating the reproducibility of Cepo scores between three scRNA-seq technologies 

(10X Chromium, CEL-seq, and Drop-seq) and batch (10X Chromium). Spearman’s correlation was 

calculated on the differential analysis scores. 
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Supplementary Figure 11. Correlation matrix of Cepo-derived statistics. Correlation matrix of the 

Cepo-derived statistics for the 196 samples (cell types resolved at different embryonic time points). 
Hierarchical clustering was performed on the correlation matrix. Row annotations denote the major 

lineages/cell-types and the original cell-type labels.  
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Supplementary Figure 12. Correlation matrix of Voom-derived statistics. Correlation matrix of 

the Voom-derived statistics for the 196 samples (cell types resolved at different embryonic time 

points). Hierarchical clustering was performed on the correlation matrix. Row annotations denote the 

major lineages/cell-types and the original cell-type labels. 
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Supplementary Figure 13. Correlation matrix of DD-derived statistics. Correlation matrix of the 

DD-derived statistics for the 196 samples (cell types resolved at different embryonic time points). 
Hierarchical clustering was performed on the correlation matrix. Row annotations denote the major 

lineages/cell-types and the original cell-type labels. 
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Supplementary Figure 14. Correlation matrix of MAST-derived statistics. Correlation matrix of 

the MAST-derived statistics for the 196 samples (cell types resolved at different embryonic time 
points). Hierarchical clustering was performed on the correlation matrix. Row annotations denote the 

major lineages/cell-types and the original cell-type labels. 
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E7.25_Blood progenitors 1
E7.5_Blood progenitors 1
E7.75_Blood progenitors 1
E7.0_Visceral endoderm
E7.25_Visceral endoderm
E6.5_Visceral endoderm
E6.75_Visceral endoderm
E8.0_Visceral endoderm
E7.5_Visceral endoderm
E7.75_Visceral endoderm
E8.25_Visceral endoderm
E8.5_Visceral endoderm
E7.0_Parietal endoderm
E7.25_Parietal endoderm
E7.5_Parietal endoderm
E7.75_Parietal endoderm
E8.0_Parietal endoderm
E7.0_ExE endoderm
E7.25_ExE endoderm
E6.5_ExE endoderm
E6.75_ExE endoderm
E8.25_ExE endoderm
E8.5_ExE endoderm
E7.5_ExE endoderm
E7.75_ExE endoderm
E8.0_ExE endoderm
E7.75_ExE ectoderm
E7.5_ExE ectoderm
E8.0_ExE ectoderm
E8.25_ExE ectoderm
E6.75_ExE ectoderm
E6.5_ExE ectoderm
E7.0_ExE ectoderm
E7.25_ExE ectoderm
E7.75_Erythroid2
E8.0_Erythroid2
E8.5_Erythroid1
E8.25_Erythroid1
E8.5_Erythroid2
E8.5_Erythroid3
E8.25_Erythroid2
E8.25_Erythroid3
E8.5_Blood progenitors 2
E8.25_Blood progenitors 1
E8.5_Blood progenitors 1
E7.5_Blood progenitors 2
E7.75_Blood progenitors 2
E7.75_Erythroid1
E8.0_Erythroid1
E8.0_Blood progenitors 2
E8.25_Blood progenitors 2

Correlation matrix for MAST-derived statistics
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Supplementary Figure 15. HOPACH clustering on differential statistics. HOPACH trees were 

generated by performing HOPACH clustering (kmax = 10) on the distance matrix of the 196 samples 

derived from the differential statistics of (a) Cepo, (b) Voom, (c) DD, and (d) MAST. The terminal 

nodes are coloured by the 9 major lineages/cell types.  
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Supplementary Figure 16. Gene expression of prioritised differential genes. Genes prioritised by 

each method were selected and its gene expression in the mouse embryogenesis atlas visualised on 

UMAP. As examples, genes identified for (a) E8.0 intermediate mesoderm, (b) E6.5 epiblast, and (c) 
E8.0 gut were highlighted for each method (columns).  
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Supplementary Figure 17. Spatial mapping of single cells onto the embryo. (a) Spatial mapping 

of E6.5 single cells from Smart-seq2 scRNA-seq dataset onto the E6.5 embryo (n = 31 spatial 

locations). Each dot denotes a pie chart that shows the proportion of cell types mapped to the 

location. The cell-type labels were defined as in the original publication. The size of each pie chart 

represents the number of cells mapped to each location. (b) Bar plots illustrating the overall purity of 

cell types mapped to the spatial locations of E6.5 and E7.5 embryos. (c) Non-zero expression of 
spatial marker genes of the endoderm, mesoderm, and posterior embryo. For each spatial gene 

(columns), the expected geographical location of expression has been marked with a grey 

background.  
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Supplementary Figure 18. Trajectory inference on gene sets specifically identified by each 
method. (a) TSNE visualisation of the HSC differentiation scRNA-seq dataset. Individual points, 

denoting cells, are coloured by their original cell-type annotations (left) or by CytoTRACE-calculated 

pseudotime (right). (b) Upset plot illustrating the overlap between the differential genes identified by 

each method and the gene set specific to each method. The specific-gene set consists of genes that 
have been specifically identified by the method of interest to be among the top 200 genes for each 

cell type (dark-coloured bars) and genes that have been commonly identified by all methods (grey-

coloured bars). (c) Trajectory inference of hematopoietic stem cell differentiation scRNA-seq dataset 

using genes specifically identified by each differential analysis method (including the core common 

genes). For each method, the union of 200 genes per cell type were used prior to filtering of non-

specific genes. The multi-spanning tree method was used to generate the trajectory.  
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Supplementary Figure 19. Trajectory inference using multiple inference tools. (a) Trajectories 
generated for the HSCP differentiation scRNA-seq dataset with 8 trajectory inference tools. For each 

cell type, the top 200 genes per cell type were selected, aggregated and then used in the trajectory 

analysis. To project the computed trajectory, the multi-spanning tree method for dimensionality 

reduction. Cells are coloured by cell type. (b) Pie charts showing the count of trajectory inference 

methods that are able detect a bifurcation event, where the terminal nodes encompass cell types of 

the two lineages, monocytes and granulocytes. A total of eight trajectory inference methods, as in (a) 
(Online Methods), and the top 200 genes per cell type were used to build the trajectories.  
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Supplementary Figure 20. Paired boxplot of Cepo-prioritised genes. Paired boxplots of ranked 

differential statistics of select genes associated with (a) HSCPs and (b) myelocytes between Cepo 

and other differential analysis methods. **P < 0.01; ***P < 0.001, two-sided paired Wilcoxon test. 
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